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Aleksandar S. Aksentijević
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Abstract

This doctoral dissertation investigates shift-invariant subspaces Vr of Sobolev spaces
Hr (Rn), where r ∈ R. Characterization of the spaces Vr was performed using range
functions, range operators, shift-preserving operators, and wave front. Also, characteri-
zations of frames, Riesz families, and Bessel families were performed using the mentioned
operators and especially using Gram’s and dual Gram’s matrix. Relationships between
the mentioned operators were investigated, and the conditions under which the shift-
preserving operator could be s-diagonalizable and could be written as a finite sum of
products of its s-eigenvalues and corresponding projections were determined. The prob-
lem of dynamical sampling for spaces Vr was solved and different approaches to the theory
of shift-invariant spaces were identified. Elements of the spaces Vr were described using
a wave front. Finally, conditions under which there exists a product of elements from the
observed spaces and conditions when such a product would belong to some shift-invariant
space were determined.

The dissertation consists of six chapters. The first chapter is of an introductory nature.
It consists of a brief overview of the achieved results in the space L2(Rn) including the
focus on the importance of shift-invariant spaces and other concepts mentioned in dis-
sertation. The second chapter presents the theory of distributions. The main tool used
in dissertation, the Fourier transform, is presented in the third chapter. Also, Sobolev
spaces Hr (Rn), r ∈ R, and spaces DL2(Rn), D ′

L2(Rn), are presented in the third chapter.
The fourth chapter discusses spaces of periodic functions and periodic distributions, some
important equalities used in research, and the theory of wave fronts. Theory of frames in
Hilbert spaces is presented in the fifth chapter. Finally, the sixth chapter presents original
results of this dissertation.

Key words: Sobolev spaces, shift-invariant space, range function, range operator,
shift-preserving operator, frame, s-diagonalization, dynamical sampling, wave front, pro-
duct of distributions.
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Apstrakt

Ova doktorska disertacija istražuje translaciono-invarijantne potprostore Vr prostora Sobo-
ljeva Hr (Rn), pri čemu je r ∈ R. Karakterizacija prostora Vr izvršena je korǐsćenjem
funkcije opsega, operatora opsega, operatora koji komutiraju sa translacijama i talasnim
frontom. Takod̄e, izvršena je karakterizacija okvira, Risove familije i Beselove familije
uz pomoć pomenutih operatora i posebno koristeći Gramovu i dualnu Gramovu matricu.
Istraživani su odnosi izmed̄u navedenih operatora i odred̄eni uslovi pod kojima opera-
tor koji komutira sa translacijama može biti s-dijagonalizabilan i može se zapisati kao
konačan zbir proizvoda njegovih s-sopstvenih vrednosti i odgovarjućih projekcija. Prob-
lem dinamičkog uzorkovanja za prostore Vr je rešen i povezani su različiti pristupi teoriji
translaciono-invarijantnih prostora. Elementi prostora Vr su opisani pomoću talasnog
fronta. Na kraju, uslovi pod kojima postoji proizvod elemenata iz posmatranih prostora
i uslovi kada će takav proizvod pripadati nekom translaciono-invarijantnom prostoru su
odred̄eni.

Disertaciju čini šest glava. Prva glava je uvodnog karaktera. Sastoji se iz kratkog pre-
gleda postignutih rezultata u prostoru L2(Rn), uključujući i fokus na značaj translaciono-
invarijantnih prostora i drugih pojmova koji se pominju u disertaciji. U drugoj glavi
izložena je teorija distribucija. Glavni alat koji se koristi u disertaciji, Furijeova trans-
formacija, predstavljena je u trećoj glavi. Takod̄e, prostori Soboljeva Hr (Rn), r ∈ R,
i prostori DL2(Rn), D ′

L2(Rn) su predstavljeni u trećoj glavi. Četvrta glava sadrži pros-
tore periodičnih funkcija i periodičnih distribucija, neke bitne jednakosti koje se koriste
u istraživanju, i teoriju o talasnom frontu. Teorija okvira u Hilbertovim prostorima je
izložena u petoj glavi. Na kraju, u šestoj glavi su predstavljeni originalni rezultati ove
disertacije.

Ključne reči: Soboljevi prostori, translaciono-invarijantni prostori, funkcija opsega,
operator opsega, operator koji komutira sa translacijama, okvir, s-dijagonalizacija, dina-
mičko uzorkovanje, talasni front, proizvod distribucija.
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Chapter 1

Introduction

The role of mathematical research in solving a large number of problems in education and
society is growing amazingly. Harmonic analysis constitutes a leading part in resolving
these problems. Harmonic analysis is a branch of mathematics that arose from ancient
attempts to display functions as superpositions of some elementary functions with oscil-
latory ones, i.e. wave nature. The term ”harmonics” comes from the ancient Greek word
meaning ”skilled in music”. In the physical problems of eigenvalues, this term has come
to denote waves whose frequencies are integer multiples of a fundamental frequency, such
as the harmonic frequencies of musical notes. However, this term has been generalized
over time beyond its original meaning.

A modern branch of harmonic analysis is time-frequency analysis. Time-frequency analy-
sis includes parts of mathematics and applied mathematics that use time-frequency shifts
(translations and modulations) for analysis of operators. It is a form of local Fourier analy-
sis that simultaneously and symmetrically treats time and frequency. Time-frequency
analysis has a wide range of applications: in physics, signal analysis, engineering, image
processing, communication theory, quantum mechanics, etc.

This dissertation specifically studies the Sobolev1 spaces of functions that are invariant
under translation, i.e. shift-invariant spaces of Sobolev type. The advantage of shift-
invariant spaces is reflected in the fact that the simplicity and structure of the space
are maintained, so they are more flexible for approximating real data. They are used
in the finite element method, approximation theory, the construction of multiresolution
approximations, spaces of signals and images, wavelet theory, etc. (see [10, 13, 14, 18, 40,
42, 44, 57, 73]).

The structure of shift-invariant subspaces of space L2 = L2 (Rn) was first studied by
Marcin Bownik, in 1999. In the paper [23], using the range function, the range operator
and shift-preserving operator, he provides a characterization of frames such that checking
whether E(AI) = {Tqf : f ∈ AI , q ∈ Zn, AI ⊂ L2} ⊂ L2 is a frame on a ”large”
subspaces of L2 reduces to the problem of checking it on a ”small” subspaces of ℓ2(Zn),
where I is finite set or I = N, and Tqf(·) = f(· − q). In this way, the problem of
determining whether a set of functions is a frame or a Riesz2 family in large subspaces

1Sergei Lvovich Sobolev (1908–1989) – Russian mathematician.
2Frigyes Riesz (1880–1956) – Hungarian mathematician.
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of L2 is reduced by switching to the Fourier3 domain and a small subspace of the space
ℓ2 parameterized by Tn = [−1

2
, 1
2
)n. Therefore, the analysis of frames and Riesz families

using the Gram’s4 matrix and its dual matrix is simplified. It is proved that every (even
infinitely dimensional) shift-invariant space can be decomposed into an orthogonal sum
of spaces, each generated by a single function whose shifts form a Parseval5 frame for
that space. By applying this fact, the characterization of shift-preserving operators in
the sense of range operators is given, and some facts about the dimension function are
proved. Some important results of M. Bownik are presented in more detail below since
they stimulated this research.

Let Rn denote the n-dimensional real Euclidean6 space. This is space of all n-tuples
x = (x1, x2, . . . , xn), where xj ∈ R, j = 1, 2, . . . , n. Similarly, the notations Zn and
Nn

0 will be used for the corresponding n-tuples. The inner product on Rn is ⟨x, y⟩ =∑n
k=1 xkyk, x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn). Also, throughout this dissertation,

the n-dimensional integral will be denoted by
∫
Ω
f(x) dx, where Ω ⊆ Rn. Recall that

Ls-norm of a measurable function f is

∥f∥Ls =

(∫
Rn

|f(x)|s dx
)1/s

,

where s ∈ [1,+∞). If ∥f∥Ls < +∞, then f ∈ Ls(Rn). The space Ls(Rn) is a Banach
space. A measurable function f belongs to L∞(Rn) if

∥f∥L∞ = ess sup
x∈Rn

|f(x)| < +∞,

i.e. if f is essentially bounded. The space L2(Rn) is a Hilbert space with the inner product

⟨f, g⟩L2 =

∫
Rn

f(x)g(x) dx, f, g ∈ L2(Rn).

The short notations Ls and L∞ will be used for spaces Ls(Rn), s ∈ [1,+∞), and L∞(Rn),
respectively. Further, let A be at most countable set of functions from L2 and E(A ) =
{Tqf : f ∈ A , q ∈ Zn}. In the following, I denotes a finite set or I = N (unless otherwise
stated). Therefore, the notation AI will also be used when an index set I is given. If
I = {1, . . . ,m}, then the notation Am will be used. An arbitrary Hilbert7 space will be
denoted by H . By ∥·∥ will be denoted the operator norm. The imaginary unit is denoted
by i (i2 = −1).

Definition 1.0.1 ([43]). A (closed) subspace V ⊂ H for which holds

f ∈ V implies Tqf ∈ V for every q ∈ Zn,

is said to be a shift-invariant (SI) space.

Bownik in [23] observed H = L2 and used S(A ) = spanE(A ) to denote the SI space
generated by A ⊂ L2, where spanE(A ) denotes the closed set of all linear combinations
of vectors E(A ). Next, he introduces a new space.

3Jean-Baptiste Joseph Fourier (1768–1830) – French mathematician and physicist.
4Jørgen Pedersen Gram (1850–1916) – Danish actuary and mathematician.
5Marc-Antoine Parseval des Chênes (1755–1836) – French mathematician.
6Euclid (325 BCE–265 BCE) – an ancient Greek mathematician active as a geometer and logician;

”the father of geometry”.
7David Hilbert (1862–1943) – German mathematician.
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Definition 1.0.2 ([23]). The space of all vector valued measurable functions G : Tn → ℓ2

such that ∫
Tn

∥G(t)∥2ℓ2 dt < +∞

is denoted by L2 (Tn, ℓ2).

Lemma 1.0.1 ([23]). The space L2 (Tn, ℓ2) is a Hilbert space with the inner product

⟨G1, G2⟩L2(Tn,ℓ2) =

∫
Tn

⟨G1(t), G2(t)⟩2ℓ2 dt,

and the corresponding norm

∥G∥L2(Tn,ℓ2) =

(∫
Tn

∥G(t)∥2ℓ2 dt
)1/2

.

Further, he uses the Fourier transform defined by

Ff(t) = F [f ](t) = f̂(t) =

∫
Rn

f(x) e−2πi⟨x,t⟩ dx, t ∈ Rn,

and introduces two important mappings.

Lemma 1.0.2 ([23]). The mapping T : L2 → L2 (Tn, ℓ2) defined by

T f(t) =
(
f̂(t+ q)

)
q∈Zn , t ∈ Tn, f ∈ L2,

is an isometric isomorphism. Moreover, for every f ∈ L2 holds T f(·−q) = e−2πi⟨q,·⟩ T f(·),
q ∈ Zn.

Definition 1.0.3 ([23]). A mapping

J : Tn →
{
closed subspaces of ℓ2

}
(t 7→ J(t), t ∈ Tn) is called the range function.

The range function J is measurable if for any a, b ∈ ℓ2, t 7→ ⟨PJ(t)(a), b⟩ℓ2 is a measurable
scalar function (i.e. if PJ(t), t ∈ Tn, are weakly operator measurable), where PJ(t) : ℓ

2 →
J(t), t ∈ Tn, are the associated orthogonal projections. Range functions are said to be
equal if they are equal almost everywhere (or a.e. for short).

In the following theorem he connects SI spaces with the range function and vice versa.
Bownik got the idea for this claim from Helson’s8 book [43].

Theorem 1.0.1 ([23]). A space V ⊂ L2 is SI if and only if there is a measurable range
function J so that

V =
{
f ∈ L2 : T f(t) ∈ J(t) for a.e. t ∈ Tn

}
.

The relationship between V and J is one-to-one. If V = S(AI), then

J(t) = span {T f(t) : f ∈ AI}.
8Henry Berge Helson (1927–2010) – American mathematician.
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Some authors call T f(t), i.e.
(
f̂(t + q)

)
q∈Zn the fiber for function f at t, and the space

J(t) the fiber space for V at t (see [4, 5]).

The idea for the characterization of frames is implicitly observed in the work [68]. For
the notation in the theorems 1.0.2 and 1.0.3, the reader can refer to Chapter 5.

Theorem 1.0.2 ([23]). Let V = S(AI). Then, E(AI) is

(1) a frame of V with frame bounds A and B if and only if {T f(t) : f ∈ AI} ⊂ ℓ2 is a
frame of J(t) with frame bounds A and B for a.e. t ∈ Tn;

(2) a Riesz family (basis) of V with bounds A and B if and only if {T f(t) : f ∈ AI} ⊂ ℓ2

is a Riesz family (basis) of J(t) with bounds A and B for a.e. t ∈ Tn;

(3) a Bessel family of V with bound B if and only if {T f(t) : f ∈ AI} ⊂ ℓ2 is a Bessel
family of J(t) with bound B for a.e. t ∈ Tn;

(4) a fundamental frame of V if and only if {T f(t) : f ∈ AI} ⊂ ℓ2 is a fundamental
frame of J(t) for a.e. t ∈ Tn.

Bownik then introduces the definition of dimension function, the definition of spectrum
of SI space and proves the decomposition theorem.

Definition 1.0.4 ([23]). Let V = S(AI) and J be the corresponding range function.

(1) A mapping dimV : Tn → N ∪ {0,+∞} defined by dimV (t) = dim J(t) is called the
dimension function of V .

(2) The spectrum of space V is defined by σV =
{
t ∈ Tn : dim J(t) > 0

}
or equivalently

σV =
{
t ∈ Tn : J(t) ̸= {0}

}
.

Theorem 1.0.3 (The decomposition theorem, [23]). Let V be a SI subspace of L2.
Then, V can be decomposed into an orthogonal sum, i.e.

V =
⊕
k∈N

S(fk),

such that {Tqfk : q ∈ Zn} is a tight frame of S(fk) and σS(fk+1) ⊂ σS(fk) for every k ∈ N.
Moreover, dimS(fk)(t) = ∥T fk(t)∥ℓ2 for every k ∈ N, and

dimV (t) =
∑
k∈N

∥T fk(t)∥ℓ2 for a.e. t ∈ Tn.

Furthermore, he introduces another very important operator, the range operator. This
operator is defined as a family of operators, and gives a very significant connection bet-
ween range operators and shift-preserving operators. An operator L is shift-preserving if
it is linear and bounded and commutes with translations.

Definition 1.0.5 ([23]). An operator defined on J (with values in ℓ2) by

R : Tn → {bounded operators defined on closed subspaces of ℓ2},

such that the domain of R(t) is J(t) for a.e. t ∈ Tn, is called the range operator. The
range operator R is measurable if t 7→ R(t)PJ(t), t ∈ Tn, is a weakly measurable operator.

4



Theorem 1.0.4 ([23]). Assume that V ⊂ L2 is a SI space and J is its associated range
function.

(1) If L : V → L2 is a shift-preserving operator, then there is a measurable range
operator R on J so that

(T L)f(t) = R(t)(T f(t)) for a.e. t ∈ Tn, f ∈ V. (1.0.1)

(2) If R is a measurable range operator on J so that ess supt∈Tn ∥R(t)∥ < +∞, then
there is a shift-preserving operator L : V → L2 so that (1.0.1) holds.

The correspondence between L and R is one-to-one and ess supt∈Tn ∥R(t)∥ = ∥L∥.

Further, Bownik uses these obtained results and gives the properties of the dimension
function and determines a dual frame for a given frame. M. Bownik’s work was follo-
wed by A. Aguilera and collaborators. They continued to study the range function,
shift-preserving operators, and range operators [4, 5]. They introduced the definition of
s-diagonalization and determined conditions under which the shift-preserving operator L
could be s-diagonalizable and represented by using a finite sum of products s-eigenvalues
of the operator L and the corresponding orthogonal projections. Also, Aguilera and
collaborators dealt with the problem of dynamical sampling for shift-preserving operators
defined on SI subspaces of L2.

Dynamic sampling deals with the problem of reconstructing a signal from its samples.
That is, it is necessary to determine the conditions for a bounded operator T : H → H
defined on a Hilbert space H and a set of functions F = {fj : j ∈ J} ⊂ H so that the
set {T kfj : j ∈ J, k ∈ E} is a basis or frame for H , whereby the index sets J and E
are the subsets of N0. In this way, it is possible to compensate the lack of information
for the signal f , by sampling the signals Tf , T 2f , T 3f , . . . This problem has recently
attracted a lot of attention from mathematicians and there are different interpretations
of it [1, 2, 3, 9, 11, 12, 20, 50].

Furthermore, the mentioned results and papers are followed by papers [21, 24, 25, 55, 60]
and many others. In the dissertation, all the important results of Bownik and Aguilera,
papers [23] and [4, 5], are extended to SI spaces of the Sobolev type (the sections 6.1–6.5
and 6.7–6.9). Further, using the Fourier transform, an additional structure of SI spaces
was obtained (Section 6.6). On the other hand, there was also a somewhat different
approach to SI spaces, such as the approach of the authors in [15] and [64]. They consider
SI spaces of form

Vr =

{
f : f =

m∑
k=1

∑
q∈Zn

αq,kTqfk, (αq,k)q∈Zn ∈ ℓ2r, fk ∈ L ∞ ∩ L2
r, k = 1, . . . ,m

}
. (1.0.2)

Recall that the space of weighted sequence ℓsr is defined by

ℓsr = ℓsr(Zn) =
{
(αq)q∈Zn :

∑
q∈Zn

|αq|2µsr(q) < +∞
}
, s ⩾ 1, r ∈ R,

where µr(·) = (1+ | · |2)r/2. Obviously, µsr = µsr for s ∈ R. Note, the space ℓ2r is a Hilbert
space with the inner product〈

(αq,1)q∈Zn , (αq,2)q∈Zn

〉
ℓ2r
=
∑
q∈Zn

αq,1αq,2µ2r(q).

5



The space L ∞ defined by

L ∞ =

{
f : ∥f∥L ∞ = sup

t∈Tn

∑
q∈Zn

|Tqf(t)| < +∞
}

is a subspace of L2 (see [15, 64]), and the space L2
r is defined by

L2
r = L2

r(Rn) =

{
f :

∫
Rn

|f(t)|2µ2r(t) dt < +∞
}
, r ∈ R. (1.0.3)

The space

V0 =

{
f : f =

m∑
k=1

∑
q∈Zn

αq,kTqfk, (αq,k)q∈Zn ∈ ℓ2, fk ∈ L ∞, k = 1, . . . ,m

}
is analyzed in [15].

The following two statements are the main results of papers [15] and [64].

Theorem 1.0.5 ([15]). Let Mm = {fk : fk ∈ L ∞, k = 1, . . . ,m}. Then, the following
statements are equivalent.

(1) V0 is closed in L2.

(2) E(Mm) is a frame for V0.

Theorem 1.0.6 ([64]). Let Km = {fk : fk ∈ L ∞ ∩ L2
r, k = 1, . . . ,m}. Then, the

following statements are equivalent.

(1) Vr is closed in L2
r.

(2) E(Km) is a frame for Vr.

An important difference is that with this approach to SI spaces, the sequence of coeffi-
cients belongs to space ℓ2r. In the dissertation, these two approaches to SI spaces are
connected (Section 6.6). Moreover, Pilipović and Simić in paper [64] observe spaces V s

r

with sequences from ℓsr, but in this dissertation only the case s = 2 is significant.

In the further research of SI spaces of Sobolev type, this dissertation uses the wave front
of Sobolev type introduced by Hörmander9 in [46], and results of paper [56] in which
Maksimović, Pilipović and collaborators performed the discretization of the wave front of
Sobolev type of a distribution f ∈ D ′(Rn) in terms of Fourier series coefficients.

A wave front (or a wave front set) is a term that appeared in the period of research
related to the classification of singularities by means of their spectrum and it is at the
base of microlocal analysis (microlocal analysis is a part of analysis in which properties of
distributions are studied). Until the late 1990s, wave front rarely appeared when solving
physics problems. During the 1990s, the wave front set was proved to be a crucial in
defining quantum fields in curved space-times, Dirac10 fields, quantization of gravity, etc.,
followed by the intense studies of different types of wave front sets. Hörmander’s concept
of the wave front (set) [46]–[48] has attracted the mathematicians’ attention and there

9Lars Valter Hörmander (1931–2012) – Swedish mathematician.
10Paul Adrien Maurice Dirac (1902–1984) – English theoretical physicist.
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is extensive literature on it and its important role in the qualitative analysis of partial
differential equations and pseudo-differential operators.

Using the discretization of the wave front of Sobolev type from [56], the elements of the
observed spaces will be described in the dissertation. Also, conditions are obtained under
which the product of two elements from different SI spaces exists, and moreover belongs
to some SI space (the sections 6.10 and 6.11).

Before presenting all the obtained results, the chapters 2–5 will cover the necessary theo-
retical framework for a better understanding of the noted results. Therefore, let us take
a short trip through the theoretical background of the topic.
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Chapter 2

Theory of distributions

The theory of distributions (theory of general functions) was created with desire to find
a correct mathematical approach to the mathematical models of various processes, which
were not clearly based (mathematically speaking), and enable mathematical solutions
that will have a natural sense.

The concept of functions and operations with functions in the classical analysis, due to
its pronounced narrowness, did not always enable an adequate solution of those models.
This resulted in several attempts to generalize the notion of function and operations
with it. The results of Sobolev [70] and [71] have the most prominent place. In the
monograph ”Théorie des distributions” (1950/1951) L. Schwartz1 was the first who publish
a systematized theory of one class of general functions – distributions (the latest edition
[69] was issued in 1966).

The theory of distributions represents a mathematical tool for various areas of mathe-
matical physics, the theory of partial differential equations, harmonic analysis, the theory
of pseudo-differential and Fourier operators. Its applications can be found in [19, 26, 32,
34, 37, 75] and many other papers and books.

In classical analysis, continuous functions do not have to be differential. Distributions are,
roughly speaking, a generalization of the concept of functions so that every continuous
function is a distribution. Its derivative is not a function, it is a distribution. Moreover,
every distribution is differentiable and its derivative is a distribution. For example, in
physics, one comes across quantities that have a very large value in a very small domain,
but are equal to zero outside of it. In 1926, Dirac introduced a mathematical notation for
such cases by defining the δ-distribution, which is also called the Dirac delta distribution.
It is defined by

δ0(x) =

{
+∞, x = 0,

0, x ̸= 0,
and

∫
R
δ0(x) dx = 1.

This led to birth of a new theory, the theory of distributions.

In this chapter, the basic definitions and properties that are needed for further work will
be listed, for details you can see [16, 36, 37, 38, 45, 49, 65, 69, 74, 75].

1Laurent-Möıse Schwartz (1915–2002) – French mathematician.
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2.1 The spaces D(Rn) and D ′(Rn)

Let us introduce the basic notation that will be used in this chapter and in the dissertation.
If x = (x1, x2, . . . , xn) ∈ Rn and a = (a1, a2, . . . , an) ∈ Nn

0 , then

xa = xa11 x
a2
2 · · ·xann

and |x|s = |x1|s + |x2|s + · · ·+ |xn|s, s ∈ [1,+∞). For every a = (a1, a2, . . . , an) ∈ Nn
0 ,

∂a =
∂|a|

∂xa11 ∂x
a2
2 · · · ∂xann

= Da.

The set Ω ⊆ Rn will denote the open set, and C (Ω) the set of continuous functions on Ω.
The label Ω indicates the closure of the set Ω.

Definition 2.1.1 ([65]). The set suppϕ = {x ∈ Ω : ϕ(x) ̸= 0} is called the support of the
function ϕ ∈ C (Ω).

Using relation A ∪B = A ∪B, for sets A,B ⊆ Rn, the next assertion follows.

Lemma 2.1.1 ([45, 65]). Let ϕ, ψ ∈ C (Rn). Then, supp(ϕ+ ψ) ⊆ suppϕ ∪ suppψ, and
supp(Cϕ) = suppϕ for every C ∈ C\{0}.

Definition 2.1.2 ([65]). Let ℓ ∈ N0 or ℓ = +∞. The set C ℓ(Ω) denotes the set of
functions that are defined over Ω and have all continuous derivatives up to order ℓ. The
set C ℓ

0 (Ω) is a subset of C ℓ(Ω) of those functions whose supports are compact in Ω.

Note, if ℓ = 0, then C 0(Ω) = C (Ω).

Remark 2.1.1. (1) Since every compact set in Ω is also compact in Rn, it follows that
C ℓ
0 (Ω) ⊆ C ℓ

0 (Rn).

(2) The spaces C ℓ(Ω) and C ℓ
0 (Ω) are vector spaces over the field of complex numbers.

(3) The functions from C ∞(Ω) are called smooth functions.

Example 2.1.1. The function ϕ(x) =

{
e(|x|

2−1)−1
, |x| < 1

0, |x| ⩾ 1
, given on Figure 1 belongs

to the space C ∞
0 (Rn) and suppϕ = K[0, 1], where K[0, 1] is the closed ball with center at

zero and radius 1.

A set A is said to be a convex set if αA + βA ⊆ A holds for any α ⩾ 0 and β ⩾ 0 such
that α + β = 1.

Definition 2.1.3 ([45, 58, 65]). (1) A vector space W over the scalar field K = {C,R}
provided with a topology is called a topological vector space if the mappings (x, y) 7→
x+ y ∈ W and (λ, x) 7→ λx ∈ W are continuous, where x, y ∈ W , λ ∈ K.

(2) A topological vector space that has a neighborhood base at 0 composed of convex sets
is called a locally convex space.

Recall, a topological vector space W is a locally convex space if and only if the topology
of the space W is given by a family of seminorms.
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Figure 1.

Let K ⊂ Ω be a compact set and ℓ ∈ N0 or ℓ = +∞. The space C ℓ
0 (K) is a subspace of

C ℓ
0 (Ω) whose elements have supports contained in K. Moreover, the space C ∞

0 (K) with
the family of norms

pK,ℓ(ϕ) =
∑
|a|⩽ℓ

sup
x∈K

|Daϕ(x)|, ℓ ∈ N0,

is a locally convex space. The sets

UK,ℓ,m =

{
ϕ ∈ C ∞

0 (K) : pK,ℓ(ϕ) <
1

m

}
, m ∈ N, ℓ ∈ N0,

form a neighborhood base at 0.

Definition 2.1.4 ([65]). The vector space C ∞
0 (K) equipped with the given topology is a

locally convex space D(K).

If K and K̃ are compact sets such that K ⊂ K̃, then D(K) ⊂ D(K̃) and the topology in

D(K) coincides with the topology which D(K̃) induces on D(K). For every non-empty
open set Ω ⊂ Rn an increasing sequence of compact sets Kj ⊂ Ω, j ∈ N, such that (for
every j ∈ N)

Kj ⊂ IntKj+1 and Ω =
⋃
j∈N

Kj

can be constructed, where IntKj is the interior of Kj. Thus, D(Ω) =
⋃
j∈N D(Kj). Let

the space D(Ω) be equipped with the finest topology for which all the canonical injections
ij : D(Kj) → D(Ω), j ∈ N, are continuous.

Definition 2.1.5 ([45]). The space D(Ω) is called the space of test functions.

Remark 2.1.2. The space C ∞
0 (Ω) is often denoted by D(Ω).

Some properties of the space of test functions are stated in the following theorems.

Theorem 2.1.1 ([65]). A linear mapping T of space D(Ω) into a locally convex space is
continuous if and only if T is continuous over D(K) for every compact set K ⊂ Ω.

Theorem 2.1.2 ([65]). For sequence (ψν)ν∈N ∈ D(Ω) holds ψν → ψ in D(Ω) if and only
if there is a compact set K ⊂ Ω such that for every ν ∈ N, suppψν ⊂ K, and there is a
test function ψ such that for every a ∈ Nn

0 , D
aψν converges uniformly to Daψ.
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Theorem 2.1.3 ([45]). The space D(Ω) is a complete space.

Proof. Fix j ∈ N. Since the space D(Kj) is complete, it follows that it is closed in
D(Kj+1). Thus, D(Ω) is a complete space.

Definition 2.1.6 ([65]). A continuous linear functional on the space of test functions is
called a distribution. The set of all distributions defined on Ω is denoted by D ′(Ω).

The action of a distribution f on test function ψ is denoted by (f, ψ), i.e. f : ψ → (f, ψ).
Thus, D ′(Ω) is the dual space of D(Ω).

Convergence in D ′(Ω) is given by the next definition.

Definition 2.1.7 ([75]). A sequence (fν)ν∈N from D ′(Ω) converges to f ∈ D ′(Ω), i.e.
limν→+∞ fν = f in D ′(Ω), if limν→+∞(fν , ψ) = (f, ψ) for every ψ ∈ D(Ω).

Some important properties of distributions are given in the following theorems.

Theorem 2.1.4 ([45, 65]). (1) The space D ′(Ω) is a complete space.

(2) The space D(Ω) is dense in the space D ′(Ω).

Theorem 2.1.5 ([65]). A linear functional f defined on D(Ω) belongs to D ′(Ω) if and
only if for every sequence (ψν)ν∈N ∈ D(Ω) such that ψν → 0 in D(Ω) it follows that
(f, ψν) → 0 in C, as ν → +∞.

Theorem 2.1.6 ([65]). A linear functional f on the space D(Ω) is a distribution (i.e.
belongs to D ′(Ω)) if and only if for every compact set K ⊂ Ω there is a constant C > 0
and ℓ ∈ N0 such that for all ψ ∈ D(Ω) with support contained in K holds

|(f, ψ)| ⩽ CpK,ℓ(ψ). (2.1.1)

Proof. Let (ψν)ν∈N ∈ D(Ω) such that ψν → 0 in D(Ω) as ν → +∞. Then, (f, ψν) → 0 in
C, by (2.1.1). Thus, according to Theorem 2.1.5, f ∈ D ′(Ω).

For the opposite implication, suppose that f ∈ D ′(Ω) and that (2.1.1) is not valid. Then,
there is a sequence (ψν)ν∈N ∈ D(K) for some compact set K, such that

|(f, ψν)| > νpK,ν(ψν), ν ∈ N. (2.1.2)

Let (ϕν)ν∈N be given by ϕν = ψν

(f,ψν)
, ν ∈ N. Then, pK,ν(ϕν) =

pK,ν(ψν)

|(f,ψν)| ⩽ 1
ν
, ν ∈ N, by

(2.1.2). Obviously, for every ℓ ⩽ ν holds pK,ℓ(ϕν) ⩽ pK,ν(ϕν) ⩽ 1
ν
. Thus, ϕν → 0 in

D(K). But, on the other hand (f, ϕν) = 1 for every ν ∈ N, i.e. (f, ϕν) ↛ 0 in C. This
contradicts the fact that f ∈ D ′(Ω). Therefore, (2.1.1) is valid.

Remark 2.1.3. Theorem 2.1.6 is used in some papers and books (monographs) to define
the distribution (for example see [46]).

Example 2.1.2. Let x0 ∈ Ω. The Dirac distribution δx0(·) = δ0(· − x0) is given by(
δx0 , ψ

)
= ψ(x0), ψ ∈ D(Ω).

Indeed, since

C1

(
δx0 , ψ1

)
+ C2

(
δx0 , ψ2

)
= C1ψ1(x0) + C2ψ2(x0)

=
(
δx0 , C1ψ1 + C2ψ2

)
, C1, C2 ∈ C, ψ1, ψ2 ∈ D(Ω),
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it follows that δx0 is a linear functional. Further, let K ⊂ Ω be a compact set. Then,

|(δx0 , ψ)| = |ψ(x0)| ⩽ pK,ℓ(ψ) for every ψ ∈ D(K).

Thus, by Theorem 2.1.6, δx0 is a distribution.

Definition 2.1.8 ([46, 65]). The singular support of f ∈ D ′(Ω), denoted by sign supp f ,
is the set of points in Ω that do not have a neighborhood where f is a smooth function.

In other words, the singular support is the complement of the union of all open sets in Ω
over which f is a smooth function. Thus, sign supp f is closed in Ω.

Theorem 2.1.7 ([65]). The distribution f is a smooth function in the complement of
sign supp f .

The next theorem gives the conditions under which distribution f ∈ D ′(Ω) can be ex-
tended to f0 ∈ D ′(Rn).

Theorem 2.1.8 ([65]). A distribution f ∈ D ′(Ω) can be extended to D ′(Rn) if and only
if for every point x̃ ∈ Ω \ Ω there are an open neighborhood Ux̃ of point x̃, a constant C
and ℓ ∈ N0 so that

|(f, ψ)| ⩽ C
∑
|a|⩽ℓ

sup
x∈Ω∩Ux̃

|Daψ(x)|, ψ ∈ C ∞
0 (Ω ∩ Ux̃).

In the continuation, the shorter terms D = D(Rn), D ′ = D ′(Rn), C = C (Rn), C0 =
C0(Rn) and C ∞

0 = C ∞
0 (Rn) will be used, where C0 = C0(Rn) is the Banach2 space of

continuous functions vanishing at infinity.

The motivation for the definition of derivative of distribution will be noted in Section 2.3.

Definition 2.1.9 ([75]). The derivative Daf , a ∈ Nn
0 , of f ∈ D ′ is defined by

(Daf, ψ) = (−1)|a|(f,Daψ), ψ ∈ D .

Theorem 2.1.9 ([75]). The mapping Da : D ′ → D ′, a ∈ Nn
0 , is continuous.

Proof. Let limν→+∞ fν = f in D ′. Then,

lim
ν→+∞

(Dafν , ψ) = lim
ν→+∞

(−1)|a|(fν , D
aψ) = (−1)|a|(f,Daψ) = (Daf, ψ), ψ ∈ D ,

by the definitions 2.1.7 and 2.1.9. Hence, limν→+∞Dafν = Daf in D ′.

2Stefan Banach (1892–1945) – Polish mathematician, one of the most influential mathematicians of
the 20th century; the founder of modern functional analysis.
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2.2 The spaces E (Rn) and E ′(Rn)

In this dissertation, spaces E (Rn) and E ′(Rn) will only be defined, but readers interested
further on this can refer to [45, 53, 65, 75].

Let a family of seminorms (qK,a)K,a be defined by

qK,a(ψ) = max
x∈K

|Daψ(x)|, ψ ∈ C ∞(Ω), (2.2.1)

where K passes through compact subsets of Ω and a ∈ Nn
0 .

Definition 2.2.1 ([45]). The subspace of the space C ∞(Ω) equipped with a locally convex
topology induced by the family of seminorms (2.2.1) is denoted by E (Ω).

Remark 2.2.1. (1) The notation E (Ω) is also used for C ∞(Ω).

(2) The space D(Ω) contains those ψ ∈ E (Ω) whose suppψ is compact.

Definition 2.2.2 ([65]). The space of continuous linear functionals defined over E (Ω) is
denoted by E ′(Ω).

Theorem 2.2.1 ([53, 65]). (1) The space D is dense in E = E (Rn).

(2) The space E ′ = E ′(Rn) is a subspace of D ′.

Theorem 2.2.2 ([45]). Let f ∈ D ′(Ω). Then, f ∈ E ′(Ω) if and only if the set supp f ⊂ Ω
is compact.

The space E ′(Ω) can be identified with the subspace of distributions E ′ whose elements
have a compact support contained in Ω.

2.3 The spaces S (Rn) and S ′(Rn)

The space S (Rn) is better known as the Schwartz space. This space is very useful in
Fourier analysis. It contains smooth functions ψ(x), x ∈ Rn, which together with all its
derivatives decay rapidly when |x| → +∞.

Definition 2.3.1 ([65]). The vector space S (Rn) (S for short) is the set of functions
ψ ∈ C ∞ such that

qa,b(ψ) = sup
x∈Rn

∣∣xaDbψ(x)
∣∣ < +∞ (2.3.1)

for any a, b ∈ Nn
0 .

Example 2.3.1. The function ψ(x) = e−|x|2 ∈ S , but ψ /∈ C ∞
0 .

From the previous example, it follows that the Schwartz space is larger than the space
C ∞
0 . Moreover,

C ∞
0 ⊂ S ⊂ C ∞.

The space S has the following properties.

Theorem 2.3.1 ([49, 53, 67, 75, 77]). (1) The embedding D ↪→ S is continuous.

(2) The space D is dense in S .
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(3) The space S is dense in E .

(4) The space S is complete.

(5) If ψ1, ψ2 ∈ S , then ψ1ψ2 ∈ S . Moreover, the space S is: closed under linear com-
binations; closed under multiplication by polynomials; closed under differentiation;
closed under translations and multiplication by ei⟨x,t⟩.

Instead of the family of seminorms (2.3.1), it is sometimes convenient to use the family
of seminorms

q′a,b(ψ) =

∫
Rn

|xaDbψ(x)| dx (2.3.2)

or

q′′a,b(ψ) =

(∫
Rn

|xaDbψ(x)|2 dx
)1/2

. (2.3.3)

Lemma 2.3.1 ([53, 65]). The families of seminorms (2.3.1), (2.3.2) and (2.3.3) are
equivalent. Also, the families of seminorms

q̃c,b(ψ) = sup
x∈Rn

∣∣(1 + |x|2)c/2Dbψ(x)
∣∣

and
qc(ψ) = sup

x∈Rn,|b|⩽c

∣∣(1 + |x|2)c/2Dbψ(x)
∣∣

are equivalent with (2.3.1), where c ∈ N0.

Note, if the families of seminorms are equivalent, then they define the same topology.

In the space S , the convergence is defined as follows.

Definition 2.3.2 ([75]). It is said that a sequence (ψν)ν∈N from S converges to ψ ∈ S ,
i.e. limν→+∞ ψν = ψ in S , if

lim
ν→+∞

qa,b(ψν − ψ) = 0 for any a, b ∈ Nn
0 .

Therefore, it is obvious that if a sequence converges in the space of test functions D , then
it also converges in Schwartz space.

Definition 2.3.3 ([51]). A function f is of slow qrowth if there are constants C > 0,
s ⩾ 0, and A > 0 so that

|Daf(x)| ⩽ C|x|s, |x| > A,

for every a ∈ Nn
0 .

Definition 2.3.4 ([65, 75]). The space of continuous linear functionals on S is the space
of tempered distributions (generalized functions of slow growth). It is denoted by S ′(Rn)
or simply S ′.

Hence, φ ∈ S ′ if and only if φ : S → C is linear and limν→+∞ ψν = ψ in S implies that
limν→+∞(φ, ψν) = (φ, ψ) in C.

Theorem 2.3.2 (L. Schwartz, [75]). Let φ be a linear functional over S . Then, φ ∈ S ′

if and only if there are C > 0 and c ∈ N0 such that

|(φ, ψ)| ⩽ Cqc(ψ) (2.3.4)

for every ψ ∈ S .
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Proof. Let φ ∈ S ′ and assume that (2.3.4) is not valid, i.e. C and c do not exist. Then,
there is a sequence of functions (ψν)ν∈N which belong to S so that

|(φ, ψν)| ⩾ νqν(ψν), ν ∈ N. (2.3.5)

Define the sequence (ϕν)ν∈N to be

ϕν(x) =
ψν(x)

ν1/2qν(ψν)
, ν ∈ N.

Then, limν→+∞ ϕν = 0 in S , and for ν ⩾ max{|a|, |b|},

|xaDbϕν(x)| =
|xaDbψν(x)|
ν1/2qν(ψν)

⩽
C1

ν1/2
,

by Lemma 2.3.1. From this, since φ ∈ S ′, it follows that

lim
ν→+∞

(φ, ϕν) = 0. (2.3.6)

But, from (2.3.5),

|(φ, ϕν)| =
|(φ, ψν)|
ν1/2qν(ψν)

⩾
√
ν,

contrary to (2.3.6).

Now, let φ be the linear functional over S which satisfies (2.3.4) for some C > 0 and
c ∈ N0. Let (ψν)ν∈N be a sequence such that limν→+∞ ψν = ψ in S . Then,

lim
ν→+∞

qc(ψν − ψ) = 0

and thus limν→+∞(φ, ψν) = (φ, ψ), by (2.3.4). Hence, φ ∈ S ′.

In the following definition, the convergence in S ′ is given.

Definition 2.3.5 ([75]). It is said that a sequence (φν)ν∈N from S ′ converges to φ ∈ S ′,
i.e. limν→+∞ φν = φ in S ′, if limν→+∞(φν , ψ) = (φ, ψ) for every ψ ∈ S .

From the definitions, it follows that S ′ ⊂ D ′ and if the sequence (φν)ν∈N converges in S ′,
it implies that (φν)ν∈N also converges in D ′. Moreover, the space S ′ has the following
properties.

Theorem 2.3.3 ([45, 49, 53, 65]). (1) The spaces D and S are dense in S ′.

(2) If φ ∈ S ′, then its restriction on D belongs to the space D ′, i.e. φ↾D ∈ D ′.

(3) Hold
D ⊂ S ⊂ E and E ′ ⊂ S ′ ⊂ D ′, (2.3.7)

with continuous imbeddings.

Theorem 2.3.4 ([49, 53]). The spaces D and S are dense in Ls, s ∈ [1,+∞). Moreover,
the space Ls, s ∈ [1,+∞], is dense in S ′.

Theorem 2.3.5 ([51]). If a function f is of slow growth, then it generates a distribution
by the formula

(f, ψ) =

∫
Rn

f(x)ψ(x) dx, ψ ∈ S .

Proof. It is not difficult to see that it is a linear functional. Let (ψν)ν∈N be a sequence in
S such that limν→+∞ ψν = 0 in S . Then, for sufficiently large c ⩾ 0,
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|(f, ψν)| =
∣∣∣∣ ∫

Rn

f(x)ψν(x) dx

∣∣∣∣ = ∣∣∣∣ ∫
Rn

f(x)

(1 + |x|2)c
· (1 + |x|2)cψν(x) dx

∣∣∣∣
⩽ sup

∣∣(1 + |x|2)cψν(x)
∣∣ ∫

Rn

|f(x)|
(1 + |x|2)c

dx→ 0, as ν → +∞.

Thus, limν→+∞(f, ψν) = 0, i.e. the linear functional is continuous.

The spaces D ′, E ′ and S ′ are weakly complete in the following sense.

Theorem 2.3.6 ([53, 72]). Let X be D , E or S , and let X ′ be its dual space. The space
X ′ is (weakly) complete, i.e. if (fν)ν∈N is a sequence from X ′ such that ((fν , ψ))ν∈N is a
Cauchy3 sequence for every ψ ∈ X , then there exists limν→+∞ fν = f in X ′.

Now, the motivation for introducing the definition of derivative of distributions in the
space D ′ (Definition 2.1.9) follows. Let f ∈ D ′(Ω) and ψ ∈ D(Ω). Since the support of
the function ψ is contained in some compact set K ⊂ Ω, using partial integration, it gives

(Daf, ψ) =

∫
Rn

Daf(x)ψ(x) dx = (−1)|a|
∫
Rn

f(x)Daψ(x) dx = (−1)|a|(f,Daψ).

Also, this equality is taken to define the derivative of tempered distributions.

Definition 2.3.6 ([75]). The derivative Daφ, a ∈ Nn
0 , of φ ∈ S ′ is defined by

(Daφ, ψ) = (−1)|a|(φ,Daψ), ψ ∈ S .

Theorem 2.3.7 ([75]). If φ ∈ S ′, then Daφ ∈ S ′, a ∈ Nn
0 .

Proof. Since Da : S → S is continuous, the right-hand side of the equation in Definition
2.3.6 is a linear continuous functional over S . Thus, Daφ ∈ S ′.

Example 2.3.2. Let P
(
1
x

)
be a linear functional defined by(

P

(
1

x

)
, ψ

)
= p.v.

∫
R

ψ(x)

x
dx = lim

ε→0+

[ ∫ −ε

−∞

ψ(x)

x
dx+

∫ +∞

ε

ψ(x)

x
dx

]
, ψ ∈ S (R).

Then, P
(
1
x

)
∈ S ′(R) ⊂ D ′(R). Indeed,(

P

(
1

x

)
, ψ

)
= p.v.

∫
R

ψ(x)

x
dx = p.v.

∫
R

ψ(x)− ψ(0)

x
dx =

∫
R
ψ′(θx) dx,

since p.v.
∫
R
ψ(0)
x

dx = 0, and ψ(x) − ψ(0) = xψ′(θx) for some θ ∈ [0, 1] by Lagrange’s4

theorem. Thus,∣∣∣∣(P

(
1

x

)
, ψ

)∣∣∣∣ = ∣∣∣∣ ∫
R
ψ′(θx) dx

∣∣∣∣ ⩽ ∫
R

|ψ′(θx)|(1 + x2)

1 + x2
dx ⩽ q̃2,1(ψ)

∫
R

dx

1 + x2
< +∞,

(see Lemma 2.3.1) i.e. P
(
1
x

)
: S (R) → C is continuous.

3Baron Augustin-Louis Cauchy (1789–1857) – French mathematician, engineer and physicist.
4Joseph-Louis Lagrange (1736–1813) – Italian mathematician, astronomer and physicist (later natu-

ralized French).
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2.4 Regular distributions

Regular distributions are defined by locally integrable functions. Therefore, the definition
of locally integrable functions is given.

Definition 2.4.1 ([65]). The function f belongs to the space of locally integrable func-
tions on Ω, i.e. f ∈ Lloc(Ω), if the integral

∫
Ω
f(x)ψ(x) dx converges absolutely for every

ψ ∈ D(Ω).

If a function is integrable, then it is also locally integrable. However, the opposite is not
true. For example, a non-zero constant function is locally integrable but not integrable
on Rn.

For each function f ∈ Lloc(Ω), the distribution f̃ is assigned by

(f̃ , ψ) =

∫
Rn

f(x)ψ(x) dx =

∫
K

f(x)ψ(x) dx, ψ ∈ D(Ω), (2.4.1)

where K = suppψ.

Definition 2.4.2 ([65]). The distribution defined by a locally integrable function with
(2.4.1) is called a regular distribution.

Obviously, two different locally integrable functions define the same distribution if they
are equal almost everywhere.

The next theorem shows that the space of locally integrable functions is isomorphic with
the subspace of regular distributions.

Theorem 2.4.1 ([65]). Let f, g ∈ Lloc(Ω) and let f̃ , g̃ be the corresponding regular dis-

tributions. If (f̃ , ψ) = (g̃, ψ) for every ψ ∈ D(Ω), then f = g a.e. in Ω.

Proof. Let K = {x ∈ Rn : xj ∈ [aj, bj], j = 1, . . . , n} ⊂ Ω be an arbitrary set, and let
ψ(x) = ψ1(x1) · · ·ψn(xn), where

ψj(xj) =

{
e−1/(xj−aj)−1/(bj−xj), xj ∈ [aj, bj],

0, otherwise,

for every j ∈ {1, . . . , n}. Then, ψ ∈ D(Ω) and limν→+∞ ψ1/ν = 1. Since

0 = (f̃ , ψ1/ν)− (g̃, ψ1/ν) =

∫
K

(
f(x)− g(x)

)
ψ1/ν(x) dx,

and |ψ1/ν(·)| ⩽ 1, applying the Lebesgue5 Dominated Convergence Theorem, it leads to

0 = lim
ν→+∞

∫
K

(
f(x)− g(x)

)
ψ1/ν(x) dx =

∫
K

(
f(x)− g(x)

)
dx.

Therefore, f = g a.e. in Ω.

Since there is an isomorphism between the spaces Lloc(Ω) and D ′(Ω), the regular distri-

bution f̃ defined by f ∈ Lloc(Ω) will be denoted also by f in the continuation.

However, there exist distributions that are not regular. One of the distributions that is
not regular is the Dirac distribution, which is discussed in the next example.

5Henri Léon Lebesgue (1875–1941) – French mathematician.
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Example 2.4.1. The Dirac distribution δ0 is not regular. Indeed, assume that δ0 is a
regular distribution. Then, there is δ0 ∈ Lloc(Ω) such that

(δ0, ψ) =

∫
Rn

δ0(x)ψ(x) dx = ψ(0), ψ ∈ D(Ω).

Choose ψs(x) = ϕ(x1
s
, . . . , xn

s
), s > 0, where ϕ is the function from Example 2.1.1. Then,

1

e
= ψs(0) =

∫
Rn

δ0(x)ψs(x) dx =

∫
|x|<s

δ0(x) e
s2/(|x|2−s2) dx ⩽

∫
|x|<s

δ0(x) dx→ 0,

as s→ 0, which is impossible. Hence, Dirac distribution δ0 is not regular.

2.5 Product of generalized functions

The product of two distributions can not be defined in the general case as an operation
that is an extension of multiplication of continuous functions. In 1954, Schwartz showed
that the product of distributions does not exist over the space whose subspace is the
space D(R). However, it is possible to define the product of a distribution with a smooth
function as follows.

Let f ∈ Lloc(Ω) and ϕ ∈ C ∞(Ω). Then,

(ϕf, ψ) =

∫
Rn

ϕ(x)f(x)ψ(x) dx = (f, ϕψ), ψ ∈ D . (2.5.1)

The previous equality is taken for the definition of product of f ∈ D ′ and ϕ ∈ C ∞.

Definition 2.5.1 ([74, 75]). The product of f ∈ D ′ and ϕ ∈ C ∞ is defined by (2.5.1).

Since the multiplication of distribution and function ϕ ∈ C ∞ is linear and continuous
mapping between spaces of test functions, the next assertion follows.

Lemma 2.5.1 ([74, 75]). The product of f ∈ D ′ and ϕ ∈ C ∞ is element of D ′ and

supp(ϕf) ⊆ suppϕ ∩ supp f.

Lemma 2.5.2 ([74, 75]). Let f ∈ D ′. If ϕ ∈ C ∞ so that ϕ = 1 in neighborhood of supp f ,
then f = ϕf .

Proof. Let ψ ∈ D . Then,

(f − ϕf, ψ) = ((1− ϕ)f, ψ) = (f, (1− ϕ)ψ) = 0,

since supp f ∩ supp(1− ϕ)ψ = ∅. Thus, f − ϕf = 0, i.e. f = ϕf .

Example 2.5.1. (1) ϕ(·)δ0 = ϕ(0)δ0, since (ϕδ0, ψ) = (δ0, ϕψ) = ϕ(0)ψ(0) = (ϕ(0)δ0, ψ),
for every ψ ∈ D .

(2) xP
(
1
x

)
= 1, x ∈ R, since(

xP

(
1

x

)
, ψ

)
=

∫
R
ψ(x) dx = (1, ψ), ψ ∈ D .
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Using Example 2.5.1, it can be see that the product of two distributions can not be defined
so that the product is commutative and associative. If it were possible, then it would be

δ0 = δ0 · 1 = δ0

(
xP

(
1

x

))
= (xδ0) · P

(
1

x

)
= 0 · P

(
1

x

)
= 0,

i.e. δ0 = 0, which is impossible.

The main reason why it is not possible to extend the product of continuous functions to the
product of distributions is that, unlike functions that are defined at each point separately,
distributions are defined at a neighborhood of a point, and the value of the distribution
at each point is not defined in the general case. The multiplication of distributions can
be defined in some cases. If the singular supports of two distributions are disjoint, then
their product exists.

Theorem 2.5.1 ([65]). Let f, g ∈ D ′ so that sign supp f ∩ sign supp g = ∅. If

x0 /∈
(
sign supp f ∩ sign supp g

)
,

then the distribution h is defined by

h(x) = fx0(x)g(x) or h(x) = gx0(x)f(x), x ∈ Ox0 ,

in sense of the definition of the product of a smooth function and a distribution over Ox0,
where Ox0 is an open neighborhood of the point x0 in which f or g is a smooth function,
and fx0, i.e. gx0, is the restriction of f , i.e. g, over Ox0.

A more detailed overview of different definitions of distribution products is presented in
[61, 62].

Mathematicians have dealt with the issue of the product of distributions, because nume-
rous problems in physics, for instance, quantum field theory, are related to the impossibi-
lity of defining the product of arbitrary elements from D ′. A significant contribution to
this problem is the introduction of the product of distributions using the Fourier transform
(for more details, see [65]).
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Chapter 3

The Fourier transform

Integral transformations play an important role in classical analysis when solving vari-
ous mathematical models. The theory of generalized functions (theory of distributions)
influenced the development of integral transformations since integral transformations are
continuous in those spaces. More about integral transformations can be read in [31, 77].

One of the most frequently used integral transformations is the Fourier transform. The
theory of the Fourier transform can be found in many books, e.g. [52, 65, 67, 75].

3.1 Fourier transform on L2(Rn)

As it is already said in Abstract, the Fourier transform is one of the main tools in this
research. On the space L1, it is defined as follows.

Definition 3.1.1 ([40]). The Fourier transform Ff = F [f ] = f̂ of f ∈ L1 is defined by

Ff(t) =

∫
Rn

f(x) e−2πi⟨x,t⟩ dx, t ∈ Rn. (3.1.1)

It immediately follows from Definition 3.1.1 that ∥f̂∥L∞ ⩽ ∥f∥L1 . Moreover, Riemann1-
Lebesque lemma holds.

Lemma 3.1.1 (Riemann-Lebesque, [40]). If f ∈ L1, then f̂ ∈ C0, i.e. F : L1 → C0.

The inverse Fourier transform exists under specified conditions. The proof will be given
in the next section.

Theorem 3.1.1 ([40]). If f ∈ L1 and f̂ ∈ L1, then

F−1
[
f̂
]
(x) = f(x) =

∫
Rn

f̂(t) e2πi⟨x,t⟩ dt, x ∈ Rn. (3.1.2)

Remark 3.1.1. The conditions f ∈ L1 and f̂ ∈ L1 imply that f ∈ C0. Indeed, applying

Lemma 3.1.1 to f ∈ L1 gives f̂ ∈ C0 and similarly
̂̂
f ∈ C0 follows from condition f̂ ∈ L1.

Using the fact that
̂̂
f(x) = f(−x), x ∈ Rn, it follows that f ∈ C0.

1Georg Friedrich Bernhard Riemann (1826–1866) – German mathematician.
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The next statement follows directly from Theorem 3.1.1.

Theorem 3.1.2 ([65]). Let f ∈ L1 and f̂(t) = 0 for a.e. t ∈ Rn. Then, f = 0.

In Fourier analysis one of fundamental results is the Plancherel theorem. Namely, Plan-
cherel’s theorem proves that the Fourier transform preserves the energy of the signal. This
theorem will be used frequently in this dissertation, and the proof will be given in the
next section.

Theorem 3.1.3 (Plancherel2, [40]). Let f ∈ L1 ∩ L2. Then, f̂ ∈ L2 and

∥f∥L2 = ∥f̂∥L2 . (3.1.3)

A consequence of Plancherel’s theorem is that Fourier transform can be extended to a
unitary operator on L2 and

⟨f, g⟩L2 = ⟨f̂ , ĝ⟩L2 for all f, g ∈ L2. (3.1.4)

Formula (3.1.4) is known as Plancherel’s formula. Note, there are other definitions of
the Fourier transform (without 2π in the exponent), but then a constant appears in
Plancherel’s equality (3.1.3) (see [65, 74]).

For arbitrary f ∈ L2, f̂ can not be defined pointwise with (3.1.1). On L2 the Fourier
transform is defined as follows. Let Q ⊆ L1∩L2 be a dense subspace of L2, and let (fν)ν∈N
be such that fν ∈ Q and ∥fν − f∥L2 → 0, as ν → +∞. Then, since fν ∈ L1 for every

ν ∈ N, it implies that f̂ν is well defined by (3.1.1) for every ν ∈ N. The equality (3.1.3)

yields that (f̂ν)ν∈N is a Cauchy sequence in L2. Since L2 is a Hilbert space, it follows that

limν→+∞ f̂ν = f̂ .

Moreover, the Fourier transform can be defined on other Ls-spaces.

Theorem 3.1.4 (Hausdorff3-Young4, [40]). If s ∈ [1, 2] and r is such that 1
s
+ 1

r
= 1,

then the Fourier transform maps Ls into Lr and ∥f̂∥Lr ⩽ ∥f∥Ls.

In engineering language, Ff(t) is the amplitude of the frequency t (∥f∥2L2 is the energy
of the signal), while in the physical interpretation, |Ff(t)|/∥Ff∥2L2 is the probability
density for t, where t is the momentum variable.

Example 3.1.1. The Fourier transform of the function ψ(x) = e−π|x|
2 ∈ L1 is the function

ψ̂(t) = e−π|t|
2
, t ∈ Rn. Indeed, it suffices to show the case n = 1. Since

ψ̂(t) =

∫ +∞

−∞
e−πx

2−2πixt dx = e−πt
2

∫ +∞

−∞
e−π(x+it)

2

dx, t ∈ R,

it is enough to prove that
∫ +∞
−∞ e−π(x+it)

2
dx = 1. For t = 0 the following calculation shows

that the integral is equal to 1,(∫
R
e−πx

2

dx

)2

=

(∫
R
e−πx

2

dx

)(∫
R
e−πy

2

dy

)
=

∫
R

∫
R
e−π(x

2+y2) dx dy

=

∫ +∞

0

∫ 2π

0

ρ e−πρ
2

dρ dθ = 2π lim
p→+∞

(
−

e−πρ
2

2π

)∣∣∣∣ρ=p
ρ=0

= 1,

2Michel Plancherel (1885–1967) – Swiss mathematician.
3Felix Hausdorff (1868–1942) – German mathematician.
4William Henry Young (1863–1942) – English mathematician.
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where the change in polar coordinates was used: x = ρ cos θ, y = ρ sin θ, θ ∈ [0, 2π],
ρ > 0. The function e−π(x+it)

2
, x, t ∈ R, is analytic in the complex plane and therefore

the integral over the contour from Figure 2 of function e−π(x+it)
2
is equal to zero.

Figure 2.

Thus, ∫ p

−p
e−π(x+it)

2

dx =

∫ p

−p
e−πx

2

dx+

∫ t

0

e−π(p+it)
2

i dt−
∫ t

0

e−π(−p+it)
2

i dt.

Since ∣∣∣∣ ∫ t

0

e−π(p+it)
2

i dt

∣∣∣∣ = ∣∣∣∣ ∫ t

0

e−π(p
2−t2) e−2πipt dt

∣∣∣∣ ⩽ |t| e−π(p2−t2) → 0

and ∣∣∣∣ ∫ t

0

e−π(−p+it)
2

i dt

∣∣∣∣ = ∣∣∣∣ ∫ t

0

e−π(p
2−t2) e2πipt dt

∣∣∣∣ ⩽ |t| e−π(p2−t2) → 0,

as p→ +∞, it follows that∫ +∞

−∞
e−π(x+it)

2

dx =

∫
R
e−πx

2

dx = 1,

which had to be proved.
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3.2 Basic operators

In this part, basic operators such as translation, modulation, involution and reflection
will be defined. Also, the convolution will be defined.

Definition 3.2.1 ([40]). The translation by y ∈ Rn (or the shift by y ∈ Rn), Tyf , is
defined by Tyf(x) = f(x − y), x ∈ Rn. The modulation by t ∈ Rn, Mt, is defined to be
Mtf(x) = e2πi⟨t,x⟩ f(x), x ∈ Rn.

In harmonic analysis the fundamental operators take the form TyMt and MtTy, y, t ∈ Rn.
These operators are called time-frequency shifts. It is not difficult to see that

TyMt = e−2πi⟨y,t⟩MtTy, y, t ∈ Rn.

Thus, Ty and Mt commute if and only if ⟨y, t⟩ ∈ Zn. Moreover, these operators are
isometric.

Theorem 3.2.1 ([40]). Let f ∈ Ls, s ∈ [1,+∞]. Then, ∥TyMtf∥Ls = ∥f∥Ls, y, t ∈ Rn.

Proof. Let f ∈ Ls, s ∈ [1,+∞). Then,

∥TyMtf∥sLs =

∫
Rn

|TyMtf(x)|s dx =

∫
Rn

|Mtf(x− y)|s dx =

∫
Rn

|f(x− y)|s dx

=

∫
Rn

|f(z)|s dz = ∥f∥sLs , y, t ∈ Rn.

In a similar way, ∥TyMtf∥L∞ = ∥f∥L∞ for f ∈ L∞, y, t ∈ Rn.

Theorem 3.2.2 ([40]). Let f ∈ L1. Then, Tyf,Myf ∈ L1 and T̂yf =M−yf̂ , M̂yf = Tyf̂ ,
for every y ∈ Rn.

Proof. If f ∈ L1, it is easy to check that Tyf ∈ L1 and Mtf ∈ L1, y, t ∈ Rn. Using
Definition 3.1.1,

T̂yf(t) =

∫
Rn

(Tyf)(x) e
−2πi⟨x,t⟩ dx =

∫
Rn

f(x− y) e−2πi⟨x,t⟩ dx

= e−2πi⟨y,t⟩
∫
Rn

f(x) e−2πi⟨x,t⟩ dx =M−yf̂(t), y, t ∈ Rn,

and

M̂yf(t) =

∫
Rn

f(x) e2πi⟨y,x⟩ e−2πi⟨x,t⟩ dx =

∫
Rn

f(x) e−2πi⟨x,t−y⟩ dx

= f̂(t− y) = Tyf̂(t), y, t ∈ Rn,

which completes the proof.

Definition 3.2.2 ([40]). The involution of a function f is the function f ⋄ defined by
f ⋄(x) = f(−x), x ∈ Rn. The reflection operator I is defined by I f(x) = f(−x),
x ∈ Rn.

It can be easily proved that f̂ ⋄ = f̂ and Î f = I f̂ . The involution yields F−1 = I F .
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Definition 3.2.3 ([40]). The convolution of functions f, g ∈ L1, f ∗ g, is defined by

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y) dy, x ∈ Rn.

The fundamental property of convolution is given in the following theorem.

Theorem 3.2.3 ([58]). If f, g ∈ L1, then:

(1) f ∗ g = g ∗ f ,

(2) F [f ∗ g] = F [f ]F [g],

(3)
∫
Rn f̂(t)g(at) dt =

∫
Rn f(at)ĝ(t) dt for every a > 0.

Proof. (1) It follows directly from the definition, by substitution of variables.

(2) Using Fubini’s5 theorem (see [63]), it follows that

f̂ ∗ g(t) =
∫
Rn

(∫
Rn

f(y)g(x− y) dy

)
e−2πi⟨x,t⟩ dx

=

∫
Rn

f(y) e−2πi⟨y,t⟩
(∫

Rn

g(x− y) e−2πi⟨x−y,t⟩ dx

)
dy

= f̂(t)ĝ(t), t ∈ Rn.

(3) After a change of variables t̃ = at, x̃ = x
a
and using Fubini’s theorem, it follows that∫

Rn

f̂(t)g(at) dt =

∫
Rn

(∫
Rn

f(x) e−2πi⟨x,t⟩ dx

)
g(at) dt

=

∫
Rn

(∫
Rn

f(ax̃) e−2πi⟨x̃,t̃⟩ dx̃

)
g(t̃) dt̃

=

∫
Rn

f(ax̃)

(∫
Rn

g(t̃) e−2πi⟨x̃,t̃⟩ dt̃

)
dx̃

=

∫
Rn

f(ax̃)ĝ(x̃) dx̃, a > 0,

and thus the assertion holds.

Convolution has a particularly important role in the theory of distributions. Differentia-
tion is actually a convolution with the corresponding derivative of δ0, i.e. D

af = Daδ0 ∗f ,
a ∈ Nn

0 ; similarly, this is true for translation Tyf = δy ∗ f , y ∈ Rn.

The convolution can be extended to other spaces.

Theorem 3.2.4 (Young, [40]). Let f ∈ Lp and g ∈ Lr. Then, f ∗ g ∈ Ls and

∥f ∗ g∥Ls ⩽ (ApArAs′)
n∥f∥Lp∥g∥Lr ,

where 1
p
+ 1

r
= 1 + 1

s
and Ap = ( p

√
p/ p′

√
p′)1/2, p′ = p

p−1
.

In the space Lloc(Rn) convolution is introduced as follows.

5Guido Fubini (1879–1943) – Italian mathematician.
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Definition 3.2.4 ([74, 75]). The convolution of f, g ∈ Lloc(Rn) is defined by

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y) dy for a.e. x ∈ Rn,

if there exists
∫
Rn f(y)g(x− y) dy for a.e. x ∈ Rn, and

∫
Rn f(y)g(x− y) dy ∈ Lloc(Rn).

Since by Definition 3.2.4, f ∗ g ∈ Lloc(Rn), it is clear that the regular distribution from
D ′ is determined. Using the Fubini’s theorem, it leads to(
f ∗ g, ψ

)
=

∫
Rn

(∫
Rn

f(y)g(x− y) dy

)
ψ(x) dx =

∫
Rn

f(y)

(∫
Rn

g(x− y)ψ(x) dx

)
dy

=

∫
Rn

f(y)

(∫
Rn

g(z)ψ(z + y) dz

)
dy =

∫
R2n

f(x)g(y)ψ(x+ y) dx dy (3.2.1)

for every ψ ∈ D . Since for ψ(x) ∈ C ∞
0 the function ψ(x + y), x, y ∈ Rn, does not

have a compact support, the formula (3.2.1) can not define the convolution of arbitrary
distributions. Convolution of distributions can be defined as follows.

First, a sequence (ϕν)ν∈N ∈ C ∞
0 is said to be the unit sequence if both of the following

conditions hold:

(1) for every compact set K ⊂ Rn there is a ν0(K) ∈ N so that ϕν(x) = 1 for x ∈ K
and ν ⩾ ν0;

(2) (∀ν ∈ N) sup
{
|Daϕν(x)| : x ∈ Rn

}
< Ca, a ∈ Nn

0 .

Such a sequence always exists, for example let ϕ ∈ C ∞
0 so that ϕ(x) = 1 for |x| < 1, then

the sequence (ϕν)ν∈N defined by ϕν(x) = ϕ
(
x
ν

)
, ν ∈ N, x ∈ Rn, is a unit sequence.

Definition 3.2.5 ([65, 74, 75]). The convolution f ∗ g of f, g ∈ D ′ can be defined by(
(f ∗ g)(x), ψ(x)

)
= lim

ν→+∞

(
f(x)g(y), ϕν(x, y)ψ(x+ y)

)
, ψ ∈ D ,

if f and g are such that there exists limν→+∞
(
f(x)g(y), ϕν(x, y)ψ(x+y)

)
for every ψ ∈ D ,

where the limes does not depend on choice of the unit sequence (ϕν(x, y))ν∈N ∈ C ∞
0 (R2n).

According to the given definition, the convolution of distributions does not always exist.
There are sufficient conditions for the existence of convolution which will not be stated
here (for more details see [65]), but still there are no known conditions for the existence
of convolution which would be both necessary and sufficient. With Definition 3.2.5, f ∗ g
stays in the distribution space. This property and other properties are given in the next
statements.

Theorem 3.2.5 ([74]). Let f, g ∈ D ′ and f ∗ g exist. Then:

(1) f ∗ g ∈ D ′,

(2) there exists g ∗ f and f ∗ g = g ∗ f ,

(3) for every y ∈ Rn there exists
(
Tyf ∗ g

)
(x), x ∈ Rn, and(

Tyf ∗ g
)
(x) = Ty

(
f ∗ g

)
(x), x ∈ Rn.

Lemma 3.2.1 ([74]). If f ∈ D ′, then f ∗ δ0 = δ0 ∗ f = f .

Similarly, the convolution of Schwartz distributions does not exist in the general case, but
it may be defined as follows.
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Definition 3.2.6 ([65, 74, 75]). The tempered convolution f ∗ g of tempered distributions
f and g is a linear functional defined by(

(f ∗ g)(x), ψ(x)
)
= lim

ν→+∞

(
f(x)g(y), ϕν(x, y)ψ(x+ y)

)
, ψ ∈ S ,

if the limes exists for every ψ ∈ S and does not depend on the unit sequence (ϕν(x, y))ν∈N ∈
C ∞
0 (R2n).

It is not difficult to see that also the following statements hold.

Theorem 3.2.6 ([65]). Let f, g ∈ S ′ and f ∗ g exist. Then:

(1) f ∗ g ∈ S ′,

(2) there exists g ∗ f and f ∗ g = g ∗ f ,

(3) for every y ∈ Rn there exists
(
Tyf ∗ g

)
(x), x ∈ Rn, and(

Tyf ∗ g
)
(x) = Ty

(
f ∗ g

)
(x), x ∈ Rn.

Lemma 3.2.2 ([65]). If f ∈ S ′, then f ∗ δ0 = δ0 ∗ f = f .

Note, a convolution of two distributions always exists if at least one of two distributions
has a compact support.

Finally, the proofs of the theorems 3.1.1 and 3.1.3 follows.

Proof of Theorem 3.1.1. Let g(x) = e−π|x|
2
, x ∈ Rn. Then, by Example 3.1.1, it follows

that g(0) = ĝ(0) =
∫
Rn g(x) dx = 1. Applying Theorem 3.2.3 (3) and using Example 3.1.1

gives ∫
Rn

f̂(t)g(at) dt =

∫
Rn

f(at)ĝ(t) dt =

∫
Rn

f(at)g(t) dt, a > 0.

Letting a→ 0 leads to ∫
Rn

f̂(t) dt = f(0)

∫
Rn

g(t) dt = f(0),

since f ∈ C0 (see Remark 3.1.1). This is the inverse Fourier transform for x = 0. Now,

applying T−xf to the last equality and using T̂−xf =Mxf̂ (by Theorem 3.2.2) gives

f(x) = T−xf(0) =

∫
Rn

T̂−xf(t) dt =

∫
Rn

f̂(t) e2πi⟨x,t⟩ dt, x ∈ Rn,

which completes the proof. □

Proof of Theorem 3.1.3. Let f ∈ L1 ∩ L2 and h = f ∗ f ⋄. Using Theorem 3.2.3 (2),

ĥ = |f̂ |2 and h(0) =

∫
Rn

|f(x)|2 dx,

since f̂ ⋄ = f̂ . On the other hand, from the equality (3.1.2) (for x = 0), it follows that

h(0) =

∫
Rn

ĥ(t) dt.

Hence, ∥f∥L2 = ∥f̂∥L2 . □
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3.3 Fourier transform on S (Rn)

In the space S , the Fourier transform is defined in the same way as in the space L1,
because S is dense in L1 (Theorem 2.3.4).

Definition 3.3.1 ([40]). The Fourier transform Fψ = F [ψ] = ψ̂ of a function ψ ∈ S
is defined by

Fψ(t) =

∫
Rn

M−tψ(x) dx, t ∈ Rn.

The Fourier transform is well defined, since from the fact that ψ ∈ S , it follows that
ψ is an absolutely integrable function. Moreover, the Fourier transform is a continuous
mapping.

Theorem 3.3.1 ([40, 75]). Let ψ ∈ S and a ∈ Nn
0 .

(1) DaF [ψ](t) = F [(−2πix)aψ](t), t ∈ Rn.

(2) F [Daψ](t) = (2πit)aF [ψ](t), t ∈ Rn.

(3) F : S → S is a continuous linear mapping.

Proof. (1) Let ψ ∈ S and a ∈ Nn
0 . Then, (−2πix)aψ ∈ S and

DaF [ψ](t) = Da

∫
Rn

ψ(x) e−2πi⟨x,t⟩ dx =

∫
Rn

(−2πix)aψ(x) e−2πi⟨x,t⟩ dx

= F [(−2πix)aψ](t), t ∈ Rn.

(2) Using integration by parts and the fact that ψ ∈ S , it follows that

F [Daψ](t) =

∫
Rn

e−2πi⟨x,t⟩Daψ(x) dx =

∫
Rn

(2πit)aψ(x) e−2πi⟨x,t⟩ dx

= (2πit)aF [ψ](t), t ∈ Rn, a ∈ Nn
0 .

(3) Let ψ ∈ S and a, b ∈ Nn
0 . The linearity of the Fourier transform simply follows from

the linearity of the integral. By (1) and (2),

tbDaFψ(t) = tbF [(−2πix)aψ](t) = (−1)|a|(2πi)|a|−|b|F [Db(xaψ)](t), t ∈ Rn.

Therefore,

sup
t∈Rn

|tbDaFψ(t)| ⩽ (2π)|a|−|b| sup
t∈Rn

∫
Rn

∣∣Db(xaψ) e−2πi⟨x,t⟩ ∣∣ dx
= (2π)|a|−|b|

∫
Rn

∣∣Db(xaψ)
∣∣ dx < +∞, (3.3.1)

since Db(xaψ) ∈ S ⊂ L1. This means that Fψ ∈ S . The continuity of the mapping
follows from (3.3.1). Indeed, let limν→+∞ ψν = ψ in S . Then, by (3.3.1) for all a, b ∈ Nn

0 ,

sup
t∈Rn

∣∣tbDaF [ψν − ψ](t)
∣∣ ⩽ (2π)|a|−|b|

∫
Rn

∣∣Db
(
xa(ψν − ψ)

)∣∣ dx
⩽ sup

x∈Rn

∣∣Db
(
xa(ψν − ψ)

)
(1 + |x|)n+1

∣∣ ∫
Rn

(2π)|a|−|b|

(1 + |x|)n+1
dx.

Thus, using that limν→+∞ ψν = ψ in S , it yields limν→+∞ Fψν = Fψ in S .
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Consider the conjugate Fourier transform of ψ ∈ S , which is defined by

F [ψ](t) = Fψ(t) =

∫
Rn

Mtψ(x) dx, t ∈ Rn.

Theorem 3.3.2 ([65]). The conjugate Fourier transform F : S → S is a linear and
continuous mapping. Moreover, F [Fψ] = ψ and F [Fψ] = ψ for every ψ ∈ S .

Proof. The first part of the theorem can be proved in the same way as in Theorem 3.3.1.
Let us prove the first equality, the second equality can be proved in a similar way. For
ϕ, ψ ∈ S and ε > 0 hold∫

Rn

ϕ(εt)ψ̂(t) e2πi⟨x,t⟩ dt =

∫
Rn

ϕ(εt)

[ ∫
Rn

ψ(y) e−2πi⟨t,y⟩ dy

]
e2πi⟨x,t⟩ dt

=

∫
Rn

[ ∫
Rn

ϕ(εt) e−2πi⟨y−x,t⟩ dt

]
ψ(y) dy

=

∫
Rn

ε−n
[ ∫

Rn

ϕ(t) e−2πi⟨ y−x
ε
,t⟩ dt

]
ψ(y) dy

= ε−n
∫
Rn

ϕ̂
(y − x

ε

)
ψ(y) dy

=

∫
Rn

ϕ̂(t)ψ(x+ εt) dt, x ∈ Rn, (3.3.2)

by Fubini’s theorem and corresponding substitutions. Letting ε→ 0+, it follows that

ϕ(0)

∫
Rn

ψ̂(t) e2πi⟨x,t⟩ dt = ψ(x)

∫
Rn

ϕ̂(t) dt, x ∈ Rn. (3.3.3)

Putting ϕ̂(t) = e−π|t|
2
, t ∈ Rn, in equality (3.3.3) yields F [Fψ] = ψ (by Example

3.1.1).

Theorem 3.3.3 ([45]). The Fourier transform F : S → S is an isomorphism with the
inverse given by

F−1
[
ψ̂
]
(x) = ψ(x) =

∫
Rn

Mxψ̂(t) dt, x ∈ Rn.

Proof. According to Theorem 3.3.2, F [Fψ] = ψ and F [Fψ] = ψ for every ψ ∈ S . If
Fψ = 0, then 0 = F [Fψ] = ψ, i.e. F is injective. For given ψ ∈ S , F [Fψ] = ψ and
thus F is surjective. Hence, F is the inverse of F . Since F : S → S is a continuous
linear mapping (by Theorem 3.3.1) and F : S → S is a continuous linear mapping (by
Theorem 3.3.2), it follows that F is an isomorphism.

The next theorem gives some useful formulas.

Theorem 3.3.4 ([65]). If ϕ, ψ ∈ S , then:

(1) F
[
F [ψ]

]
(x) = ψ(−x), x ∈ Rn,

(2)
∫
Rn ψ̂(x)ϕ(x) dx =

∫
Rn ψ(x)ϕ̂(x) dx,

(3)
∫
Rn ψ(x)ϕ(x) dx =

∫
Rn ψ̂(x)ϕ̂(x) dx (Parseval’s equality),

(4)
∫
Rn |ψ(x)|2 dx =

∫
Rn |ψ̂(x)|2 dx.
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Proof. It is not difficult to see that (1) holds. Putting x = 0 and ε = 1 in (3.3.2), (2)
follows. Substituting ϕ(x) = ψ(x), x ∈ Rn, into (3) gives (4). It remains to prove (3).

Let ϕ1(x) = ϕ̂(x), x ∈ Rn. Then, ϕ(x) = ϕ̂1(x), x ∈ Rn. If the mentioned changes are
introduced in (2), it leads to (3) for the functions ψ and ϕ1.

Theorem 3.3.5 ([65]). The Fourier transform F : S → S can be extended to L2 as
isometric transform between L2 spaces, i.e. for f ∈ L2 the Plancherel’s formula (3.1.3)
holds.

Proof. Since S is dense in L2 (Theorem 2.3.4), by Theorem 3.3.4 (4), the assertion
follows.

The following example is important in the further work.

Example 3.3.1. Let ∆ be the Laplace6 operator, i.e.

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
= D(2,0,...,0,0) + · · ·+D(0,0,...,0,2).

If ψ ∈ S , then F [∆ψ](t) = −4π2|t|2ψ̂(t), t ∈ Rn. Indeed, it is sufficient to prove the
case n = 1. Therefore, by Theorem 3.3.1 (2),

F [∆ψ](t) = F [D2ψ](t) = (2πit)2F [ψ] = −4π2t2F [ψ], t ∈ Rn.

3.4 Fourier transform on S ′(Rn)

The largest space of distributions making it possible to define the Fourier transform is
the space of tempered distributions. Note, if ψ ∈ D(Ω), then ψ̂ /∈ D(Ω), unless ψ = 0.

Let φ ∈ S ′, then using Fubini’s theorem

(φ̂, ψ) =

∫
Rn

φ̂(t)ψ(t) dt =

∫
Rn

(∫
Rn

φ(x) e−2πi⟨x,t⟩ dx

)
ψ(t) dt

=

∫
Rn

(∫
Rn

ψ(t) e−2πi⟨x,t⟩ dt

)
φ(x) dx = (φ, ψ̂), ψ ∈ S .

This equality is taken to define the Fourier transform of a tempered distribution.

Definition 3.4.1 ([75]). The Fourier transform Fφ = F [φ] = φ̂ of a distribution φ ∈ S ′

is defined by
(Fφ, ψ) = (φ,Fψ), ψ ∈ S .

Theorem 3.4.1 ([75]). For every φ ∈ S ′ the Fourier transform F : S ′ → S ′ is a
continuous mapping with the inverse transform F−1[φ] = F−1φ given by

F−1[φ](x) = F [φ](−x), x ∈ Rn.

Proof. Since Fψ ∈ S for every ψ ∈ S (by Theorem 3.3.1 (3)), (φ,Fψ) is a functional,
obviously linear in S . Let limν→+∞ ψν = ψ in S . Also, using Theorem 3.3.1 (3), it

6Pierre-Simon, Marquis de Laplace (1749–1827) – French mathematician and astronomer.
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follows that limν→+∞ Fψν = Fψ in S , and so limν→+∞(φ,Fψν) = (φ,Fψ), φ ∈ S ′.
Thus, the functional (φ,Fψ) is continuous in S . Hence, F : S ′ → S ′. Now, let
limν→+∞ φν = φ in S ′. Then,

lim
ν→+∞

(Fφν , ψ) = lim
ν→+∞

(φν ,Fψ) = (φ,Fψ) = (Fφ, ψ), ψ ∈ S .

Thus, F : S ′ → S ′ is a continuous mapping. Finally, for every ψ ∈ S ,

(F−1Fφ, ψ) = (FFφ(−x), ψ(x)) = (Fφ(−t),Fψ(t)) = (Fφ(t),Fψ(−t))
= (Fφ(t),F−1ψ(t)) = (φ(x),FF−1ψ(x)) = (φ, ψ), φ ∈ S ′,

i.e. F−1Fφ = φ. In the same way, it is proved that FF−1φ = φ. Thus, F−1 is the
inverse of F .

The next statement is easily proved using Theorem 3.4.1.

Theorem 3.4.2 ([75]). The Fourier transform F : S ′ → S ′ is an isomorphism.

Some important properties of the Fourier transform on the space S ′ are given in the
following statement.

Theorem 3.4.3 ([45, 75]). If φ ∈ S ′ and a ∈ Nn
0 , then:

(1) DaF [φ] = F [(−2πix)aφ], x ∈ Rn,

(2) F [Daφ] = (2πit)aF [φ], t ∈ Rn,

(3) F [Tx0φ] =M−x0F [φ], x0 ∈ Rn,

(4) Tt0F [φ] = F [Mt0φ], t0 ∈ Rn.

Proof. (1) Let φ ∈ S ′ and a ∈ Nn
0 . Then, using Definition 2.3.6 and Theorem 3.3.1 (2),

it follows that

(DaF [φ], ψ) = (−1)|a|(F [φ], Daψ) = (−1)|a|(φ,F [Daψ]) = (−1)|a|(φ, (2πix)aF [ψ])

= ((−2πix)aφ,F [ψ]) = (F [(−2πix)aφ], ψ)

for every ψ ∈ S , and so DaF [φ] = F [(−2πix)aφ], x ∈ Rn.

(2) Let φ ∈ S ′ and a ∈ Nn
0 . Similarly, using Theorem 3.3.1 (1),

(F [Daφ], ψ) = (Daφ,F [ψ]) = (−1)|a|(φ,DaF [ψ] = (−1)|a|(φ,F [(−2πit)aψ])

= (F [φ], (2πit)aψ) = ((2πit)aF [φ], ψ), ψ ∈ S .

Therefore, F [Daφ] = (2πit)aF [φ], t ∈ Rn.

(3) Let φ ∈ S ′ and x0 ∈ Rn. Then, by Theorem 3.2.2,

(F [Tx0φ], ψ) = (Tx0φ,F [ψ]) = (φ, T−x0F [ψ]) = (φ,F [M−x0ψ])

= (F [φ],M−x0ψ) = (M−x0F [φ], ψ), ψ ∈ S ,

and thus F [Tx0φ] =M−x0F [φ].

(4) The assertion can be proved in a similar way as (3).

The main concept of classical Fourier analysis is to connected the properties of the function
or distribution f with f̂ . The smoothness of f implies the decay of f̂ , which is stated in
the following assertion.
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Lemma 3.4.1 ([40]). Let a ∈ Nn
0 . Then:

Daf ∈ L2 ⇔
∫
Rn

|f̂(t)|2(1 + |t|2)r dt < +∞, r ⩾ |a|.

Proof. Using Plancherel’s theorem and the theorems 2.3.4 and 3.3.1 (2) gives

∥Daf∥2L2 = ∥D̂af∥2L2 =

∫
Rn

∣∣(2πit)af̂(t)∣∣2 dt = (2π)2|a|
∫
Rn

|ta|2|f̂(t)|2 dt, a ∈ Nn
0 .

Let r ⩾ |a|. Based on the fact that there exists a constant C > 0 so that

1

C
(1 + |t|2)r ⩽

∑
|a|⩽r

|ta|2 ⩽ C(1 + |t|2)r, t ∈ Rn,

the statement follows.

The next two examples will be used to prove some of statements that are obtained in this
research.

Example 3.4.1. Let δ0 be the Dirac distribution (see Example 2.1.2). Since

(F [δ0], ψ) = (δ0,F [ψ]) = F [ψ](0) =

∫
Rn

ψ(x) dx = (1, ψ), ψ ∈ S ,

it follows that F [δ0] = 1. Moreover, F [1] = δ0, because δ0 = F−1[1] = F [1].

Example 3.4.2. Combining Example 3.4.1 and Theorem 3.4.3 (3) gives

F [δx0 ] = F [Tx0δ0] =M−x0F [δ0] = e−2πi⟨x0,·⟩, x0 ∈ Rn.

The following example is very important for the next chapter of this dissertation.

Example 3.4.3. Let φ ∈ S ′ and ∆ be the Laplace operator (see Example 3.3.1). Then,

F [(1− 1
4π2∆)r/2φ](t) = (1 + |t|2)r/2F [φ](t), t ∈ Rn, r ∈ R.

This follows by applying the binomial formula and by Example 3.3.1.
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3.5 Sobolev spaces

The study of Sobolev spaces is of great importance for the theory of partial differen-
tial equations. The first results in this area belong to S. L. Sobolev [70, 71]. In this
dissertation, only Sobolev spaces which are also Hilbert spaces are considered.

Definition 3.5.1 ([40, 58]). The Sobolev space (or Bessel7 potential space) Hr(Rn), r ∈ R,
is defined by

Hr(Rn) =
{
f ∈ S ′ : µr(·)f̂(·) ∈ L2

}
.

In the continuation, the shorter notation Hr will be used instead of Hr(Rn). The rela-
tionship between the spaces Hr and L2 is given by the following statement.

Lemma 3.5.1 ([40]). For every r > 0 hold Hr ⊂ L2 ⊂ H−r. Moreover, H0 = L2.

Proof. The first part of the statement simply follows from the definition of the space Hr.
If r = 0, then the Plancherel’s equality implies that H0 = L2.

The Sobolev space Hr, r ∈ R, is equipped with the inner product

⟨f, g⟩Hr =

∫
Rn

f̂(t)ĝ(t)µ2r(t) dt, (3.5.1)

and the corresponding norm is

∥f∥Hr =

(∫
Rn

|f̂(t)|2µ2r(t) dt

)1/2

. (3.5.2)

Theorem 3.5.1 ([49]). The space Hr, r ∈ R, equipped with the inner product (3.5.1) is
a Hilbert space.

Proof. It is not difficult to verify that (3.5.1) defines the inner product on the space Hr.
The completeness of the space Hr follows by Theorem 3.4.2 and the fact that the space
L2 is complete.

The connection between the spaces Hr and L2
r is given in the next statement.

Lemma 3.5.2 ([58]). Let r ∈ R. Then, L2
r = F [Hr], i.e. f ∈ L2

r if and only if f̂ ∈ Hr.

Proof. Let r ∈ R. Then,

f ∈ L2
r ⇔

∫
Rn

|f(t)|2µ2r(t) dt < +∞ ⇔
∫
Rn

∣∣̂̂f(t)∣∣2µ2r(t) dt < +∞ ⇔ f̂ ∈ Hr.

Therefore, the statement holds.

Theorem 3.5.2 ([49, 66]). The space S is dense in Hr, r ∈ R.

Proof. Let f ∈ S . Then, f̂ ∈ S and thus (1 + | · |2)r/2f̂(·) ∈ S ⊂ L2, r ∈ R, by the
theorems 3.3.1 (3) and 2.3.4. Hence, f ∈ Hr, r ∈ R, i.e. S ⊂ Hr, r ∈ R. Further, let
r ∈ R and f ∈ Hr. Since D is dense in L2 (by Theorem 2.3.4), it follows that there exists

7Friedrich Wilhelm Bessel (1784–1846) – German mathematician, astronomer, physicist and geodesist.
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a sequence (gν)ν∈N ∈ D such that limν→+∞ gν = f̂µr in L
2. Set fν = F−1[gνµ−r], ν ∈ N.

Then, fν ∈ S , because gνµ−r ∈ D ⊂ S . Moreover,

∥f − fν∥2Hr =

∫
Rn

|f̂(t)− gν(t)µ−r(t)|2µ2r(t) dt

=

∫
Rn

|f̂(t)µr(t)− gν(t)|2 dt→ 0, as ν → +∞,

which completes the proof.

Thus, for every r ∈ R (see (2.3.7)) hold

D ⊂ S ⊂ Hr ⊂ S ′ ⊂ D ′. (3.5.3)

Remark 3.5.1. Since D is dense in S and S is dense in Hr, r ∈ R, it follows that D
is dense in Hr, r ∈ R, by (3.5.3).

Some important characteristics of the spaces Hr are given in the following statement.

Theorem 3.5.3 ([35, 38, 49, 58, 65]). (1) If r, s ∈ R such that r ⩽ s, then Hs ↪→ Hr

is continuous.

(2) Let a ∈ Nn
0 and s ⩾ |a|. Then, Da : Hr → Hr−s, r ∈ R, is continuous.

(3) If r ∈ N0, then H
r = {f ∈ S ′ : Daf ∈ L2 for every |a| ⩽ r}.

(4) If r ∈ N0 and f ∈ H−r, then f =
∑

|a|⩽rD
afa, where fa ∈ L2.

Proof. (1) Let r ⩽ s. Then, for f ∈ Hs,

∥f∥2Hr =

∫
Rn

|f̂(t)|2µ2r(t) dt =

∫
Rn

µ2(r−s)(t)|f̂(t)|2µ2s(t) dt ⩽
∫
Rn

|f̂(t)|2µ2s(t) dt = ∥f∥2Hs ,

since µ2(r−s)(t) ⩽ 1, t ∈ Rn, for r ⩽ s.

(2) Let f ∈ Hr. Then, by Theorem 3.4.3 (2),

∥Daf∥2Hr−s =

∫
Rn

|D̂af(t)|2µ2(r−s)(t) dt =

∫
Rn

(2π)2|a||ta|2|f̂(t)|2µ2(r−s)(t) dt

⩽ (2π)2s
∫
Rn

|t|2s|f̂(t)|2µ2(r−s)(t) dt ⩽ (2π)2s
∫
Rn

|f̂(t)|2µ2r(t) dt = (2π)2s∥f∥Hr ,

because |ta|2 ⩽ |t|2s ⩽ (1 + |t|2)s = µ2s(t), t ∈ Rn, for s ⩾ |a|.

(3) The claim follows from Lemma 3.4.1.

(4) Let f ∈ H−r, r ∈ N0. Then, h = f̂µ−r ∈ L2 and so

f̂(t) = h(t)µr(t) =

(
1 +

n∑
j=1

|tj|r
)

h(t)µr(t)

1 +
n∑
j=1

|tj|r
=

(
1 +

n∑
j=1

|tj|r
)
g(t)

= g(t) +
n∑
j=1

trj ·
|tj|r

trj
g(t), t ∈ R, (3.5.4)
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where

g(t) =
h(t)µr(t)

1 +
n∑
j=1

|tj|r
∈ L2.

Set f0 = F−1g and fj = F−1
(
g|tj|r/trj

)
. Now, applying F−1 to (3.5.4), the assertion

follows.

The following theorem is known as Sobolev’s embedding theorem. The proof is more
complicated and will be omitted here.

Theorem 3.5.4 ([36, 58]). If r > n
2
, then Hr ⊂ C0. Moreover, if r > n

2
+m for some

m ∈ N, then Hr ⊂ Cm
0 .

Corollary 3.5.1 ([35]). If f ∈ Hr for every r ∈ R, then f ∈ C ∞.

The next two theorems are very significant for this dissertation. The first theorem asserts
that the multiplication of a function from S and a distribution from Hr is continuous.

Theorem 3.5.5 ([66]). If ψ ∈ S and f ∈ Hr, then ψf ∈ Hr and the mapping f 7→ ψf

is continuous. Moreover, ∥ψf∥Hr ⩽ C(r, n)∥ψ̂µ|r|∥L1∥f∥Hr .

Proof. First, let us prove the estimate

µr(t) ⩽ 2|r|/2µr(x)µ|r|(t− x), r ∈ R, x, t ∈ Rn, (3.5.5)

known as Peetre’s8 inequality. Since (1 + s)2 = 1 + 2s + s2 ⩽ 2(1 + s2), s ∈ [0,+∞), it
implies that

(1 + |t|2)1/2 ⩽ (1 + |x|2)1/2 + |t− x| ⩽ (1 + |x|2)1/2(1 + |t− x|)
⩽ 21/2(1 + |x|2)1/2(1 + |t− x|2)1/2, x, t ∈ Rn.

Hence, the inequality (3.5.5) follows for r ⩾ 0. The case r < 0 follows from

µr(t)

µr(x)
=
µ|r|(x)

µ|r|(t)
⩽

2|r|/2µ|r|(t)µ|r|(t− x)

µ|r|(t)
= 2|r|/2µ|r|(t− x) x, t ∈ Rn.

Thus, the estimate (3.5.5) holds.

Next, by Theorem 3.2.3 ((1) and (2)) the Fourier transform of ψf is given by

F [ψf ](t) =

∫
Rn

ψ̂(t− x)f̂(x) dx, t ∈ Rn.

Then,

F [ψf ](t)µr(t) =

∫
Rn

ψ̂(t− x)f̂(x)
µr(t)

µr(x)
µr(x) dx, t ∈ Rn,

and by Peetre’s inequality (3.5.5),∣∣F [ψf ](t)µr(t)
∣∣ ⩽ C1

∫
Rn

|ψ̂(t− x)µ|r|(t− x)| · |f̂(x)µr(x)| dx = C1

(
|ψ̂µ|r|| ∗ |f̂µr|

)
(t),

for every t ∈ Rn. Now, by Theorem 3.2.4, it follows that

∥ψf∥Hr = ∥F [ψf ]µr∥L2 ⩽ C1

∥∥|ψ̂µ|r|| ∗ |f̂µr|
∥∥
L2 ⩽ C∥ψ̂µ|r|∥L1∥f̂µr∥L2 = C∥ψ̂µ|r|∥L1∥f∥Hr .

Therefore, the statement holds.

8Jaak Peetre (1935–2019) – Swedish mathematician.
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Theorem 3.5.6 ([66]). Let r, s ∈ R. The mapping (1− 1
4π2∆)s/2 : Hr+s → Hr defined by(

1− 1
4π2∆

)s/2
f = F−1[f̂µs], f ∈ Hr+s,

is an isometry between spaces Hr+s and Hr.

Proof. According to Example 3.4.3, the mapping is well defined and∥∥(1− 1
4π2∆)s/2f

∥∥2
Hr =

∫
Rn

|f̂(t)µs(t)|2µ2r(t) dt =

∫
Rn

|f̂(t)|2µ2(r+s)(t) dt = ∥f∥2Hr+s

for r, s ∈ R. Therefore, the statement holds.

Theorem 3.5.7 ([65]). The Sobolev spaces Hr, r ∈ R, are reflexive and separable.

Proof. Since L2 is a reflexive and separable space, from the previous theorem, it follows
that Hr, r ∈ R, are also reflexive and separable spaces.

Example 3.5.1. Let δ0 be the Dirac distribution. Then, δ0 ∈ Hr if and only if r+ n
2
< 0.

Indeed, F [δ0] = 1 (see Example 3.4.1) yields

δ0 ∈ Hr ⇔ µr(t)F [δ0](t) ∈ L2 ⇔
∫
Rn

(1 + |t|2)r dt < +∞ ⇔ r + n
2
< 0.

In the continuation, it will be proved that the dual space of Hr is the space H−r, r ∈ R.

Lemma 3.5.3 ([58]). Let r ⩾ 0. Then, inner product ⟨·, ·⟩L2 : Hr ×L2 → C extends into
a continuous sesquilinear9 form

⟨·, ·⟩r : Hr ×H−r → C, ⟨f, g⟩r =
∫
Rn

f̂(t)ĝ(t) dt. (3.5.6)

Proof. Let f ∈ Hr and g ∈ L2. Then,∣∣⟨f, g⟩L2

∣∣ = ∣∣⟨f̂ , ĝ⟩L2

∣∣ = ∣∣∣∣ ∫
Rn

f̂(t)µr(t)ĝ(t)µ−r(t) dt

∣∣∣∣ ⩽ ∥f∥Hr∥g∥H−r ,

by Plancherel’s theorem and Cauchy-Schwarz inequality. Now, the statement follows from
Lemma 3.5.1.

Theorem 3.5.8 ([58]). The form (3.5.6) establishes the duality between spaces Hr and
H−r, r ⩾ 0, i.e.

(Hr)′ =
{
f 7→ ⟨f, g⟩r : g ∈ H−r}, (H−r)′ =

{
f 7→ ⟨f, g⟩r : g ∈ Hr

}
. (3.5.7)

Moreover, the isomorphisms (Hr)′ ∼= H−r and (H−r)′ ∼= Hr are isometries.

Proof. Let g ∈ H−r. Then, f 7→ ⟨f, g⟩r is an element of (Hr)′, by Lemma 3.5.3. On the

other hand, let f̃ ∈ (Hr)′. Then, by Riesz Representation Theorem, there exists h ∈ Hr

such that ∥h∥Hr = ∥f̃∥ and for every f ∈ Hr, f̃(f) = ⟨f, h⟩Hr . Define h1(t) = ĥ(t)µ2r(t),
t ∈ Rn, and let g = F−1h1. Now, g ∈ H−r and

f̃(f) = ⟨f, h⟩Hr =

∫
Rn

f̂(t)ĥ(t)µ2r(t) dt = ⟨f, g⟩r, f ∈ Hr.

The second equality is proved in the same way. Finally, from the previous calculation, it
follows that ∥f̃∥ = ∥h∥Hr = ∥g∥H−r . Therefore, the statement is proved.

9A form is sesquilinear if it is linear in the first argument and semi-linear in the second argument.
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3.6 The spaces DL2(Rn) and D ′
L2
(Rn)

Spaces DL2(Rn) and D ′
L2(Rn) actually represent the corresponding intersections and the

corresponding unions of Sobolev spaces Hr, r ∈ R, respectively.

Definition 3.6.1 ([65]). The space DL2 = DL2(Rn) is a subspace of C ∞ such that f ∈ DL2

if and only if Daf ∈ L2 for every a ∈ Nn
0 . The topology in DL2 is defined by the family of

norms

∥f∥m =

( ∑
|p|⩽m

∥Dpf∥2L2

)1/2

, m ∈ N0.

Since the identical mappings from DL2 to Hr, r ∈ N0, are continuous, from Theorem
3.5.3 (3) and Corollary 3.5.1, the next statement holds.

Theorem 3.6.1 ([65]). For the space DL2 holds DL2 =
⋂+∞
r=0H

r.

The dual space of the space DL2 is denoted by D ′
L2 = D ′

L2(Rn). Using the theorems 3.5.8
and 3.6.1, it follows that the next statement holds.

Theorem 3.6.2 ([65]). D ′
L2 =

⋃+∞
r=0H

−r.

Some properties of the spaces DL2 and D ′
L2 are given in the next assertions.

Theorem 3.6.3 ([58, 69]). (1) The space DL2 is dense in Hr, r ∈ R.

(2) The space D is dense in DL2.

(3) The space DL2 is a complete topological vector space, locally convex and reflexive.

Theorem 3.6.4 ([65, 69]). (1) The space D is dense in D ′
L2.

(2) A mapping Da : D ′
L2 → D ′

L2, a ∈ Nn
0 , is continuous.

(3) In order for the distribution to belong to D ′
L2, it is necessary and sufficient for it to

be the finite sum of derivatives of functions from L2.

(4) The distribution φ ∈ S ′ if and only if φ = xaf for some a ∈ Nn
0 and f ∈ D ′

L2.

Finally, it is not difficult to see that S ⊂ DL2 ⊂ D ′
L2 ⊂ S ′.
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Chapter 4

Periodic distributions and
wave fronts

The space of periodic distributions is one of basic Schwartz spaces. The motivation for
studying periodic distributions stems from local analysis and microanalysis of functions
and distributions. In this way, many problems in the scope of Rn can be simplified and
transferred to the torus Tn. More about periodic functions and distributions can be read
in [16, 17, 51, 69].

A wave front (or a wave front set) is a term that arose in the period of research related to
the classification of singularities using their spectrum and it is at the basis of microlocal
analysis. The reader can read more about the wave fronts in [46, 47, 48, 59, 65].

4.1 Periodic functions

Definition 4.1.1 ([17]). A function w : Rn → C is periodic with period η ∈ Rn, η ̸= 0, if

Tηw = w,

i.e. w(x − η) = w(x), x ∈ Rn. The set of all continuous periodic functions is denoted
by Cpe = Cpe(Rn), and the set of ℓ-times continuously differentiable periodic functions is
denoted by C ℓ

pe = C ℓ
pe(Rn), ℓ ∈ N.

The norm on the space Cpe is defined by

∥w∥Cpe = sup
x∈Rn

|w(x)|, w ∈ Cpe. (4.1.1)

It is not difficult to check that the next statement holds.

Theorem 4.1.1 ([17]). The space of continuous periodic functions Cpe is a Banach space.

Example 4.1.1. The function f defined by

f(x) =
∑
q∈Zn

αq e
−2πi⟨q,x⟩, x ∈ Rn,

where (αq)q∈Zn is a sequence such that
∑

q∈Zn |αq| < +∞, is continuous and periodic.
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Definition 4.1.2 ([17]). A function w : Rn → C is said to be 1-periodic if Tqw = w for
every q ∈ Zn.

There is another notation for introduction of periodic functions with value of the n-
dimensional torus Tn = [−1

2
, 1
2
)n. An equivalence relation ∼ can be introduced on Rn as

follows:
x ∼ y if and only if x− y ∈ Zn.

The resulting factor space is an n-dimensional torus

Tn = Rn/∼ = Rn/Zn = (R/Z)n.

Then, 1-periodic functions are identified with their restrictions over Tn or with their
projections on Tn. For example, it is said that w is an element of the space C ℓ

pe(Tn) if it
is periodic (1-periodic) function on Rn and w ∈ C ℓ

pe.

4.2 The space P(Rn)

Definition 4.2.1 ([17]). A subset of Cpe which contains all functions w ∈ Cpe(Tn) which
are infinitely differentiable, i.e. smooth, is denoted with P = P(Rn), i.e.

P = P(Rn) =
+∞⋂
ℓ=0

C ℓ
pe(Tn), C 0

pe(Tn) = Cpe(Tn).

The functions from the space P are called smooth 1-periodic functions.

Example 4.2.1. The function f(x) = | sinx| belongs to the space Cpe, but does not belong
to the space P. Therefore, P ̸= Cpe.

Theorem 4.2.1 ([17]). The space P is dense in Cpe.

It is not difficult to notice that if w ∈ P, then Daw ∈ P, a ∈ Nn
0 . Therefore, the

topology on P can be defined by the family of norms

∥w∥P,ℓ = sup
x∈Tn,|a|⩽ℓ

|Daw(x)|, ℓ ∈ N.

A very significant space is the space L2(Tn). It contains all measurable periodic square-
integrable functions. The space L2(Tn) is a Hilbert space with the inner product

⟨f, g⟩L2(Tn) =

∫
Tn

f(x)g(x) dx.

Lemma 4.2.1 ([40]). The set AP =
{
e−2πi⟨q,x⟩ ∈ P : q ∈ Zn, x ∈ Tn

}
is an orthonormal

basis of the space L2(Tn).

A sequence (wν)ν∈N ∈ P is said to be Cauchy in the space P if for every a ∈ Nn
0 ,

(Dawν)ν∈N is a Cauchy sequence in Cpe. Also, a sequence (wν)ν∈N ∈ P is said to converge
to w ∈ P if limν→+∞Dawν = Daw for every a ∈ Nn

0 .

Theorem 4.2.2 ([17]). Let (wν)ν∈N ∈ P be a Cauchy sequence in the space P. Then,
it converges to w ∈ P.
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Proof. It is sufficient to prove the case n = 1. Assume that (wν)ν∈N ∈ P be a
Cauchy sequence in the space P. Then, (Dawν)ν∈N is a Cauchy sequence in Cpe and
thus limν→+∞Dawν = ua ∈ Cpe uniformly for every a ∈ N0. Obviously,

Dawν(x) = Dawν(0) +

∫ x

0

Da+1wν(t) dt, a ∈ N0.

Therefore,

ua(x) = lim
ν→+∞

Dawν(x) = lim
ν→+∞

Dawν(0) + lim
ν→+∞

∫ x

0

Da+1wν(t) dt

= ua(0) +

∫ x

0

ua+1(t) dt,

and thus Dua = ua+1 for every a ∈ N. This means that if w = u0, then ua = Daw and
limν→+∞Dawν = Daw. Hence, limν→+∞wν = w in P.

The characterization of the space P is given in the following theorem.

Theorem 4.2.3 ([16]). The function w belongs to the space P if and only if

w =
∑
q∈Zn

wq e
−2πi⟨q,·⟩,

where wq =
∫
Tn w(x) e

−2πi⟨q,x⟩ dx, q ∈ Zn, and
∑

q∈Zn |wq|2µ2p(q) < +∞ for every p ∈ Z.

4.3 The space P ′(Rn)

The dual space of the space P is P ′ = P ′(Rn).

Definition 4.3.1 ([17]). A continuous linear functional on the space P is called a periodic
distribution. The set of all periodic distributions is denoted by P ′.

If v is a periodic distribution, then v is a tempered distribution, as the following statement
says.

Theorem 4.3.1 ([16, 65]). The set of periodic distributions P ′ is a subset of the set of
tempered distributions S ′, i.e. P ′ ⊂ S ′.

Characterization of the space P ′ is given in the next theorem.

Theorem 4.3.2 ([16]). The distribution v belongs to the space P ′ if and only if

v =
∑
q∈Zn

vq e
−2πi⟨q,·⟩ and

∑
q∈Zn

|vq|2µ−2τ (q) < +∞,

for some τ > 0.

To underline the importance of real number τ , P ′τ is written.

The dual pairing between v =
∑

q∈Zn vq e
−2πi⟨q,·⟩ ∈ P ′ and w =

∑
q∈Zn wq e

−2πi⟨q,·⟩ ∈ P is
given by

(v, w)P′,P =
∑
q∈Zn

vqwq.
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4.4 Some equality

Some of the more significant equalities used in this dissertation are introduced in this
section.

Theorem 4.4.1 (Plancherel, [40]). Let f ∈ L2(Tn) (i.e. f ∈ L2 be periodic function)

and f̂(q) =
∫
Tn f(t) e

−2πi⟨q,t⟩ dt be the q-th Fourier coefficient. Then,

f =
∑
q∈Zn

f̂(q) e2πi⟨q,·⟩

and

∥f∥2L2(Tn) =

∫
Tn

|f(t)|2 dt =
∑
q∈Zn

|f̂(q)|2 = ∥(f̂(q))q∈Zn∥2ℓ2 . (4.4.1)

Remark 4.4.1. If f ∈ P, then the decomposition f =
∑

q∈Zn f̂(q) e2πi⟨q,·⟩ holds, by

Theorem 4.2.3 with w−q = f̂(q). If additionally f ∈ L2(Tn), then (4.4.1) holds.

The following ”periodization” trick will often be used in the last chapter.

Lemma 4.4.1 ([40]). Let f ∈ L1. Then, for every s > 0∫
Rn

f(x) dx =

∫
[0,s]n

(∑
q∈Zn

Tqsf(x)

)
dx.

Proof. Since f ∈ L1, by Fubini’s theorem, it follows that∫
Rn

f(x) dx =
∑
q∈Zn

∫
[0,s]n+qs

f(x) dx =

∫
[0,s]n

(∑
q∈Zn

Tqsf(x)

)
dx,

Hence, the assertion holds.

Theorem 4.4.2 (The Poisson1 summation formula, [40]). Assume that the assump-

tions |f | ⩽ C(1 + | · |)−(n+ε) and |f̂ | ⩽ C(1 + | · |)−(n+ε), for some ε > 0 and a positive
constant C, hold. Then, ∑

q∈Zn

Tqf(x) =
∑
q∈Zn

Mxf̂(q), x ∈ Rn, (4.4.2)

and sums converge absolutely.

Proof. Assume that the conditions given in the theorem hold, and let h(x) =
∑

q∈Zn Tqf(x).
Then, using Lemma 4.4.1,

∥h∥L1(Tn) =

∫
Tn

|h(x)| dx =

∫
Tn

∣∣∣∣ ∑
q∈Zn

Tqf(x)

∣∣∣∣ dx ⩽
∫
Rn

|f(x)| dx

⩽
∫
Rn

C dx

(1 + |x|)n+ε
< +∞,

1Siméon Denis Poisson (1781–1840) – French mathematician and physicist.
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i.e. h ∈ L1(Tn). Thus, using Lemma 4.4.1 again, it follows that

ĥ(q) =

∫
Tn

h(x) e−2πi⟨q,x⟩ dx =

∫
Tn

(∑
j∈Zn

f(x− j) e−2πi⟨q,x−j⟩
)
dx

=

∫
Rn

f(x) e−2πi⟨q,x⟩ dx = f̂(q).

Since ∑
q∈Zn

|f̂(q)| ⩽
∑
q∈Zn

C

(1 + |q|)n+ε
< +∞,

h has the absolutely convergent Fourier series

h(x) =
∑
q∈Zn

Mxf̂(q), x ∈ Rn,

which completes the proof.

Remark 4.4.2. If ∑
q∈Zn

Tqf(x) ∈ L2(Tn) and
∑
q∈Zn

|f̂(q)|2 < +∞,

then holds a weaker version of the Poisson summation formula, i.e. the equality (4.4.2)
holds almost everywhere.

4.5 Wave fronts

As it is already mentioned in Introduction, the wave front represents a very important
mathematical concept in the last fifty years. It is a well-known result that the product
of two distributions can be defined if their wave fronts are in the ”good” position with
respect to each other. This led us to study the product of the observed spaces and wave
fronts.

4.5.1 The wave front of distributions

The conic neighborhood of a point is used to define the wave front.

Definition 4.5.1 ([46]). A set Γ ⊂ Rn \ {0} is called a cone if

t ∈ Γ implies λt ∈ Γ for every λ > 0.

The conic neighborhood of point t0, denoted by Γt0, is an open cone that contains t0.

Definition 4.5.2 ([8, 59]). (1) The mapping pr1 : Ω1×Ω2 → Ω1 defined by pr1(x, t) = x
is called the projection on the first factor.

(2) The mapping pr2 : Ω1 × Ω2 → Ω2 defined by pr2(x, t) = t is called the projection on
the second factor.

The set Σ(·) is defined as follows.
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Definition 4.5.3 ([46, 48]). It is said that t0 /∈ Σ(f) ⊂ Rn \ {0}, where f ∈ E ′, if there
exists a conic neighborhood Γt0 of point t0 such that for every t ∈ Γt0 and for every N > 0,
there exists a constant CN > 0 such that

|f̂(t)| ⩽ CNµ−2N(t).

It is not difficult to see that f ∈ C ∞
0 if and only if Σ(f) = ∅.

Lemma 4.5.1 ([46, 48]). Let ϕ ∈ C ∞
0 and f ∈ E ′. Then, Σ(ϕf) ⊆ Σ(f).

Let f ∈ D ′(Ω) and x ∈ Ω. Set

Σx(f) =
⋂

ϕ∈C∞
0 (Ω),ϕ(x)̸=0

Σ(ϕf).

Then, for ϕ ∈ C ∞
0 (Ω) such that ϕ(x) ̸= 0, by Lemma 4.5.1, it follows that

lim
suppϕ→{x}

Σ(ϕf) = Σx(f).

Thus, Σx(f) = ∅ if and only if x /∈ sign supp f .

Definition 4.5.4 ([46, 48]). The set

WF (f) =
{
(x, t) ∈ Ω× (Rn \ {0}) : t ∈ Σx(f)

}
is called the wave front set of f ∈ D ′(Ω).

The definition of a wave front can be reformulated as follows.

Definition 4.5.5 ([46, 48]). The point (x0, t0) ∈ Rn × (Rn \ {0}) does not belong to the
wave front set WF (f) of f ∈ D ′ if there exists ϕ ∈ C ∞

0 so that ϕ(x0) ̸= 0 and t0 /∈ Σ(ϕf).

Remark 4.5.1. The statement (x, t) /∈ WF (f) can be understood as f ∈ C ∞ at (x, t).

Obviously, the wave front set is closed in Ω×(Rn\{0}) and invariant under multiplication
by a positive real number of the second factor, i.e. (x, t) ∈ WF (f) implies (x, λt) ∈ WF (f)
for λ > 0. Therefore, WF (f) ⊆ Ω × Sn−1, where Sn−1 is the unit sphere. Moreover,
the wave front set contains all information in sign supp f and in Σ(f) as the following
statement says.

Lemma 4.5.2 ([46, 48, 59]). Let f ∈ D ′(Ω). Then:

(1) pr1(WF (f)) = sign supp f ,

(2) pr2(WF (f)) = Σ(f).

Proof. (1) Let x0 ∈ Rn so that x0 /∈ sign supp f , and let ϕ ∈ C ∞
0 satisfy suppϕ = K[x0, ε],

where K[x0, ε] is a sufficiently small closed ball with center at x0 and radius ε. Then,
ϕf ∈ C ∞ and ϕf has compact support. Thus, ϕf ∈ S . Since F : S → S (by Theorem

3.3.1 (3)), ϕ̂f ∈ S . Therefore, (x0, t0) /∈ WF (f).

Conversely, let x0 ∈ Rn so that (x0, t0) /∈ WF (f). Then, for each t0 ∈ Rn \ {0} there
are an open set O containing x0 and a cone Γt0 , such that the conditions in Definition
4.5.5 hold. Since the sphere in Rn is a compact set, it ensures the existence of a finite
number of couples (Oj,Γ

j
t0) such that the cones Γjt0 cover R

n \{0}. For ϕ ∈ C ∞
0 satisfying

suppϕ ⊆
⋂
j Oj holds ϕ̂f ∈ S . Therefore, x0 /∈ sign supp f .
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(2) According to Definition 4.5.4, it is obvious that pr2(WF (f)) ⊆ Σ(f). In the other
direction, let Γ be a conic neighborhood of pr2(WF (f)). Then, for every x0 ∈ Rn there
exists a neighborhood Ox0 so that for ϕ ∈ C ∞

0 (Ox0) holds Σ(ϕf) ⊂ Γ. Since supp f is a
compact set, there is a finite number of such neighborhoods Oxj . Choose ϕj ∈ C ∞

0 (Oxj)
so that

∑
j ϕj = 1 in supp f . Then,

Σ(f) = Σ

(∑
j

ϕjf

)
⊆
⋃
j

Σ(ϕjf) ⊂ Γ.

Hence, Σ(f) ⊆ pr2(WF (f)).

Other important properties of wave fronts are given in the next assertions.

Lemma 4.5.3 ([48]). Let f ∈ D ′. Then:

(1) WF (ϕf) ⊆ WF (f), ϕ ∈ C ∞,

(2) WF (Daf) ⊆ WF (f), a ∈ Nn
0 ,

(3) WF (f + g) ⊆ WF (f) ∪WF (g), g ∈ D ′.

Proof. Assertions (1) and (3) follow directly from Definition 4.5.4. To prove (2), let

ψ ∈ C ∞
0 such that ψ = 1 in a neighborhood of x, and let ψ̃ ∈ C ∞

0 so that ψ̃ = 1 in
suppψ. Then,

Σx(D
af) ⊆ Σ(ψDaf) = Σ(ψDaψ̃f) ⊆ Σ(Daψ̃f) ⊆ Σ(ψ̃f), a ∈ Nn

0 .

Thus, Σx(D
af) ⊆ lim

supp ψ̃→{x}
Σ(ψ̃f) = Σx(f), i.e. the assertion (2) holds.

Theorem 4.5.1 ([48]). If A ⊆ Ω×(Rn\{0}) is a closed conic, then there exists f ∈ D ′(Ω)
such that WF (f) = A.

Example 4.5.1. A wave front for the distribution δ0 ∈ D ′(R) isWF (δ0) = {(0, t) : t ̸= 0}.

Definition 4.5.6 ([48]). A distribution f ∈ D ′ is said to be homogenous (of degree s) in
Rn \ {0} if

(f, ϕ) = cs(f, ϕc),

where ϕ ∈ C ∞
0 (Rn \ {0}) and ϕc(x) = cnϕ(cx), c > 0.

Theorem 4.5.2 ([48]). Let f ∈ D ′ be homogeneous in Rn \ {0}. Then,

(1) (x, t) ∈ WF (f) if and only if (t,−x) ∈ WF (f̂) for t ̸= 0 and x ̸= 0;

(2) x ∈ supp f if and only if (0,−x) ∈ WF (f̂) for x ̸= 0;

(3) t ∈ supp f̂ if and only if (0, t) ∈ WF (f) for t ̸= 0.

A wave front is also used to determine the existence of the product of two distributions.

Theorem 4.5.3 ([65]). If f, g ∈ D ′(Ω) and

(x,0) /∈ WF (f)⊕̇WF (g) =
{
(x, t1 + t2) : (x, t1) ∈ WF (f), (x, t2) ∈ WF (g)

}
, x ∈ Ω,

then there exists the product fg and

WF (fg) ⊆ WF (f) ∪WF (g) ∪
(
WF (f)⊕̇WF (g)

)
.
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4.5.2 The wave front of Sobolev type

In this research the wave front of Sobolev type will be used. A slightly reformulated
Hörmander’s definition of Sobolev type wave fronts is given in the following definition.

Definition 4.5.7 ([46, 56]). It is said that f ∈ D ′ is Sobolev microlocally regular of order
r ∈ R at (x0, t0) ∈ Rn× (Rn \ {0}) (f ∈ Hr

loc at (x0, t0) for short), i.e. (x0, t0) /∈ WFr(f),
if there is an open cone Γt0 and ψ ∈ D , ψ = 1 in a neighborhood of x0 so that∫

Γt0

|ψ̂f(t)|2µ2r(t) dt < +∞.

Using this definition and some auxiliary statements, Hörmander proves the following
statement related to the product of elements of Sobolev spaces.

Theorem 4.5.4 ([46]). Let f ∈ Hr, g ∈ Hs and r + s ⩾ 0. If p ⩽ min{r, s} and
p ⩽ r + s− n

2
(if r = n

2
or s = n

2
or p = −n

2
, then the inequality is strict), then fg ∈ Hp.

Theorem 4.5.5 ([46]). Let f ∈ Hr and g ∈ Hs.

(1) If r > n
2
and r + s > n

2
, then fg ∈ Hs

loc.

(2) If r < n
2
and r + s− n

2
> p ⩾ 0, then fg ∈ Hp

loc.

(3) If r + s > 0, then fg ∈ H
r+s−n

2
loc .

Let θ ∈ (0, 1]. The set

Tnx,θ =
n∏
j=1

(
xj − θ

2
, xj +

θ
2

)
is denoted by Tnx,θ.

Definition 4.5.8 ([56]). If f ∈ D ′ has the support in Tnx0,θ, θ ∈ (0, 1), the periodic
extension of localization of f in some neighborhood of the point x0 is

fpe(x) =
∑
q∈Zn

Tqf(x).

By discretization of the wave front, the authors in [56] concluded the following statement.

Theorem 4.5.6 ([56]). Let f ∈ D ′. The following conditions are equivalent.

(1) There is an open cone Γt0 and ψ ∈ D(Tnx0,θ), ψ = 1 in a neighborhood of x0,
θ ∈ (0, 1), so that∑

q∈Zn∩Γt0

|αq|2µ2r(q) < +∞, where (ψf)pe =
∑
q∈Zn

αq e
−2πi⟨q,·⟩ .

(2) (x0, t0) /∈ WFr(f).

Proof. Suppose that condition (1) holds. Let Γ be an open cone such that t0 ∈ Γ and
Γ ⊂ Γt0 ∪{0}. Choose ε ∈ (0, θ) so that ψ = 1 in Tnx0,ε. First, it is necessary to prove the
next assertion: if Q ⊂ D ′(Tnx0,ε) is a bounded set, then

sup
ϕ∈Q

∑
q∈Γ∩Zn

∣∣ϕ̂f(q)∣∣2µ2r(q) < +∞. (4.5.1)
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Let Q ⊂ D ′(Tnx0,ε) be a fixed bounded set. Since ϕf = ψϕf , it gives

ϕ̂f(q) =
∑
p∈Zn

αqϕ̂(q − p) for every ϕ ∈ Q.

Fix a constant c ∈ (0, 1) such that c < min
{
d
(
∂Γt0 ,Γ ∩ Sn−1

)
, d
(
∂Γ,Rn \ Γt0 ∩ Sn−1

)}
,

where d is the distance between two sets. Then, |t1 − t2| > cmax{|t1|, |t2|}, t1 ∈ Γ,
t2 ∈ Γt0 . Using Peetre’s inequality (3.5.5), it follows that( ∑

q∈Γ∩Zn

∣∣ϕ̂f(q)∣∣2)1/2

⩽ C

( ∑
q∈Γ∩Zn

(∑
p∈Zn

|αp|µr(p)|ϕ̂(q − p)|µ|r|(q − p)

)2
)1/2

⩽ C
(
I1(ϕ) + I2(ϕ)

)
,

where I1(ϕ) and I2(ϕ) are

I1(ϕ) =

( ∑
q∈Γ∩Zn

( ∑
p∈Γt0∩Zn

|αp|µr(p)|ϕ̂(q − p)|µ|r|(q − p)

)2
)1/2

,

I2(ϕ) =

( ∑
q∈Γ∩Zn

( ∑
p/∈Γt0∩Zn

|αp|µr(p)|ϕ̂(q − p)|µ|r|(q − p)

)2
)1/2

.

Young’s inequality leads to

sup
ϕ∈Q

I1(ϕ) ⩽

( ∑
q∈Γt0∩Zn

|αq|2µ2r(q)

)1/2

sup
ϕ∈Q

∑
q∈Zn

|ϕ(q)|µ|r|(q) < +∞,

since Q is a bounded set. Further, for the estimate I2(ϕ), the next two estimates are used:

(a) for every q ∈ Zn, |αq|2µr(q) = |ψ̂f(q)|µr(q) ⩽ C1µs(q) for some C1 > 0 and s > 0;

(b) |ϕ̂(q)| ⩽ C2µ
−1
s+|r|+3(n+1)/2(q) for some C2 > 0.

The estimate (a) follows from the fact that ψf has a compact support, while (b) follows
from the fact that Q is bounded. Thus,

sup
ϕ∈Q

(
I2(ϕ)

)2
⩽ C

∑
q∈Γ∩Zn

( ∑
p/∈Γt0∩Zn

µs(p)µ
−1
s+3(n+1)/2(q − p)

)2

⩽ Cc−2s−3(n+1)
∑

q∈Γ∩Zn

µ−1
n+1(q)

( ∑
p/∈Γt0∩Zn

µ−1
n+1(p)

)2

.

Hence, (4.5.1) holds.

Let us choose an open cone Γ1 so that t0 ∈ Γ1 and Γ1 ⊂ Γ ∪ {0}. Let ϖ ∈ D(Tnx0,ε) so
that ϖ = 1 in a neighborhood of x0. Choose R > 0 so that Γ1 ∩ {t ∈ Rn : |t| ⩾ R} ⊂
(Γ ∩ Zn) + [0, 1)n. Set Zq = q + [0, 1]n, q ∈ Γ ∩ Zn. Then,∫

t∈Γ1
|t|⩾R

∣∣F [ϖf ](t)
∣∣2µ2r(q) dt ⩽ C

∑
q∈Γ∩Zn

µ2r(q)

∫
Zq

∣∣F [ϖf ](t)
∣∣2 dt
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= C

∫
[0,1]n

∑
q∈Γ∩Zn

∣∣F [ϖf ](q + x)
∣∣2µ2r(q) dx

⩽ C sup
x∈[0,1]n

∑
q∈Γ∩Zn

∣∣F [M−xϖf ](q)
∣∣2µ2r(q) < +∞,

by Peetre’s inequality (3.5.5) and (4.5.1). Thus, (x0, t0) /∈ WFr(f), i.e. (2) holds.

Suppose that (x0, t0) /∈ WFr(f), i.e. that the condition (2) holds. Then, there are ε ∈
(0, 1) and an open cone Γx0 so that

sup
ϖ∈Q

∫
Γx0

|ϖ̂f(t)|2 dt < +∞ (4.5.2)

for every bounded set Q ⊂ D(Tnx0,ε). This claim can be proved by the analysis similar
to that in the proof of (4.5.1). Further, let Γ be an open cone so that t0 ∈ Γ and
Γ ⊂ Γx0 ∪ {0}. Then, there are R > 0 so that (Γ + [0, 1]n) ∩ {t ∈ Rn : |t| ⩾ R} ⊂ Γx0 .
Let ψ ∈ D(Tnε,x0) so that ψ = 1 in a neighborhood of x0, and let h : Γx0 → [0, 1]n be a
measurable function. Consider the bounded set

Q =
{
ϖj,h ∈ D(Tnx0,ε) : ϖj,h(x) = xj e

−2πi⟨x,h(t)⟩ ψ(x), t ∈ Γx0 , j = 1, . . . , n
}

in (4.5.2). Then, there exists a constant C > 0 (C is independed of h) so that∫
Γx0

∣∣∇F [ψf ](t+ h(t))
∣∣2µ2r(t) dt < C, (4.5.3)

where ∇ is the operator nabla, i.e. ∇ =
(

∂
∂x1
, . . . , ∂

∂xn

)
. Let Zq = q+[0, 1]n, q ∈ Zn. Note,

Zq ⊂ Γx0 for |q| ⩾ R. Therefore,( ∑
q∈Γ∩Zn

|ψ̂f(q)|2µ2r(q)

)1/2

=

( ∑
q∈Γ∩Zn

∫
Zq

|ψ̂f(q)|2µ2r(q) dt

)1/2

⩽ I1 + I2,

where I21 =
∑

q∈Γ∩Zn

∫
Zq

|ψ̂f(q)− ψ̂f(t)|2µ2r(q) dt, and

I22 =
∑

q∈Γ∩Zn

∫
Zq

|ψ̂f(t)|2µ2r(q) dt

⩽
∑
|q|⩽R

∫
Zq

|ψ̂f(t)|2µ2r(q) dt+ C1

∫
Γx0

|ψ̂f(t)|2µ2r(t) dt < +∞.

It remains to prove that I1 < +∞. For given z > 0 define hz : Γx0 → [0, 1]n by

hz(t) =

{
z(q − t), t ∈ Zq, |t| ⩾ R,

0, otherwise.

Since

|ψ̂f(t)− ψ̂f(q)|2 ⩽ |q − t|
∫ 1

0

∣∣∇F [ψf ](t+ z(q − t))
∣∣2 dz,

it follows that

I21 ⩽
∑
|q|⩽R

q∈Γ∩Zn

∫
Zq

|ψ̂f(q)− ψ̂f(t)|2µ2r(q) dt+ C ′ sup
z∈[0,1]

∫
Γx0

∣∣∇F [ψf ](t+ hz(t))
∣∣2µ2r(t) dt

< +∞.

Therefore, (1) holds.
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4.6 The spaces Ps,r and Ps,r
loc

In this research, the spaces P1,r, P2,r and P1,r
loc , P2,r

loc are used to determine the appro-
priate products. Therefore, the spaces Ps,r and Ps,r

loc are introduced in this part.

Definition 4.6.1 ([16]). The spaces Ps,r, s ⩾ 1, r ∈ R, are defined by

Ps,r =

{
f ∈ P ′ : f =

∑
q∈Zn

αq e
−2πi⟨q,·⟩, (αq)q∈Zn ∈ ℓsr

}
,

with the corresponding norm ∥f∥Ps,r = ∥(αq)q∈Zn∥ℓsr .

Lemma 4.6.1 ([16]). The spaces Ps,r, s ⩾ 1, r ∈ R, are Banach spaces.

Definition 4.6.2 ([16]). The function (ϕf)pe of f ∈ D ′ and ϕ ∈ D(Tnx0,θ) is defined by

(ϕf)pe =
∑
q∈Zn

αq e
−2πi⟨q,·⟩,

where αq =
∫
Tn
x0,θ

(ϕf)(t) e−2πi⟨q,t⟩ dt, q ∈ Zn.

Definition 4.6.3 ([16]). The local spaces Ps,r
loc , s ⩾ 1, r ∈ R, are defined by

Ps,r
loc =

{
f ∈ D ′ : (ϕf)pe ∈ Ps,r for all x0 ∈ Rn and ϕ ∈ D(Tnx0,θ)

}
.

The topology in the local spaces Ps,r
loc , s ⩾ 1, r ∈ R, is defined by the family of seminorms

∥f∥x0,ϕ = ∥(ϕf)pe∥Ps,r .

Lemma 4.6.2 ([56]). For all s ⩾ 1 and r ∈ R hold:

(1) Ps,r ⊆ Ps,r
loc ,

(2) P =
⋂
r⩾0

Ps,r,

(3) P ′ =
⋃
r⩽0

Ps,r.

The product of two distributions from spaces Ps1,r and Ps2,r is defined by Fourier coef-
ficients.

Definition 4.6.4 ([56]). The product of functions f1 =
∑

q∈Zn fq,1 e
−2πi⟨q,·⟩ ∈ Ps1,r and

f2 =
∑

q∈Zn fq,2 e
−2πi⟨q,·⟩ ∈ Ps2,r is defined by

f = f1f2 =
∑
q∈Zn

fq e
−2πi⟨q,·⟩,

where fq =
∑

p∈Zn fq−p,1fp,2, q ∈ Zn.

Theorem 4.6.1 ([56]). Let f1 ∈ Ps1,r and f2 ∈ Ps2,r. If 1
s1

+ 1
s2

= 1
s
+ 1, then the

mapping
f1f2 : Ps1,r × Ps2,r → Ps,r (4.6.1)
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is continuous. Moreover, if f1 ∈ Ps1,r1, f2 ∈ Ps2,r2 and r, r1, r2 ∈ R such that r1+r2 ⩾ 0
and r ⩽ min{r1, r2}, then the mapping

f1f2 : Ps1,r1 × Ps2,r2 → Ps,r (4.6.2)

is also continuous, where 1
s1
+ 1

s2
= 1

s
+ 1.

Proof. By Young’s inequality, it follows that ∥f1f2∥Ps,r ⩽ C∥f1∥Ps1,r∥f2∥Ps2,r . Therefore,
the mapping (4.6.1) is continuous. Further, assume that r1 ⩾ 0 and r = r2. Then,
r1 ⩾ |r2| provided that r1 + r2 ⩾ 0. Now, using Peetre’s inequality (3.5.5), it follows that
the mapping (4.6.2) is continuous.

The product in local versions of these spaces is introduced as follows.

Definition 4.6.5 ([56]). Let f1 ∈ Ps1,r1
loc , f2 ∈ Ps2,r2

loc , θ ∈ (0, 1), and let ϕ ∈ D(Tnx0,1)
be so that ϕ(x) = 1 for all x ∈ Tnx0,ε, ε < θ. The product f = f1f2 is defined locally by
fx0,θ ∈ D ′(Tnx0,θ), where fx0,θ is the restriction of the product (ϕf1)pe(ϕf2)pe to Tnx0,θ.

The following statement is a consequence of Theorem 4.6.1.

Corollary 4.6.1 ([56]). Let f1 ∈ Ps1,r
loc and f2 ∈ Ps2,r

loc . If 1
s1

+ 1
s2

= 1
s
+ 1, then the

mapping
f1f2 : Ps1,r

loc × Ps2,r
loc → Ps,r

loc

is continuous. Moreover, if f1 ∈ Ps1,r1
loc , f2 ∈ Ps2,r2

loc and r, r1, r2 ∈ R such that r1+r2 ⩾ 0
and r ⩽ min{r1, r2}, then the mapping

f1f2 : Ps1,r1
loc × Ps2,r1

loc → Ps,r
loc

is also continuous, where 1
s1
+ 1

s2
= 1

s
+ 1.
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Chapter 5

Frame theory in Hilbert spaces

The theory of frames belongs to the branch of modern mathematics and it has seen rapid
development in the last twenty years. This was primarily contributed by a wide field
of applications, primarily in signal analysis. As an advantage of using frames in various
algorithms, they state efficiency, compression of data, speed of numerical calculations, and
removal of noise. When transmitting data over the internet, the decomposition coefficients
of a signal and the corresponding tools of linear algebra and numerical mathematics
are used to create fast and reliable algorithms that decompose, process, transmit, store,
and reconstruct the given signal. The orthogonality condition makes it impossible to
reconstruct the lost coefficients from the obtained ones so that part of the information they
carry is lost forever. When transmitting an image or sound, it turns out that algorithms
based on results of linear algebra, numerical analysis, and operator theory becomes more
efficient if the uniqueness condition is omitted. In this way, the most important properties
of orthonormal bases, linear independence and orthogonality, lead to serious difficulties.
On the other hand, frameworks can be constructed to meet certain specificities imposed
by nature of problem. Today, frame theory is used to compress fingerprint images that
make up the FBI files, to remove noise from audio signals, to remove white noise from
satellite photos, determine the level of different layers of the earth based on the reflection
of acoustic waves emitted from the surface, etc.

Frames are a more flexible tool than an orthonormal basis, because they allow each vector
in a vector space equipped with an inner product can be written as a linear combination
of the elements in a frame, but linear independence and orthogonality are not required
between the frame elements.

In this chapter, only frames in Hilbert spaces are presented. However, K. Gröchening
extended the theory of frames to a large class of general Banach spaces, but as the theory
there is somewhat more complex and is not needed by us, it will be omitted in this chapter.
For a more complete study of frame theory, the reader can see [28, 29, 30, 40, 41, 44].
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5.1 Basic terms and definitions

In this dissertation, ⟨·, ·⟩H and ∥ · ∥H denote the corresponding inner product and norm
in Hilbert space H , respectively. In this chapter, I denotes at most countable set.

The most important notion for the convergence of a non-orthogonal sum over a general
set of indices is unconditional convergence. A series is said to converge unconditionally if
changing the order of terms in the sum does not affect the convergence of the series as it
is stated in the next definition.

Definition 5.1.1 ([41]). A series
∑

k∈I fk, where fk ∈ H , k ∈ I, is said to be uncondi-
tionally convergent if the series

∑
k∈I fπ(k) converges for all permutations π of I.

In finite dimensional spaces, a series converges absolutely if and only if it converges un-
conditionally. However, in infinite dimensional spaces, absolute convergence implies un-
conditional convergence. For more details on unconditional convergence the reader can
look at [41].

Definition 5.1.2 ([29, 41, 42]). A family {fk ∈ H : k ∈ I} is a basis for H if for every
f ∈ H there are unique scalars αk so that

f =
∑
k∈I

αkfk. (5.1.1)

A basis is unconditional if the series (5.1.1) converges unconditionally. It is bounded if
0 < infk∈I ∥fk∥H ⩽ supk∈I ∥fk∥H < +∞. A basis is orthonormal if ⟨fj, fk⟩H = δk,j,
k, j ∈ I, where δk,j is Kronecker’s1 delta function2.

Let us recall the statement about orthonormal bases. Therefore, let us introduce the
following notations that will be used in the sequel. The set of all linear combinations of
vectors {fk : fk ∈ H , k ∈ I}, i.e.{∑

k∈I

αkfk : αk ∈ C, fk ∈ H , k ∈ I

}
is denoted by span{fk : fk ∈ H , k ∈ I}, and its closure in H is denoted by span {fk :
fk ∈ H , k ∈ I}.

Theorem 5.1.1 ([42]). Let {fk : fk ∈ H , k ∈ I} be an orthonormal basis in a Hilbert
space H . The following assertions are equivalent.

(1) H = span {fk : fk ∈ H , k ∈ I}.

(2) f =
∑

k∈I⟨f, fk⟩H fk for all f ∈ H .

(3) ∥f∥2H =
∑

k∈I |⟨f, fk⟩H |2 for all f ∈ H (Parseval’s3 equality).

(4) ⟨f, g⟩H =
∑

k∈I⟨f, fk⟩H ⟨g, fk⟩H for all f, g ∈ H .

Note, a Hilbert space has an orthonormal basis if and only if it is separable.

1Leopold Kronecker (1823–1891) – German mathematician.

2δk,j =

{
1, k = j,

0, k ̸= j.
3Michel Plancherel (1885–1967) – Swiss mathematician.
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In order to introduce the definition of a Riesz basis, it is necessary first to introduce the
definition of equivalent bases.

Definition 5.1.3 ([41]). Basis {fk : k ∈ I} and {gk : k ∈ I} are equivalent for H if
there exists a topological isomorphism S : H → H such that Sfk = gk for every k ∈ I.

Definition 5.1.4 ([41]). A basis for H is called a Riesz basis if it is equivalent to some
orthonormal basis for H .

Lemma 5.1.1 ([41]). Let {fk : k ∈ I} be a Riesz basis for H1 and let S : H1 → H2 be
a topological isomorphism between two Hilbert spaces. Then, {Sfk : k ∈ I} is Riesz basis
for H2.

Proof. Assume that {fk : k ∈ I} is a Riesz basis for H1 and S : H1 → H2 is a
topological isomorphism between two Hilbert spaces. Then, since H1 has a basis, it is
separable. Further, since S : H1 → H2 is a topological isomorphism, it follows that H2

is also separable. Thus, there is an isometric isomorphism T : H1 → H2. According
to Definition 5.1.4, there is some orthonormal basis {gk : k ∈ I} for H1 and there is
a topological isomorphism K : H1 → H1 so that Kgk = fk for every k ∈ I. Finally,
SKT−1 : H2 → H2 is a topological isomorphism and

SKT−1(Tgk) = SKgk = Sfk, k ∈ I,

i.e. {Sfk : k ∈ I} is a Riesz basis for H2, since {Tgk : k ∈ I} is an othonormal basis for
H2.

A Bessel family is defined as follows.

Definition 5.1.5 ([41]). A family {fk : fk ∈ H , k ∈ I} is said to be a Bessel family for
H if ∑

k∈I

|⟨f, fk⟩H |2 < +∞ for every f ∈ H ,

i.e. there is a constant B > 0 so that
∑

k∈I |⟨f, fk⟩H |2 ⩽ B∥f∥2H for every f ∈ H .
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5.2 Frames in Hilbert spaces

Much effort has been invested in determining orthonormal bases that satisfy additional
properties for various Hilbert spaces. It is often difficult to determine such an orthonormal
basis, because the orthogonality condition is quite strong. As an alternative, this chapter
presents the theory of frames. The advantage of frames over the orthonormal basis is that
additional conditions can be more easily imposed. For more details about frame theory
in Hilbert spaces, the reader can refer to [29, 33, 40, 41, 42, 44].

Definition 5.2.1 ([29, 40, 42]). A family {fk : k ∈ I} of elements in a (separable) Hilbert
space H is said to be a frame for H if there are positive constants A and B so that

A∥f∥2H ⩽
∑
k∈I

|⟨f, fk⟩H |2 ⩽ B∥f∥2H for every f ∈ H . (5.2.1)

The constants A and B are called frame bounds. If the constants are equal, the frame is
called tight. If the frame bounds are equal to 1, it is called a Parseval frame. A frame
is exact if omitting one element in the family results it ceases to be a frame. A frame
{fk : k ∈ I} in H is said to be fundamental if span{fk : k ∈ I} is dense in H . The
coefficients ⟨f, fk⟩H , k ∈ I, are called the frame coefficients.

Example 5.2.1. Let {fk : k ∈ I} be an orthonormal basis for H . Using Parseval’s
equality, it follows that it is a tight frame with frame bounds equal to 1, i.e. Parseval’s
frame. Moreover, it is an exact frame.

Lemma 5.2.1 ([41]). If {fk : k ∈ I} is a frame for H , then {fk : k ∈ I} is complete in
H .

Proof. Let {fk : k ∈ I} be a frame for H and let f ∈ H so that ⟨f, fk⟩H = 0 for every
k ∈ I. Then, A∥f∥2H ⩽

∑
k∈I |⟨f, fk⟩H |2 = 0.

Example 5.2.2. Let {fk : k ∈ I} be an orthonormal basis for H . Then, {f1, f22 ,
f3
4
, . . .}

is a complete orthonormal set. Moreover, it is a basis for H , but it is not a frame (it
does not have a lower frame bound).

Lemma 5.2.2 ([40]). Let {fk : k ∈ I} be a Parseval frame. If ∥fk∥H = 1 for every k ∈ I,
then {fk : k ∈ I} is an orthonormal basis.

Proof. Using the inequality (5.2.1), it follows that

1 = ∥fj∥2H =
∑
k∈I

|⟨fj, fk⟩H |2 =
∑
k∈I
k ̸=j

|⟨fj, fk⟩H |2 + 1, j ∈ I.

Thus, ⟨fj, fk⟩H = δk,j, k, j ∈ I.

In order to better understand frames and reconstruction methods, some important ope-
rators should be studied, such as the analysis operator, the synthesis operator, and the
frame operator.

Definition 5.2.2 ([29, 40]). Let {fk : k ∈ I} be a subset of H .

(1) The operator Co : H → ℓ2(I) defined by Cof = {⟨f, fk⟩H : k ∈ I}, f ∈ H , is
called the coefficient operator (or the analysis operator).

(2) The operator So : ℓ
2(I) → H defined by Soα =

∑
k∈I αkfk, α = (αk)k∈I ∈ ℓ2(I), is

called the synthesis operator (or the reconstruction operator).
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(3) The operator Fo : H → H defined by Fof =
∑

k∈I⟨f, fk⟩H fk, f ∈ H , is called the
frame operator.

Theorem 5.2.1 ([40, 41]). Let {fk : k ∈ I} be a frame for H .

(1) The operator Co is bounded with closed range.

(2) The operator So is the adjoint operator of Co, i.e. So = C∗
o . As a consequence of

this, So is bounded and holds ∥Soα∥H ⩽
√
B∥α∥ℓ2.

(3) The operator Fo = C∗
oCo = SoS

∗
o is a positive, invertible, self-adjoint operator and

hold A1H ⩽ Fo ⩽ B1H and B−11H ⩽ F−1
o ⩽ A−11H . Specially, {fk : k ∈ I} is a

tight frame if and only if Fo = A1H .

(4) The frame bounds Aopt = ∥F−1
o ∥−1 and Bopt = ∥Fo∥ are the optimal frame bounds.

Proof. (1) Since {fk : k ∈ I} is a frame for H , the inequality (5.2.1) implies the statement.

(2) Combining

⟨C∗
oα, f⟩H = ⟨α,Cof⟩ℓ2 =

∑
k∈I

αk⟨f, fk⟩H =

〈∑
k∈I

αkfk, f

〉
H

= ⟨Soα, f⟩H ,

with ∥Co∥ ⩽
√
B (by (5.2.1)) leads to So = C∗

o and ∥So∥ ⩽
√
B.

(3) It is not difficult to see that Fo = C∗
oCo = SoS

∗
o . Thus, the operator Fo is self-adjoint

and positive. Using the inequality (5.2.1) and ⟨Fof, f⟩H =
∑

k∈I |⟨f, fk⟩H |2, it follows
that A1H ⩽ Fo ⩽ B1H . Since A is a positive constant, Fo is invertible. Further, applying
the operator F−1

o to the previous inequalities gives B−11H ⩽ F−1
o ⩽ A−11H , because F−1

o

is a positive operator and commutes with Fo.

(4) Since the norm of the positive operator Fo is given by

∥Fo∥ = sup{⟨Fof, f⟩H : ∥f∥H ⩽ 1},

using the inequality (5.2.1), it follows that Bopt = ∥Fo∥. A similar argument yields
Aopt = ∥F−1

o ∥−1.

Lemma 5.2.3 ([40]). Let α = (αk)k∈I ∈ ℓ2(I). If the set {fk : k ∈ I} is a frame for H ,
then

∑
k∈I αkfk converges unconditionally to f ∈ H .

Proof. Let ε > 0. Choose J ⊆ I so that
∑

k/∈J0 |αk|
2 < εB−1/2 for J0 ⊇ J , and let αJ0 =

α · χ
J0

∈ ℓ2(I), where χ
J0

is the characteristic function of J0. Then,
∑

k∈J0 αkfk = SoαJ0
and ∥∥∥∥f −

∑
k∈J0

αkfk

∥∥∥∥
H

= ∥Soα− SoαJ0∥H = ∥So(α− αJ0)∥H ⩽
√
B∥α− αJ0∥ℓ2 < ε,

by Theorem 5.2.1 (2).

Lemma 5.2.4 ([41]). Let S : H1 → H2 be topological isomorphism, and let {fk : k ∈ I}
be a frame for H1. Then:

(1) {Sfk : k ∈ I} is a frame for H2, moreover, if A,B are the frame bounds for
{fk : k ∈ I}, then A/∥S−1∥2, B∥S∥2 are the frame bounds for {Sfk : k ∈ I};

53



(2) if Fo is the frame operator for {fk : k ∈ I}, then SFoS
∗ is the frame operator for

{Sfk : k ∈ I};

(3) {fk : k ∈ I} is exact if and only if {Sfk : k ∈ I} is an exact frame.

Proof. Since

SFoS
∗g = S

(∑
k∈I

⟨S∗g, fk⟩H1fk

)
=
∑
k∈I

⟨g, Sfk⟩H2Sfk, g ∈ H2,

(according to Theorem 5.2.1 (3)) the assertions (1) and (2) hold if

A

∥S−1∥2
1H2 ⩽ SFoS

∗ ⩽ B∥S∥21H2 . (5.2.2)

Therefore, it suffices to prove that (5.2.2) holds.

Since Fo is the frame operator, it implies that A1H1 ⩽ Fo ⩽ B1H1 , by Theorem 5.2.1 (3).
Thus,

A∥S∗g∥2H1
⩽ ⟨SFoS∗g, g⟩H2 ⩽ B∥S∗g∥2H1

, g ∈ H2, (5.2.3)

because ⟨SFoS∗g, g⟩H2 = ⟨FoS∗g, S∗g⟩H1 , g ∈ H2. On the other hand, S : H1 → H2 is a
topological isomorphism, it gives

∥g∥H2

∥S−1∥
=

∥g∥H2

∥S∗−1∥
⩽ ∥S∗g∥H1 ⩽ ∥S∗∥∥g∥H2 ⩽ ∥S∥∥g∥H2 , g ∈ H2. (5.2.4)

Now, by (5.2.3) and (5.2.4), it follows that

A∥g∥2H2

∥S−1∥2
⩽ ⟨SFoS∗g, g⟩H2 ⩽ B∥S∥2∥g∥2H2

, g ∈ H2,

i.e. (5.2.2) holds.

Finally, since a topological isomorphism preserve complete and incomplete families, it
follows that the assertion (3) holds.
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5.3 Dual frames and Riesz bases

A function f can be reconstructed using frame coefficients in the following way.

Lemma 5.3.1 ([40]). Let {fk : k ∈ I} be a frame for H with frame bounds A and B.
Then, the set {F−1

o fk : k ∈ I} is also a frame with frame bounds 1
B

and 1
A
, and for every

f ∈ H hold

f =
∑
k∈I

⟨f, F−1
o fk⟩H fk (5.3.1)

and
f =

∑
k∈I

⟨f, fk⟩H F−1
o fk. (5.3.2)

Moreover, the both sums converge unconditionally.

Proof. Since∑
k∈I

|⟨f, F−1
o fk⟩H |2 =

∑
k∈I

|⟨F−1
o f, fk⟩H |2 =

∑
k∈I

⟨F−1
o f, fk⟩H ⟨F−1

o f, fk⟩H

=
∑
k∈I

⟨F−1
o f, fk⟩H ⟨fk, F−1

o f⟩H = ⟨Fo(F−1
o f), F−1

o f⟩H = ⟨F−1
o f, f⟩H

and using Theorem 5.2.1 (3), it follows that

B−1∥f∥2H ⩽ ⟨F−1
o f, f⟩H =

∑
k∈I

|⟨f, F−1
o fk⟩H |2 ⩽ A−1∥f∥2H .

Further,

f = Fo(F
−1
o f) =

∑
k∈I

⟨F−1
o f, fk⟩H fk =

∑
k∈I

⟨f, F−1
o fk⟩H fk

and

f = F−1
o (Fof) = F−1

o

(∑
k∈I

⟨f, fk⟩H fk

)
=
∑
k∈I

⟨f, fk⟩H F−1
o fk.

By Lemma 5.2.3, since (⟨f, fk⟩H )k∈I ∈ ℓ2(I) and (⟨f, F−1
o fk⟩H )k∈I ∈ ℓ2(I), the both series

converge unconditionally.

Definition 5.3.1 ([41]). A frame {F−1
o fk : k ∈ I} is called the canonical dual frame of

{fk : k ∈ I} for H , where {fk : k ∈ I} is a frame for H .

Proposition 5.3.1 ([33, 42]). Let {fk : k ∈ I} be a frame for H . If there are scalars
βk ̸= ⟨f, F−1

o fk⟩H so that f =
∑

k∈I βkfk, then∑
k∈I

|βk|2 =
∑
k∈I

|⟨f, F−1
o fk⟩H |2 +

∑
k∈I

|⟨f, F−1
o fk⟩H − βk|2.

Proof. Denote αk = ⟨f, F−1
o fk⟩H , k ∈ I. Note that ⟨fk, F−1

o f⟩H = ⟨F−1
o fk, f⟩H = αk,

k ∈ I. Since f =
∑

k∈I αkfk, it implies that

⟨f, F−1
o f⟩H =

〈∑
k∈I

αkfk, F
−1
o f

〉
H

=
∑
k∈I

|αk|2. (5.3.3)
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On the other hand, since f =
∑

k∈I βkfk, it gives

⟨f, F−1
o f⟩H =

〈∑
k∈I

βkfk, F
−1
o f

〉
H

=
∑
k∈I

βkαk. (5.3.4)

Now, from (5.3.3) and (5.3.4), it follows that
∑

k∈I |αk|2 =
∑

k∈I βkαk. Therefore,∑
k∈I

|αk|2 +
∑
k∈I

|αk − βk|2 =
∑
k∈I

|αk|2 +
∑
k∈I

(
|αk|2 − αkβk − αkβk + |βk|2

)
=
∑
k∈I

|βk|2.

Hence, the statement holds.

Remark 5.3.1. According to Proposition 5.3.1, the coefficients ⟨f, F−1
o fk⟩H , k ∈ I, in

the equality (5.3.1) are not unique in the general case.

Theorem 5.3.1 ([33, 41, 42]). Let {fk : k ∈ I} be a frame for H .

(1) If ⟨fj, F−1
o fj⟩H ̸= 1 for some j ∈ I, then {fk : k ∈ I, k ̸= j} is a frame.

(2) If ⟨fj, F−1
o fj⟩H = 1 for some j ∈ I, then {fk : k ∈ I, k ̸= j} is incomplete.

Proof. Let j ∈ I be fixed and denote αk = ⟨fj, F−1
o fk⟩H = ⟨F−1

o fj, fk⟩H , k ∈ I. Now,
fj =

∑
k∈I αkfk and fj =

∑
k∈I βkfk, where βk = δk,j, k ∈ I. Thus, by Proposition 5.3.1,

1 =
∑
k∈I

|βk|2 =
∑
k∈I

|αk|2+
∑
k∈I

|αk−βk|2 =
∑
k∈I
k ̸=j

|αk|2+ |αj|2+
∑
k∈I
k ̸=j

|αk|2+ |αj−1|2. (5.3.5)

Assume that αj = 1. Then,
∑

k∈I, k ̸=j |αk|2 = 0 and thus αk = ⟨F−1
o fj, fk⟩H = 0, k ̸= j.

Since ⟨F−1
o fj, fk⟩H = αj = 1, it implies that F−1

o fj ̸= 0. Therefore, {fk : k ∈ I, k ̸= j} is
incomplete.

If αj ̸= 1, then fj =
1

1−αj

∑
k∈I, k ̸=j αkfk. Thus,

|⟨f, fj⟩H |2 =
∣∣∣∣ 1

1− αj

∑
k∈I
k ̸=j

αk⟨f, fk⟩H
∣∣∣∣2 ⩽ C

∑
k∈I
k ̸=j

⟨f, fk⟩H , f ∈ H ,

where C = |1− αj|−2
∑

k∈I, k ̸=j |αk|2. Now, since∑
k∈I

|⟨f, fk⟩H |2 =
∑
k∈I
k ̸=j

|⟨f, fk⟩H |2 + |⟨f, fj⟩H |2 ⩽ (1 + C)
∑
k∈I
k ̸=j

|⟨f, fk⟩H |2,

it implies that {fk : k ∈ I, k ̸= j} is a frame with frame bounds A
1+C

, B.

Corollary 5.3.1 ([41, 42]). Let {fk : k ∈ I} be an exact frame for H . Then, {fk : k ∈ I}
and {F−1

o fk : k ∈ I} are biorthonormal, i.e. ⟨fj, F−1
o fk⟩H = δk,j.

Proof. Let {fk : k ∈ I} be an exact frame for H . Then, according to Theorem 5.3.1,
⟨fj, F−1

o fj⟩H = 1, j ∈ I. Therefore, by the equality (5.3.5) (with αk = ⟨fj, F−1
o fk⟩H

and βk = ⟨fj, F−1
o fj⟩H ), it follows that ⟨fj, F−1

o fk⟩H = ⟨F−1
o fj, fk⟩H = 0 for k, j ∈ I,

k ̸= j.
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The conditions for the uniqueness of the sequence of coefficients α ∈ ℓ2(I) in (5.3.1) are
derived in the following theorem.

Let G denote the Gram’s matrix with elements Gk,j = ⟨fj, fk⟩H , k, j ∈ I.

Theorem 5.3.2 ([40]). Let {fk : k ∈ I} be a frame for H . The following conditions are
equivalent.

(1) The sequence of coefficients α ∈ ℓ2(I) in the equality (5.3.1) is unique.

(2) The operator Co maps H onto ℓ2(I).

(3) There are positive constants A′ and B′ so that

A′∥α∥ℓ2 ⩽
∥∥∥∥∑
k∈I

αkfk

∥∥∥∥
H

⩽ B′∥α∥ℓ2 (5.3.6)

for every finite sequence α = (αk)k∈I .

(4) The image of an orthonormal basis {gk : k ∈ I} under the bounded invertable
operator Q : H → H is the frame {fk : k ∈ I}.

(5) The Gram’s matrix defines on ℓ2(I) a positive invertabile operator.

Proof. Note, since {fk : k ∈ I} is a frame, the operator Co is one-to-one with the closed
range (by Theorem 5.2.1) and the operator Fo is onto (by (5.3.1)).

The sequence of coefficients α ∈ ℓ2(I) in the equality (5.3.1) is unique if and only if the
operator So is one-to-one if and only if its adjoint S∗

o = Co is onto. Hence, (1) is equivalent
to (2).

(1) ⇒ (3) According to Theorem 5.2.1 (2), it follows that the constant B′ in the inequality
(5.3.6) exists. The existence of A′ follows from the fact that the operator S−1

o is continuous
(the operator S−1

o is continuous by the Open Mapping Theorem, because So is a bijective
operator).

(3) ⇒ (4) Let {gk : k ∈ I} be an orthonormal basis for H and let Qf =
∑

k∈I αkfk,
where f =

∑
k∈I αkgk. Then, ∥f∥H = ∥α∥ℓ2 and

A′∥f∥H = A′∥α∥ℓ2 ⩽
∥∥∥∥∑
k∈I

αkfk

∥∥∥∥
H

= ∥Qf∥H ⩽ B′∥α∥ℓ2 = B′∥f∥H ,

for every f ∈ H . Therefore, Q is well defined invertible operator and for every k ∈ I,
Qgk = fk.

(4) ⇒ (1) Let {gk : k ∈ I} be an orthonormal basis for H , and let Q be a bounded
invertable operator such that Qgk = fk, k ∈ I. Then,∑

k∈I

αkfk = Q

(∑
k∈I

αkgk

)
= 0 ⇔

∑
k∈I

αkgk = 0 ⇔ αk = 0, k ∈ I.

Hence, the sequence of coefficients α ∈ ℓ2(I) in the equality (5.3.1) is unique.

(3) ⇔ (5) Let α = (αk)k∈I be an arbitrary sequence. Then,

⟨Gα, α⟩ℓ2 =
∑
k,j∈I

⟨fk, fj⟩H αkαj =

∥∥∥∥∑
k∈I

αkfk

∥∥∥∥2
H

.

Therefore, by the equality (5.3.6), the operator G is positive and invertable on ℓ2(I).
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Now, Definition 5.1.4 can be reformulated as follows (Definition 5.3.2 (2)).

Definition 5.3.2 ([40]). (1) The set {fk : k ∈ I} is said to be a Riesz family for H if
it satisfies the condition (3) of Theorem 5.3.2.

(2) The set {fk : k ∈ I} is said to be a Riesz basis for H if {fk : k ∈ I} is a frame for
H and satisfies the conditions of Theorem 5.3.2.

Hence, a Riesz basis is a Riesz family which is complete in H .

Theorem 5.3.3 ([76]). A family {fk : k ∈ I} is a Riesz basis for H if and only if
{fk : k ∈ I} is a bounded unconditional basis for H .

Therefore, a bounded unconditional basis is equivalent to an orthonormal basis.

Theorem 5.3.4 ([29]). Let {fk : k ∈ I} be a frame for H . Then, the following assertions
are equivalent.

(1) {fk : k ∈ I} is Riesz basis for H .

(2) {fk : k ∈ I} is an exact frame for H .

(3) {fk : k ∈ I} is a basis for H .

(4) If
∑

k∈I αkfk = 0 for some (αk)k∈I ∈ ℓ2(I), then αk = 0, k ∈ N.

Recall that a positive linear and continuous operator has the positive and continuous
square root. Therefore, F−1

o has the positive and continuous square root F
−1/2
o = (F−1

o )1/2.

Lemma 5.3.2 ([28, 40]). Let {fk : k ∈ I} be a frame for H . Then,

(1) the set {F−1/2
o fk : k ∈ I} is a Parseval frame;

(2) the inverse frame operator F−1
o is given by

F−1
o f =

∑
k∈I

⟨f, F−1
o fk⟩H F−1

o fk.

Proof. (1) Since the frame operator Fo is positive, it follows that F
−1/2
o is well defined

and a positive operator. Further, since

f = F−1/2
o Fo(F

−1/2
o f) =

∑
k∈I

⟨f, F−1/2
o fk⟩H F−1/2

o fk,

it implies that ∥f∥2H = ⟨f, f⟩H =
∑

k∈I

∣∣⟨f, F−1/2
o fk⟩H

∣∣2. Hence, {F−1/2
o fk : k ∈ I} is a

Parseval frame.

(2) Obviously

F−1
o f = F−1

o Fo(F
−1
o f) =

∑
k∈I

⟨f, F−1
o fk⟩H F−1

o fk,

which had to be proved.

Definition 5.3.3 ([29]). A frame for H is called overcomplete frame if it is not a basis
for H .
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Definition 5.3.4 ([29]). Let {fk : k ∈ I} be a frame for H . A family {gk : k ∈ I} ⊂ H
such that

f =
∑
k∈I

⟨f, gk⟩H fk, f ∈ H , (5.3.7)

is called a dual frame of {fk : k ∈ I}.

Theorem 5.3.5 ([29]). A frame {fk : k ∈ I} for H has a unique dual frame if and only
if it is exact.

Proof. The necessary condition is proved by Proposition 5.3.1 and Corollary 5.3.1. In
the opposite direction, suppose, contrary to our claim, that {fk : k ∈ I} is an inexact
frame. The proof consists of two cases. First, assume that fj = 0 for some j ∈ I. Then,
F−1
o fj = 0. Let gk = F−1

o fk, k ∈ I, k ̸= j, and let gj ̸= 0 be arbitrary chosen. Thus, the
equation (5.3.1) holds and {gk : k ∈ I} ≠ {F−1

o fk : k ∈ I}. In this case, a new dual frame
is obtained (it is not the canonical dual), a contradiction.

Now, assume that fk ̸= 0 for every k ∈ N. Then, since {fk : k ∈ I} is overcomplete, there
is a sequences (βk)k∈I ∈ ℓ2(I) \ {0} so that∑

k∈I

βkfk = 0, (5.3.8)

by Theorem 5.3.4. Thus, there exists j ∈ I such that βj ̸= 0. Therefore, from (5.3.8), it
follows that

fj =
∑
k∈I
k ̸=j

−βk
βj
fk.

Hence, {fk : k ∈ I, k ̸= j} is complete in H and thus it is a frame, by Theorem 5.3.1.
Further, let {gk : k ∈ I, k ̸= j} be its canonical dual frame and set gj = 0. Then,
{gk : k ∈ I} is a dual frame for {fk : k ∈ I}, but it is not the canonical dual since gj = 0
while F−1

o fj ̸= 0, which is impossible.

Some statements about dual frames are given in the following lemmas.

Lemma 5.3.3 ([29]). Let {fk : k ∈ I} and {gk : k ∈ I} be Bessel famillies for H . Then,
the following assertions are equivalent.

(1) f =
∑

k∈I⟨f, gk⟩H fk, f ∈ H .

(2) f =
∑

k∈I⟨f, fk⟩H gk, f ∈ H .

(3) ⟨f, g⟩H =
∑

k∈I⟨f, fk⟩H ⟨gk, g⟩H , f, g ∈ H .

Lemma 5.3.4 ([29]). Let {fk : k ∈ I} and {gk : k ∈ I} be two Bessel families. If

∥f∥2H =
∑
k∈I

⟨f, fk⟩H ⟨gk, f⟩H

holds for every f from a dense subspace of H , then {fk : k ∈ I} and {gk : k ∈ I} are
dual frames.

Lemma 5.3.5 ([29]). Let {fk : k ∈ I} and {gk : k ∈ I} be dual frames for H . If
S : H → H is a unitary operator, then {Sfk : k ∈ I} and {Sgk : k ∈ I} are also dual
frames for H .
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Chapter 6

Shift-invariant subspaces of
Sobolev spaces

After a short trip through the theoretical basis for the dissertation, this chapter presents
the research results of this doctoral dissertation. These are the results of papers [6]–[8].
The initial results of this dissertation derive from Bownik’s approach [23] which is now
applied to the Sobolev spaces Hr, r ∈ R, leading from the Sobolev spaces Hr to the
weighted sequence spaces ℓ2r. In this chapter, unless otherwise stated, the statements are
valid for every r ∈ R.

6.1 Notations and basic assertions

Let Ar ⊂ Hr, i.e. Ar =
{
f ∈ S ′ : f̂ = ĝµ−r for some g ∈ A

}
and Er(Ar) = {Tqf :

f ∈ Ar, q ∈ Zn}, where A ⊂ L2 is at most countable set. Obviously, Er(Ar) ⊂ Hr.
Note, in the continuation I denotes a finite set or I = N. Therefore, the notations
Ar,I = {fk ∈ S ′ : f̂k = ĝkµ−r for some gk ∈ AI , k ∈ I} will also be used when an index
set I is given. If I = {1, . . . ,m}, then the notations Ar,m will be used. The SI subspace
of Sobolev space will be denoted by Vr ⊂ Hr, r ∈ R (see Definition 1.0.1).

Further, let Sr(Ar) = spanEr(Ar) = span
{
(1− 1

4π2∆)−r/2Tqg : g ∈ A , q ∈ Zn
}
. It is not

difficult to see that the space Sr(Ar) generated by Ar is a SI space.

Definition 6.1.1 ([6, 23]). A SI space Vr is called a finitely generated shift-invariant
(FSI) space if Vr is generated by a finite set of functions, i.e. Vr = Sr(Ar,m). A SI space
Vr is called a principal shift-invariant (PSI) space if Vr is generated by only one function,
i.e. Vr = Sr(f) = Sr({f}).

Similarly, like in Bownik [23], a new space and a new mapping are introduced.

Definition 6.1.2 ([6]). The space of all vector valued measurable functions H : Tn → ℓ2r
such that ∫

Tn

∥H(t)∥2ℓ2r dt < +∞

is denoted by H r (Tn, ℓ2r), or shorter H r.
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Lemma 6.1.1 ([6]). The space H r is a Hilbert space with the inner product

⟨H1, H2⟩H r =

∫
Tn

⟨H1(t), H2(t)⟩2ℓ2r dt,

and the corresponding norm

∥H∥H r =

(∫
Tn

∥H(t)∥2ℓ2r dt
)1/2

.

Lemma 6.1.2 ([6]). The mapping Tr : H
r → H r defined by

Trf(t) =

(
ĝ(t+ q)

µr(q)

)
q∈Zn

, t ∈ Tn, f ∈ Hr,

where
(
1− 1

4π2∆
)r/2

f = g ∈ L2, is an isometric isomorphism. Moreover, for every f ∈ S
holds TrTqf(·) =M−qTrf(·), q ∈ Zn.

Proof. Theorem 3.5.2 brings enough to prove the statement for an arbitrary function
f ∈ S . Therefore, let f ∈ S and let f̂ = ĝµ−r. Then,

∥Trf∥2H r =

∫
Tn

∥Trf(t)∥2ℓ2r dt =
∫
Tn

∥∥∥( ĝ(t+ q)

µr(q)

)
q∈Zn

∥∥∥2
ℓ2r

dt =

∫
Tn

∑
q∈Zn

|ĝ(t+ q)|2 dt

=

∫
Rn

|ĝ(t)|2 dt =
∫
Rn

|f̂(t)|2µ2
r(t) dt = ∥f∥2Hr ,

where Theorem 2.3.4 and Lemma 4.4.1 are used. The second part of the assertion follows
by the theorems 3.2.2 and 2.3.4.

Note, if r = 0, then T0f(t) =
(
f̂(t + q)

)
q∈Zn = T f(t), t ∈ Tn, f ∈ H0 = L2, i.e.

H 0 = L2(Tn, ℓ2). The next assertion is obvious.

Lemma 6.1.3 ([6]). The diagram of isometries

L2 T−→ H 0

↓ αr ↓ βr
Hr Tr−→ H r

commutes, where αr(g) = F−1
( ĝ(·)
µr(·)

)
and βr

((
ĝ(·+ q)

)
q∈Zn

)
=
( ĝ(·+q)
µr(q)

)
q∈Zn.

The following definition is analogous to Definition 1.0.3.

Definition 6.1.3 ([6]). A mapping

Jr : Tn →
{
closed subspaces of ℓ2r

}
(t 7→ Jr(t), t ∈ Tn) is called the range function.

The range function Jr is measurable if for any a, b ∈ ℓ2r, t 7→ ⟨PJr(t)(a), b⟩ℓ2r is a measurable
scalar function (i.e. if PJr(t), t ∈ Tn, are weakly operator measurable), where PJr(t) : ℓ

2
r →

Jr(t), t ∈ Tn, are the associated orthogonal projections. Note, in the separable Hilbert
space weak and strong measurability are equivalent.
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In the continuation, unless stated otherwise, the family {eν : ν ∈ Zn} denotes the standard
basis for ℓ2r (the standard form of representation of the vector eν is (0, . . . , 0, 1, 0, . . . , 0),
where 1 is on the ν-th position). Define the subspace of H r by

NJr =
{
H ∈ H r : H(t) ∈ Jr(t) for a.e. t ∈ Tn

}
.

Lemma 6.1.4 ([6]). Assume that Jr is a measurable range function. Let

PJr : Tn →
{
space of projections of ℓ2r onto closed subspaces of ℓ2r

}
,

so that PJr(t) : ℓ
2
r → Jr(t) for a.e. t ∈ Tn be the associated orthogonal projections, and let

Pr be the orthogonal projection

H r ∋ H 7→ Pr(H) ∈ NJr

such that
(
PrH

)
(t) ∈ Jr(t) for a.e. t ∈ Tn. Then, for every H ∈ H r holds(

PrH
)
(t) = PJr(t)

(
H(t)

)
for a.e. t ∈ Tn. (6.1.1)

Proof. Let P ′
r : H r → H r be given by(

P ′
rH
)
(t) = PJr(t)

(
H(t)

)
for a.e. t ∈ Tn.

Since ∥PJr(t)∥ℓ2r ⩽ 1, the measurable vector function PJr(t)
(
H(t)

)
belongs to H r. It is clear

that P ′
r is an orthogonal projection with range N ′

r. To prove NJr = N ′
r, it only remains

to verify NJr ⊆ N ′
r. Suppose, contrary to our claim, that there exists 0 ̸= H1 ∈ NJr

orthogonal to N ′
r. Then,

0 =

∫
Tn

〈(
P ′
rH
)
(t), H1(t)

〉
ℓ2r
dt =

∫
Tn

〈
PJr(t)

(
H(t)

)
, H1(t)

〉
ℓ2r
dt

=

∫
Tn

〈
H(t), PJr(t)

(
H1(t)

)〉
ℓ2r
dt for all H ∈ H r.

Since H1(t) ∈ Jr(t), it follows that H1(t) = PJr(t)
(
H1(t)

)
= 0 for a.e. t ∈ Tn, which is

impossible.

Lemma 6.1.5 ([6]). Let Jr be an arbitrary range function (not necessarily measurable).
Then, the space NJr is a closed subspace of H r. Moreover, if for some measurable range
functions Jr and Kr holds NJr = NKr , then Jr(t) = Kr(t) for a.e. t ∈ Tn.

Proof. Let (Hν)ν∈N ⊂ NJr be a sequence such that limν→+∞Hν = H in H r. Then, there
exists a subsequence such that limj→+∞Hνj(t) = H(t) in ℓ2r for a.e. t ∈ Tn. Thus, using
the fact that Jr(t) is closed, it follows that H ∈ NJr .

Further, let for some measurable range functions Jr and Kr holds NJr = NKr and let
PJr and PKr be associated orthogonal projections, respectively. Let H(t) = eq for some
q ∈ Zn be a constant function, where eq ∈ ℓ2r is the standard vector. Applying Lemma
6.1.4 to H(t) = eq gives PJr(t)(eq) =

(
Preq

)
(t) = PKr(t)(eq), i.e. PJr(t)(eq) = PKr(t)(eq) for

a.e. t ∈ Tn, q ∈ Zn. Hence, PJr(t) = PKr(r) for a.e. t ∈ Tn.

Remark 6.1.1. The equality (6.1.1) is equivalent to Tr

(
PVrf

)
(t) = PJr(t)

(
Trf(t)

)
for

a.e. t ∈ Tn, f ∈ Hr, where PVr is othogonal projection on Vr (see [5]).
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The following theorem is extremely important, SI spaces are connected with the range
function and vice versa. Range functions are said to be equal if they are equal almost
everywhere.

Theorem 6.1.1 ([6]). A space Vr ⊂ Hr is SI if and only if there is a measurable range
function Jr so that

Vr =
{
f ∈ Hr : Trf(t) ∈ Jr(t) for a.e. t ∈ Tn

}
. (6.1.2)

The relationship between Vr and Jr is one-to-one. If Vr = Sr(Ar,I), where Ar,I ⊂ Hr,
then

Jr(t) = span {Trf(t) : f ∈ Ar,I}. (6.1.3)

Proof. Suppose Vr = Sr(Ar,I), where Ar,I ⊂ Hr, is a SI space and Jr(t) is given by (6.1.3).
Let Nr = TrVr. According to Lemma 6.1.2, a subspace Vr ⊂ Hr is SI if and only if Nr is
a closed subspace of H r (closed under multiplication by exponentials). Thus, for every
H ∈ Nr there exists a sequence (Hν)ν∈N such that

T −1
r Hν ∈ span{Tqf : f ∈ Ar,I , q ∈ Zn} and lim

ν→+∞
Hν = H.

From Lemma 6.1.2, it follows that Hν(t) ∈ Jr(t) for every ν ∈ N. Hence, H(t) ∈ Jr(t)
and finally Nr ⊆ NJr .

Suppose that there exists 0 ̸= H1 ∈ H r orthogonal to Nr. Since for all H ∈ TrAr,I and
q ∈ Zn hold∫

Tn

e−2πi⟨t,q⟩⟨H(t), H1(t)⟩ℓ2r dt =
∫
Tn

⟨e−2πi⟨t,q⟩H(t), H1(t)⟩ℓ2r dt = 0,

it follows that ⟨H(t), H1(t)⟩ℓ2r = 0 for a.e. t ∈ Tn and all H ∈ TrAr,I . Thus, H1(t) ∈
(Jr(t))

⊥ for a.e. t ∈ Tn and therefore there does not exist 0 ̸= H1 ∈ NJr orthogonal to
Nr. This clearly forces Nr = NJr .

It remains the measurability of Jr (given by (6.1.3)) to be proved. From what has already
been proved, for H ∈ H r and the orthogonal projection Pr of H r onto Nr, it follows
that H(t)−

(
PrH

)
(t) ∈ (Jr(t))

⊥ for a.e. t ∈ Tn. Using Nr = NJr ,

PJr(t)
(
H(t)

)
= PJr(t)

((
PrH

)
(t)
)
=
(
PrH

)
(t) for a.e. t ∈ Tn, (6.1.4)

where PJr(t) are associated projections. The vector functionH can be taken to be constant.
Then,

(
PrH

)
(t) is measurable, and by (6.1.4), Jr is measurable.

On the contrary, let Jr be a measurable range function. Then, NJr is a closed subspace
of H r and consequently Vr = T −1

r NJr is closed, SI and according to Lemma 6.1.4 the
space Vr clearly satisfies (6.1.2). By Lemma 6.1.5, it is obvious that the correspondence
between Vr and Jr is one-to-one.

Therefore, by Theorem 6.1.1, for every SI space Vr there is the range function Jr such
that Vr = T −1

r NJr . Moreover, for every range function Jr there is the SI space Vr so that
NJr = TrVr. It is said that the range function Jr corresponds to Vr or associated to Vr if
Vr = T −1

r NJr , i.e. NJr = TrVr.
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Corollary 6.1.1 ([6]). If Jr is a range function (not necessarily measurable), then there
is a unique measurable range function J ′

r so that J ′
r(t) ⊆ Jr(t) for a.e. t ∈ Tn, and

NJ ′
r
= NJr .

An additional relation between the range function Jr and the corresponding SI space Vr
is given in the next assertion.

Proposition 6.1.1 ([7]). Let Vr, Ur ⊂ Hr be SI spaces and JVr , JUr be associated range
functions, respectively.

(1) Let V ⊥
r be the orthogonal complement of Vr. Then, V ⊥

r is also a SI space and
JV ⊥

r
(t) = (JVr(t))

⊥ for a.e. t ∈ Tn.

(2) If JVr(t) = JUr(t) for a.e. t ∈ Tn, then Vr = Ur.

(3) The space Vr ∩ Ur is a SI space with the associated range function JVr∩Ur(t) =
JVr(t) ∩ JUr(t) for a.e. t ∈ Tn.

Proof. (1) Let f ∈ V ⊥
r . Then, f /∈ Vr and Tqf /∈ Vr for all q ∈ Zn. Thus, Tqf ∈ V ⊥

r for
all q ∈ Zn. Hence, V ⊥

r is also a SI space. Further, let H ∈ H r. Then, H(t) /∈ JVr(t)
if and only if H(t) ∈ (JVr(t))

⊥, for a.e. t ∈ Tn. Using Theorem 6.1.1, it follows that
H(t) /∈ JVr(t) if and only if T −1

r H /∈ Vr if and only if H(t) ∈ JV ⊥
r
(t), for a.e. t ∈ Tn.

Therefore, JV ⊥
r
(t) = (JVr(t))

⊥ for a.e. t ∈ Tn.

(2) Let JVr(t) = JUr(t) for a.e. t ∈ Tn. Then, NJVr
= NJUr

and thus Vr = Ur, because
TrVr = NJVr

and TrUr = NJUr
.

(3) The first part of the statement is obvious. Let H ∈ H r. Using Theorem 6.1.1, it
follows that

H(t) ∈ JVr∩Ur(t) for a.e. t ∈ Tn ⇔ T −1
r H ∈ Vr ∩ Ur

⇔ T −1
r H ∈ Vr ∧ T −1

r H ∈ Ur

⇔ H(t) ∈ JVr(t) ∧ H(t) ∈ JUr(t) for a.e. t ∈ Tn

⇔ H(t) ∈ JVr(t) ∩ JUr(t) for a.e. t ∈ Tn.

Hence, JVr∩Ur(t) = JVr(t) ∩ JUr(t) for a.e. t ∈ Tn.

The next definition is Definition 1.0.4 adapted to the observed spaces.

Definition 6.1.4 ([6]). Let Vr = T −1
r NJr , where Jr is a given range function.

(1) A mapping dimVr : Tn → N ∪ {0,+∞} defined by dimVr(t) = dim Jr(t) is called the
dimension function of Vr.

(2) The spectrum of space Vr is defined by σVr =
{
t ∈ Tn : dim Jr(t) > 0

}
or equivalently

σVr =
{
t ∈ Tn : Jr(t) ̸= {0}

}
.

In the continuation, a positive constant will always be denoted by C, and it will be clear
from the context whether it is the same constant or not. The Lebesgue measure of a
measurable set Q will be denoted by m(Q).
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6.2 Characterization of frames

For the characterization of frames, the following auxiliary assertion is very important.

Lemma 6.2.1 ([6]). (1) If Er(Ar,I) is a Bessel family, then∑
f∈Ar,I

∑
q∈Zn

∣∣⟨Tqf, φ⟩Hr

∣∣2 = ∑
f∈Ar,I

∫
Tn

∣∣〈Trf(t),Trφ(t)
〉
ℓ2r

∣∣2 dt
for every φ ∈ Ar,I .

(2) Let g1, g2 ∈ L2 and f̂1 = ĝ1µ−r, f̂2 = ĝ2µ−r. Then,

⟨Tqf1, f2⟩Hr = ⟨Tqg1, g2⟩L2 , q ∈ Zn.

Proof. (1) Let Er(Ar,I) be a Bessel family. Then, using the equality (4.4.1), it follows
that ∑

f∈Ar,I

∑
q∈Zn

∣∣⟨Tqf, φ⟩Hr

∣∣2 = ∑
f∈Ar,I

∑
q∈Zn

∣∣∣∣ ∫
Rn

e−2πi⟨t,q⟩ f̂(t)φ̂(t)µ2
r(t) dt

∣∣∣∣2
=
∑
g∈AI

∑
q∈Zn

∣∣∣∣ ∫
Rn

e−2πi⟨t,q⟩ ĝ(t)ϕ̂(t) dt

∣∣∣∣2
=
∑
g∈AI

∑
q∈Zn

∣∣∣∣ ∑
k∈Zn

∫
Tn

e−2πi⟨t,q⟩ ĝ(t+ k)ϕ̂(t+ k) dt

∣∣∣∣2
=
∑
g∈AI

∑
q∈Zn

∣∣∣∣ ∫
Tn

e−2πi⟨t,q⟩
∑
k∈Zn

ĝ(t+ k)ϕ̂(t+ k) dt

∣∣∣∣2
=
∑
g∈AI

∫
Tn

∣∣∣∣ ∑
k∈Zn

ĝ(t+ k)ϕ̂(t+ k)

∣∣∣∣2 dt
=
∑
f∈Ar,I

∫
Tn

∣∣〈Trf(t),Trφ(t)
〉
ℓ2r

∣∣2 dt,
where f̂µr = ĝ ∈ L2 and φ̂µr = ϕ̂ ∈ L2.

(2) Since g1, g2 ∈ L2, using Theorem 3.2.2 and Plancherel’s formula (3.1.4), it follows that

⟨Tqf1, f2⟩Hr =

∫
Rn

T̂qf1(t)f̂2(t)µ
2
r(t) dt =

∫
Rn

e−2πi⟨t,q⟩ f̂1(t)f̂2(t)µ
2
r(t) dt

=

∫
Rn

e−2πi⟨t,q⟩ ĝ1(t)ĝ2(t) dt =

∫
Rn

T̂qg1(t)ĝ2(t) dt = ⟨T̂qg1, ĝ2⟩L2 = ⟨Tqg1, g2⟩L2

for every q ∈ Zn.

The connection of frames in the observed function spaces and frames in the spaces of
weighted sequences is given in the next statement.
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Theorem 6.2.1 ([6]). Let Vr = Sr(Ar,I). Then, Er(Ar,I) is

(1) a frame of Vr with frame bounds A and B if and only if {Trf(t) : f ∈ Ar.I} ⊂ ℓ2r is
a frame of Jr(t) with frame bounds A and B for a.e. t ∈ Tn;

(2) a Riesz family (basis) of Vr with bounds A and B if and only if {Trf(t) : f ∈ Ar,I} ⊂
ℓ2r is a Riesz family (basis) of Jr(t) with bounds A and B for a.e. t ∈ Tn;

(3) a Bessel family of Vr with bound B if and only if {Trf(t) : f ∈ Ar,I} ⊂ ℓ2r is a
Bessel family of Jr(t) with bound B for a.e. t ∈ Tn;

(4) a fundamental frame of Vr if and only if {Trf(t) : f ∈ Ar,I} ⊂ ℓ2r is a fundamental
frame of Jr(t) for a.e. t ∈ Tn.

Proof. The assertions are valid based on the lemmas 6.1.2, 6.1.3, 6.2.1 and on Theorem
1.0.2.

According to Theorem 6.2.1, the problem of checking whether Er(Ar,I) is a frame or a
Riesz family or a Bessel family or a fundamental frame on a ”large” subspaces of Hr is
reduced to the problem of checking it on a ”small” subspaces of ℓ2r.

Also, in [6], the characterization of frames was done using the Gram matrix. Therefore,
let us introduce the definition of the Gram matrix.

Set
γkr = (γkr (q))q∈Zn ⊂ ℓ2r, k ∈ I, (6.2.1)

where γkr (q) is defined by γkr (q) = ĝk(t+q)
µr(q)

for fixed t ∈ Tn, and gk ∈ L2 such that f̂k =

ĝkµ−r, k ∈ I. Suppose that (γkr )k∈I is given. One defines an operator Dr by

Drα =

(∑
k∈I

αkγ
k
r (q)

)
q∈Zn

, (6.2.2)

where α = (αk)k∈I is a sequence with compact support (only a finite number of elements
are non-zero). If the mapping Dr is extended as a continuous mapping Dr : ℓ

2(I) → ℓ2r,
then its adjoint operator is given by D∗

r : ℓ
2
r → ℓ2(I),

D∗
rβ =

(
⟨β, γkr ⟩ℓ2r

)
k∈I , β = (βq)q∈Zn ∈ ℓ2r. (6.2.3)

It is not difficult to see that: Dr is continuous if and only if D∗
r is continuous if and only if

{γkr : k ∈ I} is a Bessel family. Therefore, {γkr : k ∈ I} is a Bessel family with the bound
B if ∥D∗

r∥2 ⩽ B.

Definition 6.2.1 ([6, 23]). (1) The mapping Gr = D∗
rDr : ℓ

2(I) → ℓ2(I) is called the
Gramian of {γkr : k ∈ I}.

(2) The mapping G∗
r = DrD

∗
r : ℓ

2
r → ℓ2r is called the dual Gramian of {γkr : k ∈ I}.

Note that, in addition to the Gramian, the name Gram’s matrix is also used. By Definition
6.2.1, the following assertion is obvious.

Lemma 6.2.2 ([6]). The Gramian Gr and the dual Gramian G∗
r are self-adjoint and

∥Dr∥2 = ∥D∗
r∥2 = ∥Gr∥ = ∥G∗

r∥.

A matrix notation of the Gramian is given in Lemma 6.2.3.
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Lemma 6.2.3 ([6]). Let t ∈ Tn be fixed and {γkr : k ∈ I} be given by (6.2.1). Then, the
Gramian Gr can be written as a matrix with

Gr(t) =
[〈

Trfk(t),Trfj(t)
〉
ℓ2r

]
k,j∈I

=

[∑
q∈Zn

ĝk(t+ q)ĝj(t+ q)

]
k,j∈I

,

and the corresponding dual Gramian with

G∗
r(t) =

[∑
k∈I

ĝk(t+ q)

µr(q)
· ĝk(t+ p)

µr(p)

]
q,p∈Zn

.

Proof. Suppose that {ek : k ∈ I} and {ẽq : q ∈ Zn} are the standard basis of ℓ2(I) and ℓ2r,
respectively. Since ⟨Grek, ej⟩ℓ2 = ⟨Drek, Drej⟩ℓ2r = ⟨γkr , γjr⟩ℓ2r , k, j ∈ I, and ⟨G∗

req, ep⟩ℓ2r =

⟨D∗
req, D

∗
rep⟩ℓ2 =

∑
k∈I

γkr (q)γ
k
r (p), q, p ∈ Zn, the assertion follows.

Characterizations of frames and Riesz families via Gram’s and dual Gram’s matrix are
given in the following theorem. Note, the spectrum of an operator P will be denoted by
σ(P ).

Theorem 6.2.2 ([6]). Let Vr = Sr(Ar,I). The family Er(Ar,I) is

(1) a Bessel family of Vr with the bound B if and only if ess supt∈Tn ∥Gr(t)∥ℓ2 ⩽ B if
and only if ess supt∈Tn ∥G∗

r(t)∥ℓ2r ⩽ B;

(2) a frame of Vr with frame bounds A and B if and only if

A∥β∥2ℓ2r ⩽ ⟨G∗
r(t)β, β⟩ℓ2r ⩽ B∥β∥2ℓ2r , (6.2.4)

where β ∈ span{Trfk(t) : fk ∈ Ar,I , k ∈ I} for a.e. t ∈ Tn if and only if

σ(G∗
r(t)) ⊆ {0} ∪ [A,B] for a.e. t ∈ Tn; (6.2.5)

(3) a fundamental frame of Vr with frame bounds A and B if and only if σ(G∗
r(t)) ⊆

[A,B] for a.e. t ∈ Tn;

(4) a Riesz family of Vr with bounds A and B if and only if

A∥α∥2ℓ2 ⩽ ⟨Gr(t)α, α⟩ℓ2 ⩽ B∥α∥2ℓ2 for a.e. t ∈ Tn, α ∈ ℓ2(I), (6.2.6)

if and only if
σ(Gr(t)) ⊆ [A,B] for a.e. t ∈ Tn; (6.2.7)

(5) a Riesz basis of Vr if and only if (6.2.7) holds and 0 /∈ σ(G∗
r(t)) for a.e. t ∈ Tn.

Proof. The proof of the statement is similar to the proof of the corresponding theorem in
[23] for r = 0. The statement under (1) follows from Theorem 6.2.1 and the lemmas 6.2.2
and 6.2.3. By

⟨G∗
r(t)β, β⟩ℓ2r = ⟨D∗

rβ,D
∗
rβ⟩ℓ2 =

∑
k∈I

∣∣⟨β, γkr ⟩ℓ2r∣∣2, β ∈ ℓ2r,

and Theorem 6.2.1, the first equivalence follows. Since by Lemma 6.2.2, G∗
r(t) is self-

adjoint, it follows that
ℓ2r = kerG∗

r(t)⊕ rankG∗
r(t).
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Let Jr be the range function of Vr. Then, rankG∗
r(t) = Jr(t) for a.e. t ∈ Tn, because

kerG∗
r(t) = kerD∗

r = (Jr(t))
⊥ for a.e. t ∈ Tn. Therefore, observing the restriction of

G∗
r(t) to Jr(t) yields to the equivalence between (6.2.4) and (6.2.5). Moreover, Er(Ar,I)

is a fundamental frame of Vr if kerG
∗
r(t) = {0} for a.e. t ∈ Tn. Further, by

⟨Grα, α⟩ℓ2 = ⟨Drα,Drα⟩ℓ2r =
∥∥∥∥(∑

k∈I

αkγ
k
r (q)

)
q∈Zn

∥∥∥∥2
ℓ2r

, α = (αk)k∈I ∈ ℓ2(I),

and Theorem 6.2.1, the first equivalence under (4) follows. It is not difficult to see that
the operator Gr is non-negative definite. Thus, the equivalence (6.2.6)⇔(6.2.7) follows.
Moreover, Es(AI,s) is a Riesz basis if kerG∗

r(t) = {0} for a.e. t ∈ Tn.

6.3 The decomposition of shift-invariant spaces

De Boor et al. in [22] claimed a statement about the decomposition of finitely gene-
rated SI spaces in quasi-regular spaces. Then, Marcin Bownik proved the decomposition
theorem for SI subspaces of L2 in [23]. In this dissertation, the decomposition theorem of
SI subspaces of the Sobolev space Hr is being proved.

Definition 6.3.1 ([5, 7]). A set Ar,m is said to be a frame generator for Sr(Ar,m) if their
integer translations form a frame for Sr(Ar,m), i.e. if Er(Ar,m) is a frame for Sr(Ar,m).

Definition 6.3.2 ([6, 23]). A function f0 ∈ Vr = Sr(f), f ∈ Hr, is called a tight frame
(or quasi-orthogonal) generator of Vr if for all φ ∈ Vr holds

∥φ∥2Hr =
∑
q∈Zn

∣∣⟨Tqf0, f⟩Hr

∣∣2.
To prove the decomposition theorem, the following auxiliary assertion is necessary.

Lemma 6.3.1 ([6, 22, 23]). The function f0 ∈ Vr = Sr(f) is a tight frame generator of
Vr if and only if ∥Trf0(t)∥ℓ2r = 1σ

Vr
(t) for a.e. t ∈ Tn.

Proof. By the theorems 6.1.1 and 6.2.1, the assertion follows.

Note, unless stated otherwise, ⊕ will denote the orthogonal sum, and W = V ⊕ U or
V = W ⊖ U will be written.

Theorem 6.3.1 (The decomposition theorem, [6]). Let Vr be a SI subspace of Hr.
Then, Vr can be decomposed as an orthogonal sum of PSI spaces, i.e.

Vr =
⊕
k∈N

Sr(fk), (6.3.1)

such that fk is a tight frame generator of Sr(fk) and σSr(fk+1) ⊂ σSr(fk) for every k ∈ N.
Moreover, hold:

(1) dimSr(fk)(t) = ∥Trfk(t)∥ℓ2r for a.e. t ∈ Tn, k ∈ N,

(2) dimVr(t) =
∑

k∈N ∥Trfk(t)∥ℓ2r for a.e. t ∈ Tn.
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Proof. Let Ur ⊂ Hr be a SI space with the associated range function Jr and the cor-
responding projections PJr . Let π : N → Zn be a bijection. The function F ∈ TrUr is
defined as follows. If Ur = {0}, then F = 0. Otherwise, let γν ∈ H r, ν ∈ N, be defined
by

γν(t) =

{ PJr(t)eπ(ν)

∥PJr(t)eπ(ν)∥ℓ2r
, t ∈ Aν ,

0, otherwise,

where Aν = {t ∈ Tn : PJr(t)eπ(ν) ̸= 0}, ν ∈ N, and define F by

F =
∑
ν∈N

γν1Bν ,

where B1 = A1, Bν+1 = Aν+1 \
⋃ν
k=1Ak, ν ∈ N. Now, F (t) ∈ Jr(t) and ∥F (t)∥ℓ2r = 1σUr

(t)
for a.e. t ∈ Tn, because σUr =

⋃
ν∈NAν . Let f = T −1

r F . Then, by Lemma 6.3.1, f is a
tight frame generator of Sr(f) ⊆ Ur. Moreover, σSr(f) = σUr . Obviously,

Tr(Ur ⊖ Sr(f)) =
{
H ∈ H r : H(t) ∈ Jr(t), ⟨F (t), H(t)⟩ℓ2r = 0 for a.e. t ∈ Tn

}
.

Further, let ν0 = min{ν ∈ N : m(Aν) ̸= 0}. For H ∈ Tr(Ur ⊖ Sr(f)) holds

⟨H(t), eπ(ν)⟩ℓ2r = ⟨H(t), PJr(t)eπ(ν)⟩ℓ2r = 0 for a.e. t ∈ Tn, ν = 1, . . . , ν0. (6.3.2)

Now, by induction on ν, a sequence of tight frame generators can be defined, as follows.
Choose f1 = T −1

r F (Vr) and assume that f1, . . . , fν are constructed for some ν ∈ N such
that:

(a) fk ∈ Vr is a tight frame generator of Sr(fk), k = 1, . . . , ν;

(b) for all k ̸= l, the spaces Sr(fk) and Sr(fl) are disjoint;

(c) if H ∈ TrV
ν
r , then ⟨H(t), eπ(k)⟩ℓ2r = 0, k = 1, . . . , ν, for a.e. t ∈ Tn, where

V ν
r = Vr ⊖

( ν⊕
k=1

Sr(fk)

)
. (6.3.3)

Further, let fν+1 = T −1
r F (V ν

r ). Then, by construction, it follows that the set {f1, . . . , fν+1}
satisfies conditions (a)–(c). Indeed, since ∥Trfν+1(t)∥ℓ2r = 1σV ν

r
(t), it follows (a); (b) foll-

ows from the fact that Sr(fν+1) ⊂ V ν
r and by (6.3.3); (c) is a consequence of (6.3.2).

Choose H ∈ Tr

(⋂+∞
k=1 V

k
r

)
. Then, using (c), it follows that ⟨H(t), eπ(k)⟩ℓ2r = 0, k ∈ N, for

a.e. t ∈ Tn. Hence, H = 0 and thus
⋂+∞
k=1 V

k
r = {0}, i.e. (6.3.1) follows. Since V k+1

r ⊂ V k
r ,

it leads to σSr(fk+1) = σV k+1
r

⊂ σV k
r
= σSr(fk).

Finally, by (6.3.1), dimVr(t) =
∑

k∈N ∥Trfk(t)∥ℓ2r for a.e. t ∈ Tn.

Remark 6.3.1. The decomposition of a SI space Vr ⊂ Hr is unique only in the case
when dimVr(t) ⩽ 1 for a.e. t ∈ Tn. If ess supt∈Tn dimVr(t) = k0 for some k0 ∈ N, then
the decomposition has k0 non-trivial components Sr(f1), . . ., Sr(fk0) and Sr(fk) = {0} for
k > k0.

One of the consequences of the decomposition theorem is the following statement. Other
consequences will be listed in the following sections.
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Proposition 6.3.1 ([7]). Let Jr be the range function associated with the SI space Vr ⊂ Hr

such that dim Jr(t) < +∞ for a.e. t ∈ Tn. Then, there exist {fk : fk ∈ Hr, k ∈ N} and
measurable sets (Am)m∈N0 so that

⋃
m∈N0

Am = Tn, Ak ∩ Aj = ∅, k ̸= j, and hold:

(1) {Tqfk : k ∈ N, q ∈ Zn} is a Parseval frame for Vr,

(2) if k > m, then Trfk(t) = 0 for a.e. t ∈ Am,

(3) the family {Trf1(t), . . . ,Trfm(t)} is an orthonormal basis for Jr(t), for a.e. t ∈ Am,

(4) dim Jr(t) = m for a.e. t ∈ Am.

Proof. Let {fk : fk ∈ Hr, k ∈ N} be the set of functions from Theorem 6.3.1. Then,
{Tqfk : k ∈ N, q ∈ Zn} is a Parseval frame for Vr. Moreover, {Trfk(t) : k ∈ N} is a
Parseval frame for Jr(t) for a.e. t ∈ Tn, by Theorem 6.2.1.

Since σSr(fk+1) ⊂ σSr(fk) for all k ∈ N, it implies that the family of disjoint sets (Am)m∈N0

can be defined as follows:

A0 = Tn \ σVr and Am = σSr(fm) \ σSr(fm+1) for m ∈ N.
The assumptions dim Jr(t) < +∞ gives

∑
k∈N ∥Trfk(t)∥ℓ2r < +∞, and thus

⋂
k∈N σSr(fk) = ∅.

Therefore,
⋃
m∈N0

Am = Tn.

Now, for m ∈ N, (2) holds. Using (1), Theorem 6.3.1 and Lemma 6.1.2, (3) follows. Thus,
dim Jr(t) = m for a.e. t ∈ Am. If m = 0, then Jr(t) = {0} for a.e. t ∈ A0.

6.4 Shift-preserving and range operators

For further characterization of SI subspaces of the Sobolev space Hr, r ∈ R, it is necessary
to introduce and investigate the relationship between shift-preserving operators and range
operators.

Let Vr ⊂ Hr be a SI space with the corresponding range function Jr and projections PJr .
The definition of shift-preserving operators is given in Introduction, and here it will be
formally introduced for the spaces Vr.

Definition 6.4.1 ([7, 23]). A bounded linear operator Lr : Vr → Hr is called a shift-
preserving operator if LrTq = TqLr for every q ∈ Zn.

Analogous to Definition 1.0.5, the definition for the observed spaces is introduced.

Definition 6.4.2 ([7]). An operator defined on Jr (with values in ℓ2r) by

Rr : Tn → {bounded operators defined on closed subspaces of ℓ2r},
such that the domain of Rr(t) is Jr(t) for a.e. t ∈ Tn, is called the range operator.
The range operator Rr is measurable if t 7→ Rr(t)PJr(t), t ∈ Tn, is a weakly measurable
operator.

Now, following [23] analogous results are obtained for SI spaces Vr ⊂ Hr.

Theorem 6.4.1 ([7]). Assume that f ∈ Hr is a tight frame generator of Sr(f) and
Lr : Sr(f) → Hr is a shift-preserving operator. Let F = Trf . Then,(

TrLrT
−1
r

)
(ωF )(t) = ω(t)

(
TrLrT

−1
r

)
F (t) (6.4.1)

for a.e. t ∈ Tn, ω ∈ L2
r(Tn).
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Proof. Let the assumptions given in the theorem hold. By Lemma 6.1.2,(
TrLrT

−1
r

)
(M−qF ) =

(
TrLrTq

)
f =

(
TrTqLr

)
(T −1

r Trf) =M−q
(
TrLrT

−1
r

)
F, q ∈ Zn.

Therefore, using linearity, for all polynomials

pk(t) =
∑
|q|⩽k

αq e
−2πi⟨t,q⟩, k ∈ N,

holds (
TrLrT

−1
r

)
(pkF )(t) = pk(t)

(
TrLrT

−1
r

)
F (t) for a.e. t ∈ Tn. (6.4.2)

Using the lemmas 6.1.2 and 6.3.1 and boundedness of Lr, it follows that∫
Tn

|pk(t)|2
∥∥(TrLrT

−1
r )F (t)

∥∥2
ℓ2r
dt =

∫
Tn

∥∥(TrLrT
−1
r )(pkF )(t)

∥∥2
ℓ2r
dt

=
∥∥(TrLrT

−1
r )(pkF )

∥∥2
H r

⩽ C
∥∥pkF∥∥2H r

= C

∫
Tn

|pk(t)|2∥F (t)∥2ℓ2r dt

= C

∫
Tn

|pk(t)|21σSr(f)
(t) dt < +∞. (6.4.3)

It is known (by Lusin’s theorem) that for every function ψ ∈ L∞(Tn) there is a sequence
of polynomials (pνkν )ν∈N so that:

∥pνkν∥∞ ≤ ∥ψ∥∞, ν ∈ N, and lim
ν→+∞

pνkν (t) = ψ(t) for a.e. t ∈ Tn.

Thus, using the Lebesgue Dominated Convergence Theorem, (6.4.3) leads to∫
Tn

|ψ(t)|2
∥∥(TrLrT

−1
r )F (t)

∥∥2
ℓ2r
dt ⩽ C

∫
Tn

|ψ(t)|2∥F (t)∥2ℓ2r dt,

and so ∥∥(TrLrT
−1
r )F (t)∥ℓ2r ⩽ C∥F (t)∥ℓ2r for a.e. t ∈ Tn. (6.4.4)

Finally, take a sequence of polynomials (pνkν )ν∈N so that pνkν → ω in L2
r(Tn) and

lim
ν→+∞

pνkν (t) = ω(t), lim
ν→+∞

(
TrLrT

−1
r

)
(pνkνF )(t) =

(
TrLrT

−1
r

)
(ωF )(t), (6.4.5)

for a.e. t ∈ Tn. From (6.4.2), using (6.4.4) and (6.4.5), it follows that (6.4.1) holds for
every ω ∈ L2

r(Tn).

An immediate consequence of the theorems 6.1.1 and 6.4.1 is Corollary 6.4.1.

Corollary 6.4.1 ([7]). Assume that Vr ⊂ Hr is a SI space and Lr : Vr → Hr is a
shift-preserving operator. Let F ∈ TrVr and let ω be a measurable function such that
ωF ∈ H r (and therefore ωF ∈ TrVr). Then,(

TrLrT
−1
r

)
(ωF )(t) = ω(t)

(
TrLrT

−1
r

)
F (t) for a.e. t ∈ Tn.
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The basic connection between the shift-preserving operator and the range operator is
given by the following theorem.

Theorem 6.4.2 ([7]). Assume that Vr ⊂ Hr is a SI space and Jr is the associated range
function.

(1) If Lr : Vr → Hr is a shift-preserving operator, then there is a measurable range
operator Rr on Jr so that

(TrLr)f(t) = Rr(t)(Trf(t)) for a.e. t ∈ Tn, f ∈ Vr. (6.4.6)

(2) If Rr is a measurable range operator on Jr so that ess supt∈Tn ∥Rr(t)∥ < +∞, then
there is a shift-preserving operator Lr : Vr → Hr so that (6.4.6) holds.

The correspondence between Lr and Rr is one-to-one and ess supt∈Tn ∥Rr(t)∥ = ∥Lr∥.

Proof. (1) First, by Theorem 6.3.1, Vr = ⊕k∈NSr(fk) where fk is a tight frame generator of
Sr(fk). Now, V

ν
r = ⊕ν

k=1Sr(fk) with the corresponding range function Jνr is observed. Set
Fk = Trfk. Then, {F1(t), ..., Fν(t)} \ {0} is an orthonormal basis of Jνr (t) for a.e. t ∈ Tn.
Note, if t /∈ σV ν

r
, then Fk(t) = 0, k = 1, . . . , ν. Define the operator Rν

r (t) : J
ν
r (t) → ℓ2r by

Rν
r (t)

( ν∑
k=1

αkFk(t)

)
=

ν∑
k=1

αk(TrLrT
−1
r )Fk(t),

where, αk ∈ C, k = 1, . . . , ν. This operator Rν
r is well defined by (6.4.4). Now, for each

φ ∈ V ν
r there exists φk ∈ Sr(fk), k = 1, ..., ν, so that φ = φ1 + · · ·+ φν and

Trφ = Trφ1 + · · ·+ Trφν = ω1F1 + · · ·+ ωνFν

for some ωk ∈ L2
r(Tn). Thus,

(TrLr)φ(t) = (TrLrT
−1
r )

( ν∑
k=1

ωkFk

)
(t) =

ν∑
k=1

ωk(t)(TrLrT
−1
r )Fk(t)

=
ν∑
k=1

ωk(t)R
ν
r (t)
(
Fk(t)

)
=

ν∑
k=1

Rν
r (t)
(
ωk(t)Fk(t)

)
= Rν

r (t)
(
Trφ(t)

)
, (6.4.7)

by Theorem 6.4.1. Since Tr is an isometry, it implies that Rν
r is a measurable operator.

Since Lr is a shift-preserving operator, it is bounded i.e. ∥Lr∥ ⩽ C. In order to prove
∥Rν

r (t)∥ ⩽ C for a.e. t ∈ Tn, one must first prove

ess sup
t∈Tn

∥Rν
r (t)(Θa(t))∥ℓ2r ⩽ C, (6.4.8)

where Θa ∈ H r is given by

Θa(t) =
ν∑
k=1

akFk(t)

for a = (a1, . . . , aν) ∈ Sν−1, Sν−1 = {a ∈ Cν : |a1|2 + · · ·+ |aν |2 = 1}. It is not difficult to
see that ∥Θa(t)∥ℓ2r = 1.
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Assume that (6.4.8) is false. Then, there are ε > 0 and a measurable set Q ⊂ Tn, whose
measure is not zero, so that ∥Rν

r (t)(Θa(t))∥ℓ2r > C + ε for t ∈ Q. Set Θ = Θa1Q and
θ = T −1

r Θ ∈ V ν
r . Then,

∥(TrLr)θ∥H r = ∥Lrθ∥Hr ⩽ C∥θ∥Hr = C∥Θ∥H r ,

because Tr is an isometry and ∥Lr∥ ⩽ C. However, using (6.4.7),

∥(TrLr)θ∥2H r =

∫
Tn

∥Rν
r (t)(Θ(t))∥2ℓ2r dt =

∫
Q

∥Rν
r (t)(Θa(t))∥2ℓ2r dt

⩾ (C + ε)2
∫
Q

dt = (C + ε)2
∫
Q

∥Θa(t)∥2ℓ2r dt = (C + ε)2∥Θ∥2H r ,

which is impossible. Hence, (6.4.8) is true. Finally, for a dense subset (am)m∈N of Sν−1,

ess sup
t∈Tn

∥Rν
r (t)∥ = ess sup

t∈Tn

sup
a∈Sν−1

∥Rν
r (t)(Θa(t))∥ℓ2r = ess sup

t∈Tn

sup
m∈N

∥Rν
r (t)(Θam(t))∥ℓ2r ⩽ C,

by (6.4.8). Therefore, ∥Rν
r (t)∥ ⩽ C for a.e. t ∈ Tn.

Let j ⩽ ν and note that Rj
r(t) = Rν

r (t)|Jj
r (t)

. Define Rr(t) :
⋃
j∈N J

j
r (t) → ℓ2r by Rr(t)(α) =

Rj
r(t)(α), α ∈ J jr (t), for some j ∈ N. Then,

∥Rr(t)(α)∥ℓ2r ⩽ C∥α∥ℓ2r , α ∈
⋃
j∈N

J jr (t),

since ∥Rν
r (t)∥ ⩽ C for a.e. t ∈ Tn. Since

Jr(t) =
⋃
j∈N

J jr (t),

it follows that Rr(t) can uniquely be extended to Rr(t) : Jr(t) → ℓ2r with ∥Rr(t)∥ ⩽ C.
Now, (6.4.6) holds. Indeed, choose f ∈ Vr and a sequence (fν)ν∈N, fν ∈ V ν

r , so that

lim
ν→+∞

fν =f in Hr, lim
ν→+∞

Trfν(t) = lim
ν→+∞

Trf(t) and

lim
ν→+∞

(TrLr)fν(t) = lim
ν→+∞

(TrLr)f(t)

for a.e. t ∈ Tn. Then, by (6.4.7) and the previous construction, it follows that

(TrLr)fν(t) = Rr(t)(Trfν(t)) for a.e. t ∈ Tn.

Letting ν → +∞ gives (6.4.6).

(2) Assume that Rr is a measurable range operator on Jr so that

ess sup
t∈Tn

∥Rr(t)∥ = C < +∞.

Then, Rr(t)(Trf(t)) is measurable for a.e. t ∈ Tn, f ∈ Vr, and

∥Rr(Trf)∥2H r =

∫
Tn

∥Rr(t)(Trf(t))∥2ℓ2r dt ⩽ ess sup
t∈Tn

∥Rr(t)∥2
∫
Tn

∥Trf(t)∥2ℓ2r dt

= C2∥Trf∥2H r = C2∥f∥2Hr , f ∈ Vr. (6.4.9)
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Define Lr : Vr → Hr by Lrf = T −1
r Rr(Trf). Then, Lr is linear and satisfies (6.4.6); by

(6.4.9), ∥Lrf∥Hr ⩽ C∥f∥Hr . Moreover, Lr is shift-preserving, since

(TrLrTq)f(t) = Rr(t)(TrTqf(t)) = Rr(t)(M−qTrf(t)) =M−qRr(t)(Trf(t))

=M−qTr(Lrf)(t) = (TrTqLr)f(t), q ∈ Zn.

Finally, the one-to-one correspondence between Rr and Lr follows from (6.4.6).

Other properties between the shift-preserving operator and the range operator follow from
the basic connection (Theorem 6.4.2).

Theorem 6.4.3 ([7]). Assume that Vr ⊂ Hr is a SI space and Rr is the corresponding
range operator on Jr. Then,

∥Rr(t)(α)∥ℓ2r ⩾ C∥α∥ℓ2r , α ∈ Jr(t), for a.e. t ∈ Tn (6.4.10)

if and only if
∥Lrf∥Hr ⩾ C∥f∥Hr , f ∈ Vr, (6.4.11)

where C is some positive constant.

Proof. Let (6.4.10) hold. Then,

∥Lrf∥2Hr = ∥(TrLr)f∥2H r =

∫
Tn

∥Rr(t)(Trf(t))∥2ℓ2r dt ⩾
∫
Tn

C2∥Trf(t)∥2ℓ2r dt

= C2∥Trf∥2H r = C2∥f∥2Hr , f ∈ Vr,

by (6.4.6). Hence, (6.4.11) holds.

Now, let (6.4.11) hold and let {α1, α2, . . .} be a dense subset of ℓ2r. Then, for a.e. t ∈ Tn,

∥Rr(t)(PJr(t)(α
k))∥ℓ2r ⩾ C∥PJr(t)(αk)∥ℓ2r , k ∈ N. (6.4.12)

Indeed, let (6.4.12) not be valid. Then, there are a measurable set Q ⊂ Tn withm(Q) ̸= 0,
k0 ∈ N and ε > 0 so that

∥Rr(t)(PJr(t)(α
k0))∥ℓ2r ⩽ (C − ε)∥PJr(t)(αk0)∥ℓ2r for t ∈ Q.

Choose f ∈ Vr so that Trf(t) = 1Q(t)PJr(t)(α
k0). Then,

∥Lrf∥2Hr = ∥(TrLr)f∥2H r =

∫
Tn

∥(TrLr)f(t)∥2ℓ2r dt =
∫
Tn

∥Rr(t)(Trf(t))∥2ℓ2r dt

⩽ (C − ε)2
∫
Q

∥PJr(t)(αk0)∥2ℓ2r dt = (C − ε)2
∫
Tn

∥Trf(t)∥2ℓ2r dt = (C − ε)2∥Trf∥2H r

= (C − ε)2∥f∥2Hr ,

which contradicts (6.4.11). Hence, (6.4.10) holds.

Corollary 6.4.2 ([7]). Let Rr be the corresponding range operator for a shift-preserving
operator Lr : Vr → Hr. Then, Rr(t) is an isometry for a.e. t ∈ Tn if and only if Lr is an
isometry.

74



Proof. Since

∥Rr(Trf)∥H r = ∥(TrLr)f∥H r = ∥Lrf∥Hr ⩽ C∥f∥Hr = C∥Trf∥H r , f ∈ Vr,

the assertion follows.

Theorem 6.4.4 ([7]). Assume that Vr ⊂ Hr is a SI space, Jr is the associated range
function and Rr is the corresponding range operator for a shift-preserving operator Lr :
Vr → Vr.

(1) The adjoint operator L∗
r : Vr → Vr of Lr is shift-preserving. Moreover, the corre-

sponding range operator is given by R∗
r(t) = (Rr(t))

∗ for a.e. t ∈ Tn.

(2) Let A,B ∈ R so that A ⩽ B. The operator Rr(t) is self-adjoint and σ(Rr(t)) ⊆
[A,B] for a.e. t ∈ Tn if and only if Lr is a self-adjoint operator and σ(Lr) ⊆ [A,B].

(3) The operator Rr(t) is a unitary operator for a.e. t ∈ Tn if and only if Lr is a unitary
operator.

Proof. (1) It is easily seen that R∗
r is a measurable range operator and uniformly bounded

on Jr. According to Theorem 6.4.2, there is a shift-preserving operator L⋄
r : Vr → Hr so

that (TrL
⋄
r)f(t) = R∗

r(t)(Trf(t)), f ∈ Vr. Then, for f, φ ∈ Vr,

⟨Lrf, φ⟩Hr = ⟨(TrLr)f,Trφ⟩H r =

∫
Tn

⟨(TrLr)f(t),Trφ(t)⟩ℓ2r dt

=

∫
Tn

⟨Rr(t)(Trf(t)),Trφ(t)⟩ℓ2r dt =
∫
Tn

⟨Trf(t), R
∗
r(t)(Trφ(t))⟩ℓ2r dt

=

∫
Tn

⟨Trf(t), (TrL
⋄
r)φ(t)⟩ℓ2r dt = ⟨Trf, (TrL

⋄
r)φ⟩H r = ⟨f, L⋄

rφ⟩Hr .

Hence, L⋄
r = L∗

r.

(2) Using the part (1), it follows that R∗
r(t) = Rr(t) for a.e. t ∈ Tn if and only if L∗

r = Lr.
Suppose that σ(Lr) ⊆ [A,B], i.e.

A∥f∥2Hr ⩽
∫
Tn

⟨Rr(t)(Trf(t)),Trf(t)⟩ℓ2r dt ⩽ B∥f∥2Hr , f ∈ Vr, (6.4.13)

since

⟨Lrf, f⟩Hr = ⟨TrLrf,Trf⟩H r =

∫
Tn

⟨Rr(t)(Trf(t)),Trf(t)⟩ℓ2r dt.

Now, by similar arguments as in the proof of Theorem 6.4.3, the assertion follows. There-
fore, let {α1, α2, . . .} be a dense subset of ℓ2r. Then, for a.e. t ∈ Tn and every k ∈ N,

A∥PJr(t)(αk)∥2ℓ2r ⩽ ⟨Rr(t)(PJr(t)(α
k)), PJr(t)(α

k)⟩ℓ2r ⩽ B∥PJr(t)(αk)∥2ℓ2r . (6.4.14)

Indeed, suppose (6.4.14) were false. Then, there are a measurable set Q ⊂ Tn with
m(Q) ̸= 0, k0 ∈ N and ε > 0 so that at least one of the following two inequalities holds:

⟨Rr(t)(PJr(t)(α
k0)), PJr(t)(α

k0)⟩ℓ2r > (B + ε)∥PJr(t)(αk0)∥ℓ2r for t ∈ Q,

⟨Rr(t)(PJr(t)(α
k0)), PJr(t)(α

k0)⟩ℓ2r < (A− ε)∥PJr(t)(αk0)∥ℓ2r for t ∈ Q.

Taking f ∈ Vr so that Trf(t) = 1Q(t)PJr(t)(α
k0) contradicts (6.4.13). Hence, (6.4.14)

holds.
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For the opposite implication, let σ(Rr(t)) ⊆ [A,B] for a.e. t ∈ Tn, i.e.

A∥Trf(t)∥2ℓ2r ⩽
〈
Rr(t)(Trf(t)),Trf(t)

〉
ℓ2r
⩽ B∥Trf(t)∥2ℓ2r for a.e. t ∈ Tn, f ∈ Vr.

Integrating over Tn gives (6.4.13).

(3) By (2), the operator Rr(t) is unitary for a.e. t ∈ Tn, i.e.

σ(Rr(t)R
∗
r(t)) = σ(R∗

r(t)Rr(t)) = {1} for a.e. t ∈ Tn

if and only if σ(LrL
∗
r) = σ(L∗

rLr) = {1}, i.e. Lr is a unitary operator.

Using the shift-preserving operator Lr, properties of the dimension function are obtained
and they are given in the following propositions.

Proposition 6.4.1 ([7]). Assume that Vr ⊂ Hr is a SI space, Lr : Vr → Hr is a shift-
preserving operator and let V ◦

r = Lr(Vr). Then, dimV ◦
r
(t) ⩽ dimVr(t) for a.e. t ∈ Tn.

Proof. By Theorem 6.3.1, Vr = Sr(Ar,I). Using the theorems 6.1.1 and 6.4.2, the range
function J◦

r of V ◦
r = Sr

(
{Lrf : f ∈ Ar,I}

)
satisfies

J◦
r (t) = span

{
Trf

◦(t) : f ◦ ∈ {Lrf : f ∈ Ar,I}
}
= span

{
(TrLr)f(t) : f ∈ Ar,I

}
= span

{
Rr(t)(Trf(t)) : f ∈ Ar,I

}
= Rr(t)(Jr(t)) for a.e. t ∈ Tn.

Hence, dim J◦
r (t) ⩽ dim Jr(t) for a.e. t ∈ Tn.

Proposition 6.4.2 ([7]). Assume that Vr, V
◦
r ⊂ Hr are SI spaces. Then,

dimVr(t) = dimV ◦
r
(t) for a.e. t ∈ Tn

if and only if there is a shift-preserving operator Lr : Vr → V ◦
r which is an isomorphism

(or isometry).

Proof. Let Lr : Vr → V ◦
r be a shift-preserving isomorphism. Applying Proposition 6.4.1

to Lr : Vr → V ◦
r and L−1

r : V ◦
r → Vr gives dimVr(t) = dimV ◦

r
(t) for a.e. t ∈ Tn.

On the contrary, let Vr, V
◦
r ⊂ Hr be SI spaces so that dimVr(t) = dimV ◦

r
(t) for a.e. t ∈ Tn.

According to Theorem 6.3.1,

Vr =
⊕
k∈N

Sr(fk), V ◦
r =

⊕
k∈N

Sr(f
◦
k ),

where fk and f
◦
k are tight frame generators of Sr(fk) and Sr(f

◦
k ), respectively, and σSr(fk) =

σSr(f◦k )
, k ∈ N. Define operators Lr,k : Sr(fk) → Sr(f

◦
k ) by Lr,k(Tqfk) = Tqf

◦
k , k ∈ N.

Then, for every sequence (αq)q∈Zn ∈ ℓ2r with a finite number of non-zero elements, follows∥∥∥∥∑
q∈Zn

αqTqfk

∥∥∥∥2
Hr

=

∥∥∥∥∑
q∈Zn

αqM−qTrfk

∥∥∥∥2
H r

=

∫
Tn

∥∥∥∥∑
q∈Zn

αqM−qTrfk(t)

∥∥∥∥2
ℓ2r

dt

=

∫
Tn

∣∣∣∣ ∑
q∈Zn

αq e
−2πi⟨t,q⟩

∣∣∣∣2∥Trfk(t)∥2ℓ2r dt

=

∫
Tn

∣∣∣∣ ∑
q∈Zn

αq e
−2πi⟨t,q⟩

∣∣∣∣2∥Trf
◦
k (t)∥2ℓ2r dt

=

∥∥∥∥∑
q∈Zn

αqTqf
◦
k

∥∥∥∥2
Hr

=

∥∥∥∥Lr,k(∑
q∈Zn

αqTqfk

)∥∥∥∥2
Hr

,
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since dimVr(t) = dimV ◦
r
(t) for a.e. t ∈ Tn and thus ∥Trfk(t)∥ℓ2r = ∥Trf

◦
k (t)∥2ℓ2r for a.e.

t ∈ Tn (see Theorem 6.3.1). Therefore, Lr,k is a shift-preserving isometry. Set Lr =⊕
k∈N Lr,k. Then, the operator Lr has the desired properties.

6.5 The frame operator and dual frame

In this section, a frame operator Fo,r : Sr(Ar,I) → Sr(Ar,I) which is shift-preserving is
defined, because such an operator has the range operator by Theorem 6.4.2 (1). Moreover,
it will be shown that this range operator is equal to the restriction of the corresponding
dual Gramian to Jr.

In order to define the operator Fo,r, it is necessary to first introduce the operator Kr and
its adjoint operator K∗

r .

Definition 6.5.1 ([7]). Let Er(Ar,I) = {Tqfk : fk ∈ Ar,I , k ∈ I, q ∈ Zn} be a Bessel
family of Sr(Ar,I). The operator Kr : Sr(Ar,I) → ℓ2r(Zn × I) is defined by

Krf =

(
⟨f, Tqfk⟩Hr

µr(q + k)

)
(q,k)∈Zn×I

, f ∈ Sr(Ar,I).

Note, the condition that Er(Ar,I) is a Bessel family of Sr(Ar,I) ensures that the operator
Kr is well defined (see the conclusions given before Definition 6.2.1).

Lemma 6.5.1 ([7]). The adjoint operator K∗
r : ℓ2r(Zn × I) → Sr(Ar,I) of Kr is given by

K∗
rα =

∑
(q,k)∈Zn×I

αq,kTqfkµr(q + k),

where α = (αq,k)(q,k)∈Zn×I ∈ ℓ2r(Zn × I) and fk ∈ Ar,I , k ∈ I.

Proof. Let f ∈ Sr(Ar,I) and α ∈ ℓ2r(Zn × I). Then,

⟨K∗
rα, f⟩Hr = ⟨α,Krf⟩ℓ2r(Zn×I) =

∑
(q,k)∈Zn×I

αq,k⟨f, Tqfk⟩Hrµr(q + k)

=
∑

(q,k)∈Zn×I

αq,k⟨Tqfk, f⟩Hrµr(q + k) =
〈 ∑

(q,k)∈Zn×I

αq,kTqfkµr(q + k), f
〉
Hr
.

Hence, the assertion holds.

Definition 6.5.2 ([7]). The operator Fo,r : Sr(Ar,I) → Sr(Ar,I) is defined by Fo,r = K∗
rKr.

Note that, Er(Ar,I) is a frame with frame bounds A and B if and only if

A∥f∥2Hr ⩽ ⟨Fo,rf, f⟩Hr ⩽ B∥f∥2Hr for every f ∈ Sr(Ar,I)

if and only if σ(Fo,r) ⊆ [A,B], since

⟨Fo,rf, f⟩Hr = ⟨Krf,Krf⟩ℓ2r(Zn×I) = ∥Krf∥2ℓ2r(Zn×I) =
∑

(q,k)∈Zn×I

∣∣⟨f, Tqfk⟩Hr

∣∣2.
Thus, it is not difficult to check that the following statement holds.
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Theorem 6.5.1 ([7]). The operator Fo,r : Sr(Ar,I) → Sr(Ar,I) is a frame operator and

Fo,rf =
∑

(q,k)∈Zn×I

⟨f, Tqfk⟩HrTqfk, f ∈ Sr(Ar,I),

with the unconditional convergence in Hr.

Theorem 6.5.2 ([7]). Assume that Jr is a range function of Vr = Sr(Ar,I) and Er(Ar,I)
is a Bessel family of Vr. Then, the operator Fo,r is shift-preserving with the range operator

Rr(t) = G∗
r(t) ↾Jr(t),

where G∗
r(t) is the dual Gramian of {Trfk(t) : fk ∈ Ar,I , k ∈ I} for a.e. t ∈ Tn.

Proof. Since for every p ∈ Zn

Fo,rTpf =
∑

(q,k)∈Zn×I

⟨Tpf, Tqfk⟩HrTqfk =
∑

(q,k)∈Zn×I

⟨f, Tq−pfk⟩HrTqfk

=
∑

(q,k)∈Zn×I

⟨f, Tqfk⟩HrTq+pfk, f ∈ Sr(Ar,I),

it follows that Fo,rTp = TpFo,r, i.e. Fo,r is a shift-preserving operator (obviously Fo,r is
bounded and linear). Thus, by Theorem 6.4.2,

∥Krf∥2ℓ2r = ⟨Krf,Krf⟩ℓ2r(Zn×I) = ⟨Fo,rf, f⟩Hr = ⟨(TrFo,r)f,Trf⟩H r

=

∫
Tn

〈
R̃r(t)

(
Trf(t)

)
,Trf(t)

〉
ℓ2r
dt, f ∈ Sr(Ar,I), (6.5.1)

where R̃r is the range operator for Fo,r. Using Lemma 6.2.1 (1),

∥Kf∥2ℓ2r =

∥∥∥∥∥
(
⟨f, Tqfk⟩Hr

µr(q + k)

)
(q,k)∈Zn×I

∥∥∥∥∥
2

ℓ2r

=
∑

(q,k)∈Zn×I

∣∣⟨f, Tqfk⟩Hr

∣∣2
=
∑
k∈I

∫
Tn

∣∣∣〈Trf(t),Trfk(t)
〉
ℓ2r

∣∣∣2 dt

=

∫
Tn

∑
k∈I

〈
Trf(t),Trfk(t)

〉
ℓ2r

〈
Trf(t),Trfk(t)

〉
ℓ2r
dt

=

∫
Tn

〈(
⟨Trf(t),Trfk(t)⟩ℓ2r

)
k∈I ,

(
⟨Trf(t),Trfk(t)⟩ℓ2r

)
k∈I

〉
ℓ2
dt

=

∫
Tn

〈
D∗
rTrf(t), D

∗
rTrf(t)

〉
ℓ2
dt

=

∫
Tn

〈
DrD

∗
rTrf(t),Trf(t)

〉
ℓ2r
dt (6.5.2)

=

∫
Tn

〈
G∗
r(t)Trf(t),Trf(t)

〉
ℓ2r
dt, f ∈ Sr(Ar,I). (6.5.3)

Now, combining (6.5.1) and (6.5.2) yields∫
Tn

〈(
R̃r(t)−G∗

r(t) ↾Jr(t)
)(

Trf(t)
)
,Trf(t)

〉
ℓ2r
dt = 0, f ∈ Sr(Ar,I).

Hence, R̃r(t) = G∗
r(t) ↾Jr(t)= Rr(t) for a.e. t ∈ Tn.
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Finally, for a frame with given frame bounds A and B a dual frame is determined with
frame bounds B−1 and A−1.

Theorem 6.5.3 ([7]). Let Er(Ar,I) be a frame of Vr = Sr(Ar,I) with frame bounds A,B
and let Br,I = {f ∗

k : f ∗
k = F−1

o,r fk, fk ∈ Ar,I , k ∈ I}. Then, Er(Br,I) is the dual frame of
Er(Ar,I) with frame bounds B−1, A−1, and

Trf
∗
k (t) = R−1

r (t)
(
Trfk(t)

)
for a.e. t ∈ Tn, k ∈ I. (6.5.4)

Proof. Using Theorem 6.5.1, for every f ∈ Vr,∑
(q,k)∈Zn×I

∣∣⟨f, F−1
o,r Tqfk⟩Hr

∣∣2 = ∑
(q,k)∈Zn×I

∣∣⟨F−1
o,r f, Tqfk⟩Hr

∣∣2
=

∑
(q,k)∈Zn×I

⟨F−1
o,r f, Tqfk⟩Hr⟨F−1

o,r f, Tqfk⟩Hr

=
∑

(q,k)∈Zn×I

〈
⟨F−1

o,r f, Tqfk⟩HrTqfk, F
−1
o,r f

〉
Hr

=
〈 ∑

(q,k)∈Zn×I

⟨F−1
o,r f, Tqfk⟩HrTqfk, F

−1
o,r f

〉
Hr

=
〈
Fo,r(F

−1
o,r f), F

−1
o,r f

〉
Hr

= ⟨F−1
o,r f, f⟩Hr .

Theorem 5.2.1 (3) gives

B−1∥f∥Hr ⩽
∑

(q,k)∈Zn×I

∣∣⟨f, F−1
o,r Tqfk⟩Hr

∣∣2 = ⟨F−1
o,r f, f⟩Hr ⩽ A−1∥f∥Hr . (6.5.5)

Therefore, {F−1
o,r Tqfk : fk ∈ Ar,I , q ∈ Zn, k ∈ I} is a dual frame for Er(Ar,I) with frame

bounds B−1, A−1. Further, for every f ◦ = Fo,rf ∈ Hr,

F−1
o,r Tqf

◦ = F−1
o,r TqFo,rf = F−1

o,r Fo,rTqf = Tqf = TqF
−1
o,r f

◦, q ∈ Zn,

since the operator Fo,r is shift-preserving, by Theorem 6.5.2. Hence, F−1
o,r is also a shift-

preserving operator. Now, by (6.5.5), it follows that Er(Br,I) is a dual frame for Er(Ar,I)
with frame bounds B−1, A−1, and hold

f =
∑

(q,k)∈Zn×I

⟨f, Tqf ∗
k ⟩HrTqfk =

∑
(q,k)∈Zn×I

⟨f, Tqfk⟩HrTqf
∗
k , f ∈ Vr,

with the unconditional convergence in Hr.

Finally, (6.5.4) follows from (6.4.6) and Theorem 6.5.2.

Remark 6.5.1. Let Er(Ar,I) be a Riesz family for Vr = Sr(Ar,I) with frame bounds A,B.
Then, the dual Er(Br,I) is also a Riesz family with bounds B−1, A−1. Moreover,

⟨Tqfk, Tpf ∗
j ⟩Hr = δq,pδk,j, q, p ∈ Zn, k, j ∈ I,

where δk,j is Kronecker’s delta function.
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6.6 The structure theorem and connection with an-

other approach

Note that Vr is a separable Hilbert space, since Vr is a closed subspace of Hr, r ∈ R. The
space L2

pe = L2
pe(Rn) of L2-periodic functions is defined by

L2
pe =

{
f ⋆ : f ⋆(·) =

∑
q∈Zn

αq e
−2πi⟨·,q⟩, (αq)q∈Zn ∈ ℓ2

}
.

Now, using the Fourier transform, a characterization of elements of Vr is obtained.

Theorem 6.6.1 (The structure theorem, [6]). Let Vr = Sr(Ar,I), Er(Ar,I) be a frame
of Vr and let Er(Br,I) be its dual frame, where Br,I = {f ∗

k : f ∗
k = F−1

o,r fk, fk ∈ Ar,I , k ∈ I}.
Then, the Fourier transform of Vr, i.e. F [Vr] is the set of the Fourier transforms of
elements from D ′

L2 so that

F [f ] =
∑
k∈I

F [fk]f
⋆
k ,

where F [fk] ∈ L2
r, k ∈ I, and f ⋆k ∈ L2

pe have the expansions

f ⋆k =
∑
q∈Zn

αq,k e
−2πi⟨·,q⟩, (αq,k)(q,k)∈Zn×I ∈ ℓ2(Zn × I),

with

αq,k =

∫
Rn

F [f ](x) e2πi⟨q,x⟩ F [f ∗
k ](x)µ

2
r(x) dx, (q, k) ∈ Zn × I. (6.6.1)

Proof. By Theorem 6.5.3, the existence of a dual frame is insured. Thus, let Er(Ar,I)
and Er(Br,I) be a frame and its dual frame of Vr = Sr(Ar,I), respectively. Then, using
Lemma 5.3.1, it follows that

f =
∑
k∈I

∑
q∈Zn

〈
f, Tqfk

〉
HrTqf

∗
k =

∑
k∈I

∑
q∈Zn

〈
f, Tqf

∗
k

〉
HrTqfk =

∑
k∈I

∑
q∈Zn

αq,kTqfk

for every f ∈ Vr, where

αq,k = ⟨f, Tqf ∗
k

〉
Hr =

∫
Rn

F [f ](x) e2πi⟨x,q⟩ F [f ∗
k ](x)µ

2
r(x) dx

for all (q, k) ∈ Zn × I. Moreover, by (5.2.1),

A∥f∥2Hr ⩽
∑
k∈I

∑
q∈Zn

|αq,k|2 ⩽ B∥f∥2Hr , f ∈ Vr,

since Er(Br,I) is a frame. Therefore, (αq,k)(q,k)∈Zn×I ∈ ℓ2(Zn × I).

In the next assertions, different approaches to SI spaces are connected. First, the SI
space V0 = V is related to the SI space from [15] (see (1.0.2) for r = 0) by the following
statement.

Theorem 6.6.2 ([6]). Let V = S(Am), where Am = {fk : k = 1, . . . ,m} ⊂ L2 ∩ L ∞. If
V0 is closed in L2, then V0 = V.
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Proof. According to Theorem 1.0.5, V0 is closed in L2 if and only if E(Am) is a frame of
V0. Moreover, by the definition, V = S(Am) is closed in L2. Therefore, the same frame
determines V0 and V . Thus, V0 = V .

Shift-invariant spaces Vr, r > 0, are connected to weighted SI spaces from [64], i.e. the
spaces

Vr =

{
f : f =

m∑
k=1

∑
q∈Zn

αq,kTqfk, (αq,k)q∈Zn ∈ ℓ2r, fk ∈ L ∞ ∩ L2
r, k = 1, . . . ,m

}
, (6.6.2)

by imposing additional conditions for generators.

Theorem 6.6.3 ([6]). Let r > 0 and Vr = Sr(Ar,m), where Ar,m = {fk ∈ Hr : fk ∈
L2
r ∩ L ∞, k = 1, . . . ,m}.

(1) If Vr and F [Vr] are closed in L2
r, then Vr ⊂ Hr and Vr = Vr, i.e. every f ∈ Vr has

the expansion as in (6.6.2).

(2) If r > 1
2
and Vr is closed in L2

r, then F [Vr] is closed in L2
r and both assertions in

(1) hold.

Proof. (1) On the one hand, by Theorem 1.0.6, Vr is closed in L2
r if and only if Er(Ar,m) is a

frame of Vr. On the other hand, by Lemma 3.5.2, F [Hr] = L2
r and thus F−1[FVr] = Vr

is a closed subspace of Hr, because F [Vr] is closed in L2
r and F is an isomorphism

(Theorem 3.4.2). Therefore, since Vr = Sr(Ar,m) is a closed subspace of Hr, it implies
that Vr = Vr. Hence, f ∈ Vr has the expansion as in (6.6.2).

(2) If f ∈ Vr, then

f =
m∑
k=1

∑
q∈Zn

αq,kTqfk and f̂ =
m∑
k=1

f̂k
∑
q∈Zn

αq,k e
−2πi⟨·,q⟩ .

Let

f̂N =
m∑
k=1

f̂k
∑
|q|>N

αq,k e
−2πi⟨·,q⟩ .

In order to prove that f̂ ∈ L2
r it is enough to prove∫

Rn

f̂N(t)f̂N(t)µ
2
r(t) dt→ 0, N → +∞.

Since

f̂N(t)f̂N(t) =
m∑

k1,k2=1

f̂k1(t)f̂k2(t)
∑
|q|>N

αq,k1 e
−2πi⟨t,q⟩

∑
|q|>N

αq,k2 e
2πi⟨t,q⟩

=
m∑

k1,k2=1

f̂k1(t)f̂k2(t)Ik1,k2,N ,

and
f̂k1(t)f̂k2(t)µ

2
r(t) ∈ L2,
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it is enough to prove

|Ik1,k2,N | ⩽ sup
t∈Rn

∣∣∣ ∑
|q|>N

αq,k1 e
−2πi⟨t,q⟩

∑
|q|>N

αq,k2 e
2πi⟨t,q⟩

∣∣∣→ 0, N → +∞.

Since (αq,k)q∈Zn ∈ ℓ2r, k = 1, . . . ,m, using the Cauchy–Schwarz inequality, it follows that

|Ik1,k2,N | ⩽
∑
|q|>N

|αq,k1|
∑
|q|>N

|αq,k2|

=
∑
|q|>N

|αq,k1|µr(q)µ−r(q)
∑
|q|>N

|αq,k2|µr(q)µ−r(q)

⩽
∑
|q|>N

|αq,k1|2µ2
r(q)

∑
|q|>N

µ2
−r(q)

∑
|q|>N

|αq,k2|2µ2
r(q)

∑
|q|>N

µ2
−r(q) → 0, N → +∞.

Therefore, the statement holds.

Regarding duality, the following statement holds.

Theorem 6.6.4 ([6]). Let r > 0 and Vr = Sr(Ar,m), where Ar,m = {fk ∈ Hr : fk ∈
L2
r ∩L ∞, k = 1, . . . ,m}. If the conditions of assertion (1) or (2) in Theorem 6.6.3 hold,

then

(1) V ′
r = V−r, where V−r is the space of series of the form

f ∗ =
m∑
k=1

∑
q∈Zn

βq,kTqfk,
m∑
k=1

∑
q∈Zn

|βq,k|2µ2
−r(q) < +∞,

with the dual pairing

⟨f ∗, f⟩V ′
r ,Vr =

m∑
k=1

∑
q∈Zn

βq,kαq,k, f ∈ Vr,

(2) V−r = V−r.

Proof. Obviously, the statement (1) holds. Since elements of the form

m∑
k=1

∑
q∈Zn

βq,kTqfk

are dense in the spaces V−r and V−r, for r > 0, it implies that the statement (2)
holds.

For the equality between the spaces of intersections of the observed spaces, it is necessary
to consider generators from the Schwartz space S .

Theorem 6.6.5 ([6]). Let fk ∈ S , k = 1, . . . ,m. Then,⋂
r⩾0

Vr =
⋂
r⩾0

Vr,

and its elements can be represented in the form (6.6.2) with

sup
q∈Zn

|αq,k||q|r < +∞ for all r ⩾ 0, k = 1, . . . ,m.
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A direct consequence of the theorems 6.6.3 and 6.6.4 is the following assertion.

Corollary 6.6.1 ([6]). Let fk ∈ S , k = 1, . . . ,m. Then:

(1)

F

[⋂
r⩾0

Vr

]
=

{ m∑
k=1

f̂kwk : wk ∈ P, k = 1, . . . ,m

}
,

(2) V ′
r = V−r,

⋃
r⩾0 V

′
r =

⋃
r⩾0 V−r and

F

[⋃
r⩽0

Vr

]
=

{ m∑
k=1

f̂kvk : vk ∈ P ′, k = 1, . . . ,m

}
.

6.7 Spectral analysis of the range operator

This section is devoted to the range operator. Note, in the continuation with 1, i.e. 1(t),
will be denoted a unit mapping or a unit matrix (it will be clear from the context whether
it is a matrix or a mapping).

Theorem 6.7.1 ([4]). Let Ξ ⊂ Rn be a measurable set. If [A(t)]m×m is a matrix of
measurable functions defined on Ξ, then there are m measurable functions λk : Ξ → C,
k = 1, . . . ,m, so that λ1(t), . . . , λm(t) are eigenvalues of matrix [A(t)]m×m for a.e. t ∈ Ξ.

Theorem 6.7.2 ([7]). Let Ξ ⊂ Tn be a measurable set. Assume that Vr ⊂ Hr is a SI
space with the range function Jr, and Rr : Jr → Jr is the corresponding range operator
for a shift-preserving operator Lr : Vr → Vr. If

dimVr(t) = m < +∞ for a.e. t ∈ Ξ,

then there are m2 measurable bounded functions (Rk,j
r )mk,j=1 defined on Ξ so that

Rr(t) =


R1,1
r (t) R1,2

r (t) · · · R1,m
r (t)

R2,1
r (t) R2,2

r (t) · · · R2,m
r (t)

...
...

. . .
...

Rm,1
r (t) Rm,2

r (t) · · · Rm,m
r (t)


m×m

for a.e. t ∈ Ξ.

Furthermore, there are m measurable functions λr,k : Ξ → C, k = 1, . . . ,m, such that
λr,1(t), . . . , λr,m(t) are eigenvalues for Rr(t) for a.e. t ∈ Ξ, counted with multiplicity.

Proof. Choose the sequence of sets (Am)m∈N0 and fk ∈ Hr, k ∈ N, from Proposition 6.3.1.
Since the set {Trf1(t), . . . ,Trfm(t)} is an orthonormal basis of Jr(t) for a.e. t ∈ Am, it
follows that the range operator Rr(t) has the matrix representation,

Rk,j
r (t) =

〈
Rr(t)Trfj(t),Trfk(t)

〉
ℓ2r

for a.e. t ∈ Am.

Obviously, the elements Rk,j
r (t), k, j = 1, . . . ,m, for a.e. t ∈ Am, are measurable functions.

Moreover, by Theorem 6.4.2, holds |Rk,j
r (t)| ⩽ ∥Lr∥ for a.e. t ∈ Am and all k, j = 1, . . . ,m,

because Lr is bounded. Since dimVr(t) = m for a.e. t ∈ Ξ, it implies that Ξ ⊆ Am
(Proposition 6.3.1). Therefore, the first part of the statement holds.
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Further, let {e1, . . . , em} be the canonical basis of Cm. Define a mapping ρr(t) : Jr(t) →
Cm by ρr(t)

(
Trfk(t)

)
= ek for a.e. t ∈ Am, k = 1, . . . ,m. Thus, the (unique) relation

between the bases is established for a.e. t ∈ Am. Let λr : Ξ → C be a measurable function.
Then,

Rr(t) = ρr(t)
−1[Rk,j

r (t)]m×mρr(t)

and ker
(
Rr(t) − λr(t)1(t)

)
= ker

(
ρr(t)

−1([Rk,j
r (t)]m×m − λr(t)1(t))ρr(t)

)
, for a.e. t ∈ Ξ.

Hence, by Theorem 6.7.1, the statement follows.

In the continuation, Rλr denotes the set of eigenvalues of the bounded measurable range
operator Rr.

Definition 6.7.1 ([7]). Let Vr ⊂ Hr be a FSI space. The smallest m ∈ N so that
Vr = Sr(f1, . . . , fm) is called the length of Vr and it is denoted by D(Vr).

Note, the equivalent definition is D(Vr) = ess supt∈Tn dimVr(t).

Theorem 6.7.3 ([7]). Assume that Vr ⊂ Hr is a SI space with the range function Jr,
and Rr : Jr → Jr is the corresponding bounded measurable range operator. Then, there
are functions λr,k ∈ L∞(Tn), k ∈ N, so that

(1) λr,k(t) ̸= λr,j(t), k ̸= j, for a.e. t ∈ Tn, and

(2) if Am,d = {t ∈ Am : card(Rλ(t)) = d}, where (Am)m∈N0 are sets from Proposition
6.3.1, then Rλr(t) = {λr,1(t), . . . , λr,d(t)} for a.e. t ∈ Am,d, d ⩽ m.

Proof. First, by Proposition 6.3.1, it follows that Ak∩Aj = ∅, k ̸= j, and
⋃
m∈NAm = σVr .

Using Theorem 6.7.2, it follows that for every m ∈ N there are m measurable functions
λkr,m : Am → C, k = 1, . . . ,m, such that λ1r,m(t), . . . , λ

m
r,m(t) are eigenvalues for Rr(t) for

a.e. t ∈ Am, counted with multiplicity. Fix m ∈ N and define

Am,d =
{
t ∈ Am : card{λ1r,m(t), . . . , λmr,m(t)} = d

}
, d ⩽ m.

These sets are measurable, disjoint and
⋃m
d=1Am,d = Am. Now, there are measurable

functions λd,1r,m, . . . , λ
d,d
r,m : Am,d → C so that λd,kr,m, k = 1, . . . , d, are eigenvalues for Rr(t)

for a.e. t ∈ Am,d, and λ
d,k
r,m(t) ̸= λd,jr,m(t), k ̸= j, for a.e. t ∈ Am,d. Since Rr is bounded, it

gives |λd,kr,m(t)| ⩽ C, k ⩽ d ⩽ m, for a.e. t ∈ Am,d. Define λr,k : Tn → C by

λr,k(t) =

{
λd,kr,m(t), t ∈ Am,d, k ⩽ d ⩽ m,

C + k, otherwise.

Then, λr,k(t) ̸= λr,j(t), k ̸= j, for a.e. t ∈ Tn, and λr,k ∈ L∞(Tn), k ∈ N. Moreover, λr,k(t)
is the eigenvalue for Rr(t) for a.e. t ∈ Am,d, since for a.e. t ∈ Am,d,

ker
(
Rr(t)− λr,k(t)1(t)

)
= ker

(
Rr(t)− λd,kr,m(t)1(t)

)
, k ⩽ d ⩽ m.

Otherwise ker
(
Rr(t) − λr,k(t)1(t)

)
= {0}, because λr,k(t) = C + k is not the eigenvalue

for Rr(t).

The following remark will be used in proofs of several theorems.

Remark 6.7.1. (1) Let Vr ⊂ Hr be a FSI space with the range function Jr. If m >
D(Vr), then m(Am) = 0. Thus, define (for d ∈ N)

Bd =
+∞⋃
m=d

Am,d and κ = max{d ∈ N : m(Bd) ̸= 0}. (6.7.1)
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(2) Define the sequence of sets Ck =
⋃+∞
d=k Bd, k ∈ N. Then,

Ck = {t ∈ σVr : Rr(t) has at least k different eigenvalues}, k ∈ N.

By the proof of Theorem 6.7.3, it is clear that

Ck =
{
t ∈ Tn : ker(Rr(t)− λr,k(t)1(t)) ̸= {0}

}
, k ∈ N,

and m(Ck) = 0 for k > κ.

6.8 s-Diagonalization for shift-preserving operators

The term s-diagonalization first was introduced as the definition by A. Aguilera et al. in
[4]. In this section, the definition of s-diagonalization is adapted to Hr spaces. Then, it is
proved that if the shift-preserving operator Lr is normal, then it is also s-diagonalizable.
Moreover, if Lr is s-diagonalizable, then it can be represented via a finite sum of products
of eigenvalues and corresponding orthogonal projections. Also, the s-diagonalization of
the shift-preserving operator Lr and the diagonalization of the range operator Rr are
connected.

Definition 6.8.1 ([7]). The operator Ma : H r → H r defined by

MaTrf(t) =

(
a(t)ĝ(t+ q)

µr(q)

)
q∈Zn

, t ∈ Tn,

where a : Tn → C is a measurable function and (1 − 1
4π2∆)r/2f = g ∈ L2, is called the

multiplication operator.

Lemma 6.8.1 ([7]). The operator Ma is continuous if and only if a ∈ L∞(Tn).

Proof. Obviously, the necessary condition holds. Let f ∈ Hr and a ∈ L∞(Tn). Then,

∥MaTrf∥2H r =

∫
Tn

∥MaTrf(t)∥2ℓ2r dt =
∫
Tn

∥∥∥∥(a(t)ĝ(t+ q)

µr(q)

)
q∈Zn

∥∥∥∥2
ℓ2r

dt

⩽ ∥a∥2L∞(Tn)∥Trf∥2H r ,

i.e. Ma is a continuous operator. Hence, the assertion holds.

Definition 6.8.2 ([7]). The operators α̂ : Tn → C and Λr,α : Hr → Hr are defined by

α̂ =
∑
q∈Zn

αq e
−2πi⟨q,·⟩, Λr,α =

∑
q∈Zn

αqTq,

where α = (αq)q∈Zn ∈ ℓ2r. A sequence α = (αq)q∈Zn ∈ ℓ2r is said to be a sequence of bounded
spectrum if α̂ ∈ L∞(Tn).

Definition 6.8.3 ([7]). An operator Λr,α, where α = (αq)q∈Zn ∈ ℓ2r is a sequence of
bounded spectrum, is said to be an s-eigenvalue of operator Lr if

Vr,α = {f ∈ Hr : Lrf = Λr,αf} ≠ {0}.

The space Vr,α is called the s-eigenspace associated with Λr,α.
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The term s-eigenvalues of operator Lr generalizes its eigenvalues as shown in the following
example.

Example 6.8.1. Let λr ∈ C be an eigenvalue for Lr, i.e. ker(Lr − λr1) ̸= {0}. Then,
taking the sequence α = λrχ0, Λr,α is an s-eigenvalue of Lr, where χ0(q) = δ0,q, q ∈ Zn.

The next lemma is significant, because it shows when the operator Λr,α is well defined,
bounded, and moreover that it can be represented as a composition of operators. That
composition is used to determine the eigenvalue of the range operator Rr, which is im-
portant for further results.

Lemma 6.8.2 ([7]). If α = (αq)q∈Zn ∈ ℓ2r, then the linear operator

Λr,α = T −1
r Mα̂Tr : H

r → Hr

is a bounded operator if and only if α is a sequence of bounded spectrum.

Proof. Let f ∈ Hr and (1 − 1
4π2∆)r/2f = g ∈ L2. Then, using Lemma 6.1.2, it follows

that

T −1
r Mα̂Trf(t) = T −1

r

(
α̂(t)ĝ(t+ p)

µr(p)

)
p∈Zn

=
∑
q∈Zn

αqT
−1
r e−2πi⟨t,q⟩

(
ĝ(t+ p)

µr(p)

)
p∈Zn

=
∑
q∈Zn

αqT
−1
r e−2πi⟨t,q⟩ Trf(t) =

∑
q∈Zn

αqTqf(t) = Λr,αf(t),

i.e. Λr,α = T −1
r Mα̂Tr. Linearity follows directly from the definition of Λr,α. Since

∥T −1
r Mα̂Trf∥2Hr = ∥Mα̂Trf∥2H r =

∫
Tn

∥∥∥∥( α̂(t)ĝ(t+ p)

µr(p)

)
p∈Zn

∥∥∥∥2
ℓ2r

dt

⩽ ∥α̂∥2L∞(Tn)∥Trf∥2H r = ∥α̂∥2L∞(Tn)∥f∥2Hr ,

the statement follows.

The following lemmas are necessary for the proof of Theorem 6.8.1.

Lemma 6.8.3 ([7]). Let α be a sequence of bounded spectrum. Then, for every f ∈ Vr,α

Rr(t)
(
Trf(t)

)
= α̂(t)Trf(t) for a.e. t ∈ Tn.

Proof. Let f ∈ Vr,α. Using the equality (6.4.6), Lrf = Λr,αf and Lemma 6.8.2, it follows
that

Rr(t)
(
Trf(t)

)
= Tr

(
Lrf

)
(t) = Tr

(
Λr,αf

)
(t) = Tr

(
T −1
r Mα̂Trf

)
(t) = α̂(t)Trf(t),

for a.e. t ∈ Tn. Therefore, the statement holds.

The following auxiliary statement is a direct consequence of Proposition 2.9 [22].

Lemma 6.8.4 ([7]). If Vr ⊂ Hr is a SI space, then there is f ∈ Vr so that

supp ∥Trf∥ℓ2r = σVr .

The proof of the next statement is similar to the proof of Proposition 3.5 [4] and therefore
it is omitted.
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Lemma 6.8.5 ([7]). Assume that Jr is a range function so that dim Jr(t) < +∞ and the
range operator Rr(t) : Jr(t) → Jr(t) is measurable, for a.e. t ∈ Tn. Then, t 7→ ker(Rr(t)),
t ∈ Tn, is a measurable range function.

Now, by the lemmas 6.8.3–6.8.5 and by Theorem 6.1.1, the next statement follows.

Theorem 6.8.1 ([7]). Let α ∈ ℓ2r be a sequence of bounded spectrum. Assume that
Vr ⊂ Hr is a SI space with the range function Jr so that for a.e. t ∈ Tn, dim Jr(t) < +∞,
and Rr : Jr → Jr is the corresponding range operator for a shift-preserving operator
Lr : Vr → Vr. If Λr,α is an s-eigenvalue for Lr, then for a.e. t ∈ σVr,α the eigenvulue for
Rr(t) is λr,α(t) = α̂(t). Furthermore,

Jr,α(t) = ker
(
Rr(t)− λr,α(t)1(t)

)
for a.e. t ∈ Tn

is a measurable range function of Vr,α.

The following proposition is stated in the paper [7] as a remark without proof. Therefore,
now the proof is performed for the first time in detail.

Proposition 6.8.1 ([7]). Let α, β ∈ ℓ2r, α ̸= β, be sequences of bounded spectrum. Assume
that Vr ⊂ Hr is a SI space, Lr : Vr → Vr is a shift-preserving operator and Λr,α, Λr,β are
s-eigenvalues for Lr. Then:

(1) Vr,α is a SI subspace of Vr,

(2) LrVr,α ⊆ Vr,α,

(3) Vr,α ∩ Vr,β = {0} if and only if α̂(t) ̸= β̂(t) a.e. in σVr,α ∩ σVr,β .

Proof. The assertions (1) and (2) simply follow from definitions. For (3), if σVr,α∩σVr,β = ∅,
then the equivalence holds. Therefore, assume that σVr,α ∩ σVr,β ̸= ∅. Let Vr,α∩Vr,β = {0}.
Then, by Proposition 6.1.1 (3), it follows that JVr,α(t) ∩ JVr,β(t) = JVr,α∩Vr,β(t) = {0}, i.e.

ker
(
Rr(t)− λr,α(t)1(t)

)
∩ ker

(
Rr(t)− λr,β(t)1(t)

)
= {0} for a.e. t ∈ Tn.

Assume that there is a measurable set A ⊆ σVr,α ∩σVr,β so that m(A) > 0 and α̂(t) = β̂(t)

for a.e. t ∈ A. Then, ker
(
Rr(t) − λr,α(t)1(t)

)
= ker

(
Rr(t) − λr,β(t)1(t)

)
= {0} for a.e.

t ∈ A, a contradiction. So, α̂(t) ̸= β̂(t) a.e. in σVr,α ∩ σVr,β .

For the opposite implication, let f ∈ Vr,α ∩ Vr,β. Then,

(α̂− β̂)(t)Trf(t) = {0} for a.e. t ∈ Tn,

because Lrf = Λr,αf = Λr,βf . Since α̂(t) ̸= β̂(t) a.e. in σVr,α ∩ σVr,β , it implies that
Trf(t) = {0} for a.e. t ∈ σVr,α ∩σVr,β . Hence, f = 0, since σVr,α∩Vr,β ⊆ σVr,α ∩σVr,β .

In the rest of this section, a SI space Vr ⊂ Hr is a FSI space with the range function
Jr and Rr : Jr → Jr is the corresponding range operator for a shift-preserving operator
Lr : Vr → Vr.

The definition of s-diagonalization adapted to Hr spaces is given in the next definition.

Definition 6.8.4 ([7]). An operator Lr is said to be s-diagonalizable if there is c ∈ N
so that Λr,αk , k = 1, . . . , c, are s-eigenvalues for Lr and Vr = Vr,α1 ⊕ Vr,α2 ⊕ · · · ⊕ Vr,αc,
where ⊕ denotes a direct sum and αk, k = 1, . . . , c, are sequences of bounded spectrum.
(Vr, Lr, α

1, . . . , αc) is said to be an s-diagonalization of Lr.
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Theorem 6.8.2 ([7]). If Lr is s-diagonalizable, then Rr(t) is diagonalizable for a.e.
t ∈ σVr .

Proof. Let (Vr, Lr, α
1, . . . , αc) be an s-diagonalization for Lr. Using Theorem 6.8.1, it

follows that λr,αk(t) = α̂k(t) is an eigenvalue of Rr(t) for a.e. t ∈ σV
r,αk

, and Jr,αk(t) =

ker
(
Rr(t) − α̂k(t)1(t)

)
is eigenspace for Rr(t) for a.e. t ∈ Tn, k = 1, . . . , c. It is enough

to show that Jr(t) = Jr,α1(t)⊕ · · · ⊕ Jr,αc(t) for a.e. t ∈ Tn.

Obviously, Jr,α1(t) + · · · + Jr,αc(t) ⊆ Jr(t) for a.e. t ∈ Tn, since Vr,αk ⊆ Vr implies
Jr,αk(t) ⊆ Jr(t) for a.e. t ∈ Tn, k = 1, . . . , c. On the other hand, let φ ∈ Vr = Sr(Ar,m).
Then, there exist φk ∈ Vr,αk , k = 1, . . . , c, such that φ = φ1 + · · · + φc, and thus
Trφ(t) = Trφ1(t) + · · ·+ Trφc(t) for a.e. t ∈ Tn. Therefore, Jr(t) = span {Trf(t) : f ∈
Ar,m} ⊆ Jr,α1(t) + · · ·+ Jr,αc(t) for a.e. t ∈ Tn. Since dimVr(t) < +∞ for a.e. t ∈ Tn, it
implies that

Jr,α1(t) + · · ·+ Jr,αc(t) = Jr,α1(t) + · · ·+ Jr,αc(t) for a.e. t ∈ Tn.

Hence, Jr(t) = Jr,α1(t) + · · · + Jr,αc(t) for a.e. t ∈ Tn. By Proposition 6.1.1 (3), Jr(t) =
Jr,α1(t)⊕ · · · ⊕ Jr,αc(t) for a.e. t ∈ Tn, i.e. the sum is direct.

Theorem 6.8.3 ([7]). Let κ be given by (6.7.1). If the operator Rr(t) is diagonalizable
for a.e. t ∈ σVr , then there are sequences (αk)κk=1 of bounded spectrum so that for a.e.

t ∈ Tn, Jr,αk(t) = ker
(
Rr(t) − α̂k(t)1(t)

)
, k = 1, . . . , κ, are measurable range functions

and

(1) Jr(t) = Jr,α1(t)⊕ · · · ⊕ Jr,ακ(t), where ⊕ denotes a direct sum;

(2) the sets Ck =
{
t ∈ σVr : Jr,αk(t) ̸= {0}

}
satisfy m(Ck) > 0 and Ck+1 ⊂ Ck,

k = 1, . . . , κ− 1.

Proof. (1) Let D(Vr) = m. There are measurable functions λr,1, . . . , λr,κ ∈ L∞(Tn) so
that for a.e. t ∈ Tn,

κ⊕
k=1

ker
(
Rr(t)− λr,k(t)1(t)

)
= Jr(t),

by Theorem 6.7.3 and Remark 6.7.1. Indeed, if t ∈ Am,d, then (see the proof of Theorem
6.7.3)

κ⊕
k=1

ker
(
Rr(t)− λr,k(t)1(t)

)
=

d⊕
k=1

ker
(
Rr(t)− λd,kr,m(t)1(t)

)
⊕

κ⊕
k=d+1

{0} = Jr(t),

since for a.e. t ∈ Tn, Rr(t) is diagonalizable and {λd,kr,m(t) : k = 1, . . . , d} is the set of
eigenvalues for Rr(t) on Am,d. On the other hand, if a.e. t /∈ σVr , then Jr(t) = {0} and
ker
(
Rr(t)− λr,k(t)1(t)

)
= {0}, k = 1, . . . , κ.

Finally, since λr,k ∈ L∞(Tn), it follows that there is a sequence αk = (αkq )q∈Zn ∈ ℓ2r

of bounded spectrum such that λr,k(t) = α̂k(t) and Jr,αk(t) = ker
(
Rr(t) − α̂k(t)1(t)

)
is

measurable for a.e. t ∈ Tn, k = 1, . . . , κ.

(2) By Remark 6.7.1 (2), the statement follows.

In the following theorem, which represents a generalization of the theorem known as
the spectral theorem for shift-preserving operators, the conditions under which the shift-
preserving operator is s-diagonalizable are given.
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Theorem 6.8.4 ([7]). If Lr is a normal operator, then Lr is s-diagonalizable and

Lr =
c∑

k=1

Λr,αkPV
r,αk

,

where (Vr, Lr, α
1, . . . , αc) is an s-diagonalization of Lr and PV

r,αk
: Vr → Vr,αk , k = 1, . . . , c,

are the orthogonal projections.

Proof. Since Lr is a normal operator and Vr is a FSI space, using Theorem 6.4.4, it follows
that the range operator Rr(t) is normal for a.e. t ∈ Tn. Therefore, Rr(t) is diagonalizable
for a.e. t ∈ Tn, and thus its eigenspaces are orthogonal.

Let κ be given by (6.7.1). Then, using Theorem 6.8.3, Jr(t) = Jr,α1(t) ⊕ · · · ⊕ Jr,ακ(t)
for a.e. t ∈ Tn, where Jr,αk , k = 1, . . . , κ, are measurable range functions. Therefore, by
Theorem 6.8.1, Vr,αk = {f ∈ Hr : Lrf = Λr,αkf} ̸= {0}, k = 1, . . . , κ, are SI spaces.
Since Jr,αk(t)⊥Jr,αj(t), k ̸= j, k, j = 1, . . . , κ, for a.e. t ∈ Tn, it gives Vr,αk⊥Vr,αj , k ̸= j,
k, j = 1, . . . , κ. Finally, by Proposition 6.1.1 (2), Vr = Vr,α1 ⊕ · · · ⊕ Vr,ακ and thus the
operator Lr is s-diagonalizable.

Moreover, if (Vr, Lr, α
1, . . . , αc) is an s-diagonalization of Lr, then the s-eigenspaces Vr,αk ,

k = 1, . . . , c, are orthogonal and Vr = Vr,α1 ⊕ · · · ⊕ Vr,αc , because the eigenspaces of Rr(t)
are orthogonal for a.e. t ∈ Tn. Hence, the assertion holds.

Example 6.8.2. Let Vr = Sr(Ar,m) and Er(Ar,m) be a Bessel family for Vr. Then, by
Theorem 6.5.2, the associated frame operator for Er(Ar,m) is shift-preserving. However,
since it is self-adjoint, by Theorem 6.8.4, it follows that it is s-diagonalizable.

Theorem 6.8.5 ([7]). Let Lr : Vr → Vr be a normal operator. Then,

(1) the operators Lr and (its adjoint) L∗
r are s-diagonalizable;

(2) if Λr,α is an s-eigenvalue for Lr, then (its adjoint) Λ∗
r,α is an s-eigenvalue for L∗

r and
Vr,α = {f ∈ Hr : L∗

rf = Λ∗
r,αf}. Furthermore, Λ∗

r,α = Λr,α̃, where α̃ = (α̃q)q∈Zn ∈ ℓ2r
and α̃q = α−q, q ∈ Zn;

(3) if (Vr, Lr, α
1, . . . , αc) is an s-diagonalization for Lr, then (Vr, L

∗
r, α̃

1, . . . , α̃c ) is an
s-diagonalization for L∗

r.

Proof. (1) Since Lr is a normal operator, its adjoint operator L∗ is also normal. Therefore,
by Theorem 6.8.4, the operators Lr and L

∗
r are s-diagonalizable.

(2) Since

α̂(t) =
∑
q∈Zn

αq e
2πi⟨t,q⟩ =

∑
q∈Zn

α−q e
−2πi⟨t,q⟩,

set α̃q = α−q, q ∈ Zn. Obviously, α̃ = (α̃q)q∈Zn ∈ ℓ2r. Let f1, f2 ∈ Vr. Then,

⟨Λr,αf1, f2⟩Hr = ⟨f1,Λr,α̃f2⟩Hr ,

i.e. Λ∗
r,α = Λr,α̃. Furthermore,

ker(L∗
r − Λr,α̃) = ker((Lr − Λr,α)

∗) = ker(Lr − Λr,α) = Vr,α ̸= {0},

because Lr − Λr,α is a normal operator. Hence, the assertion holds.
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(3) Assume that (Vr, Lr, α
1, . . . , αc) is an s-diagonalization for Lr. Then, by (2),

ker(L∗
r − Λ

r,ãk
) = Vr,αk , k = 1, . . . , c.

Thus, Vr = Vr,α1 ⊕ · · · ⊕ Vr,αc is the decomposition on s-eigenspaces of L∗
r.

6.9 Dynamical sampling

In this section, assume that Vr = Sr(f1, . . . , fm) ⊂ Hr is a FSI space with the range
function Jr and Rr : Jr → Jr is the corresponding range operator for a shift-preserving
operator Lr : Vr → Vr, R

∗
r and L∗

r are corresponding adjoint operators, respectively,
E = {1, 2, . . . ,m − 1}, J = {0, 1, . . . , s}, and Vr,β = {f ∈ Hr : L∗

rf = Λr,βf}, i.e.
Vr,β = ker(L∗

r − Λr,β), where β ∈ ℓ2r is a sequence of bounded spectrum so that Λr,β is an
s-eigenvalue for L∗

r.

The next theorem is Theorem 3.2 from [5] adapted to observed spaces.

Theorem 6.9.1 ([7]). Assume that β̂(t) is an eigenvalue for R∗
r(t) for a.e. t ∈ σVr,β , and

let Jr,β(t) = ker
(
R∗
r(t)− β̂(t)1(t)

)
. If

{(Rr(t))
k(Trφj(t)) : φj ∈ Vr, j ∈ J, k ∈ E}

is a frame for Jr(t) with frame bounds A,B > 0 for a.e. t ∈ σVr,β , then

{PJr,β(t)(Trφj(t)) : φj ∈ Vr, j ∈ J}

is a frame for Jr,β(t) with frame bounds A
C(t)

, B
C(t)

, where C(t) =
∑

k∈E |β̂(t)|2k, for a.e.
t ∈ σVr,β .

Proof. For every φ ∈ Vr,β,∑
k∈E

∑
j∈J

∣∣〈Trφ(t), (Rr(t))
k(Trφj(t))

〉
ℓ2r

∣∣2 =∑
k∈E

∑
j∈J

∣∣〈(R∗
r(t))

k(Trφ(t)),Trφj(t)
〉
ℓ2r

∣∣2
=
∑
k∈E

∑
j∈J

∣∣〈(β̂(t))k(Trφ(t)),Trφj(t)
〉
ℓ2r

∣∣2
=
∑
k∈E

|β̂(t)|2k
∑
j∈J

∣∣〈Trφ(t), PJr,β(t)(Trφj(t))
〉
ℓ2r

∣∣2.
Therefore, the statement follows.

Theorem 6.9.2 ([7]). If the set {Lkrφj : φj ∈ Vr, j ∈ J, k ∈ E} is a frame generator for
Vr with frame bounds A,B > 0, then the set

{PVr,βφj : φj ∈ Vr, j ∈ J}

is a frame generator for Vr,β with frame bounds A/
∑m−1

k=0 ∥Lr∥2k and B.

Proof. Let the set {Lkrφj : φj ∈ Vr, j ∈ J, k ∈ E} be a frame generator for Vr with frame
bounds A,B > 0. Then, for a.e. t ∈ Tn,

{Tr

(
Lkrφj

)
(t) : φj ∈ Vr, j ∈ J, k ∈ E} = {(Rr(t))

k
(
Trφj(t)

)
: φj ∈ Vr, j ∈ J, k ∈ E}
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is a frame for Jr(t) with the frame bounds A,B > 0, by Theorem 6.2.1 (1) and the equality
(6.4.6). Further, let Λr,β be an s-eigenvalue for L∗

r. Then, by the theorems 6.4.4 and 6.8.1,

β̂(t) is an eigenvalue for R∗
r(t) for a.e. t ∈ σVr,β . Now, by Theorem 6.9.1,{
PJr,β(t)

(
Trφj(t)

)
: φj ∈ Vr, j ∈ J

}
is a frame of Jr,β(t) with frame bounds A/

∑m−1
k=0 |β̂(t)|2k and B/

∑m−1
k=0 |β̂(t)|2k for a.e.

t ∈ σVr,β . Finally, since

1 ⩽ C(t) =
m−1∑
k=0

|β̂(t)|2k ⩽
m−1∑
k=0

∥Rr(t)∥2k ⩽
m−1∑
k=0

∥Lr∥2k,

the assertion follows, by Lemma 6.1.4 (see Remark 6.1.1) and Theorem 6.2.1 (1).

The following statement is Theorem 3.5 from [5] adapted to observed spaces and operators.

Theorem 6.9.3 ([5]). Let α1, . . . , αc be sequences of bounded spectrum and Rr be a normal
range operator such that

Rr(t) =
c∑
l=1

α̂l(t)PJ
r,αl (t) for a.e. t ∈ Tn.

If for every l = 1, . . . , c and for a.e. t ∈ Tn,

{PJ
r,αl (t)(Trfj(t)) : fj ∈ Vr, j ∈ J}

is a frame for Jr,αl(t) with frame bounds Ak, Bk > 0, then for a.e. t ∈ σVr ,

{(Rr(t))
k(Trfj(t)) : fj ∈ Vr, j ∈ J, k ∈ E}

is a frame for Jr(t) with frame bounds

A

(
c

γ(t)

c−1∑
l=0

(
c− 1

l

)2

∥Rr(t)∥2l
)−1

and B

(
c
m−1∑
k=0

∥Rr(t)∥2k
)
,

where γ(t) = min
1⩽l⩽c

c∏
p=1,p ̸=l

|âl(t)− âp(t)| > 0 and A = min
1⩽l⩽c

Al, B = min
1⩽l⩽c

Bl.

Under additional assumptions the equivalence in Theorem 6.9.2 holds.

Definition 6.9.1 ([5], [7]). A shift-preserving operator Lr is said to have the spectral
property if for a.e. t ∈ σVr there is C > 0 so that |λ′r − λr| ⩾ C for all λ′r ̸= λr, where
λr, λ

′
r ∈ Rλr(t).

Finally, the problem of dynamical sampling for shift-preserving operators Lr on Vr =
Sr(f1, . . . , fm) ⊂ Hr is solved by the following theorem.

Theorem 6.9.4 ([7]). Let a shift-preserving operator Lr be a normal operator which has
the spectral property. Then, the set

{Lkrφj : φj ∈ Vr, j ∈ J, k ∈ E}

is a frame generator of Vr if and only if

{PVr,βφj : φj ∈ Vr, j ∈ J}

is a frame generator of Vr,β with the same frame bounds for every s-eigenvalue Λr,β of L∗
r.
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Proof. The necessary condition is proved by Theorem 6.9.2. Therefore, only the implica-
tion in the other direction should be shown.

Let Lr be a normal operator which has the spectral property. Then, by Theorem 6.8.5,
L∗ is an s-diagonalizable operator. Therefore, one can construct an s-diagonalization
(Vr, L

∗
r, β

1, . . . , βκ) of L∗
r so that σV

r,βl+1
⊂ σV

r,βl
for l = 1, . . . , κ− 1, and for a.e. t ∈ Tn,

|β̂l(t)− β̂p(t)| ⩾ C > 0, l ̸= p, l, p = 1, . . . , κ, (6.9.1)

since Lr has the spectral property (see Theorem 6.8.3 and Proposition 6.8.1 (3)), where κ
is given by (6.7.1).

Assume that {PV
r,βl
φj : φj ∈ Vr, j ∈ J} is a frame generator of Vr,βl , l = 1, . . . , κ, with

frame bounds A,B > 0. For a.e. t ∈ Tn, by Theorem 6.2.1,

{Tr(PV
r,βl
φj)(t) : φj ∈ Vr, j ∈ J}

is a frame of Jr,βl(t), l = 1, . . . , κ, with the same frame bounds. By Lemma 6.1.4 (see
Remark 6.1.1), for a.e. t ∈ Tn,

{PJ
r,βl

(t)(Trφj(t)) : φj ∈ Vr, j ∈ J}

is a frame of Jr,βl(t), l = 1, . . . , κ, with the same frame bounds. Set Al = σV
r,βl

\σV
r,βl+1

,

l = 1, . . . , κ− 1, and Aκ = σVr,βκ . Then,
(
Tn\σVr

)
∪
⋃κ
l=1Al = Tn.

Fix l̃ ∈ {1, . . . , κ}. Then, {PJ
r,βl

(t)(Trφj(t)) : φj ∈ Vr, j ∈ J} is a frame of Jr,βl for a.e.

t ∈ Al, l = 1, . . . , l̃. By Theorem 6.9.3,

{(Rr(t))
k(Trφj(t)) : φj ∈ Vr, j ∈ J, k ∈ E}

is a frame of Jr(t) with frame bounds

A

(
κ

γ(t)

l̃−1∑
l=0

(
l̃ − 1

l

)2

∥Rr(t)∥2l
)−1

and B

(
l̃
m−1∑
k=0

∥Rr(t)∥2k
)
,

where γ(t) = min
1⩽l⩽l̃

l̃∏
l=1,l ̸=p

|β̂l(t)− β̂p(t)|2, for a.e. t ∈ Al̃.

Without loss of generality, one can assume that C < 1 in (6.9.1). Then, for a.e. t ∈ Al̃,

C2κ ⩽ C2l̃ ⩽ γ(t) and

A

(
κ

C2κ

κ−1∑
l=0

(
κ− 1

l

)2

∥Lr∥2l
)−1

⩽ A

(
κ

γ(t)

l̃−1∑
l=0

(
l̃ − 1

l

)2

∥Rr(t)∥2l
)−1

,

B

(
l̃
m−1∑
k=0

∥Rr(t)∥2k
)

⩽ B

(
κ

m−1∑
k=0

∥Lr∥2k
)
.

Note that, these frame bounds are the same for all sets Al̃, l̃ = 1, . . . , κ. Thus,

{(Rr(t))
k(Trφj(t)) : φj ∈ Vr, j ∈ J, k ∈ E}
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is a frame of Jr(t) for a.e. t ∈ Tn. Therefore, {Lkrφj : φj ∈ Vr, j ∈ J, k ∈ E} is a frame
generator of Vr with the frame bounds

A

(
κ

C2κ

κ−1∑
l=0

(
κ− 1

l

)2

∥Lr∥2l
)−1

, B

(
κ

m−1∑
k=0

∥Lr∥2k
)
,

by (6.4.6) and Theorem 6.2.1. Hence, the statement holds.

6.10 Products in shift-invariant spaces

In this and the last section, results of the paper [8] will be presented. The first result is
a consequence of Theorem 4.6.1.

Proposition 6.10.1 ([8]). Let

φ1 =
∑
q∈Zn

αq,1Tqf1 and φ2 =
∑
q∈Zn

αq,2Tqf2,

with (αq,1)q∈Zn ∈ ℓ1r1, (αq,2)q∈Zn ∈ ℓ2r2, f1 ∈ Hr1, f2 ∈ Hr2 ∩ F−1
(
L∞) and r1 + r2 ⩾ 0.

Then,
φ = φ1 ∗ φ2 ∈ Vr(f1 ∗ f2),

where r ⩽ min{r1, r2}, i.e.

φ =
∑
q∈Zn

αqTq(f1 ∗ f2), (αq)q∈Zn ∈ ℓ2r, αq =
∑
p∈Zn

αq−p,1αp,2, q ∈ Zn.

Proof. First, using the theorems 3.2.3 (2), 3.4.3 (3) and 4.6.1, it follows that

φ̂ = φ̂1 ∗ φ2 = φ̂1φ̂2 =
∑
q∈Zn

αq,1M−qf̂1
∑
q∈Zn

αq,2M−qf̂2

= f̂1f̂2
∑
q∈Zn

αq,1 e
−2πi⟨q,·⟩

∑
q∈Zn

αq,2 e
−2πi⟨q,·⟩ = f̂1f̂2

∑
q∈Zn

αq e
−2πi⟨q,·⟩, (6.10.1)

where (αq)q∈Zn ∈ ℓ2r, αq =
∑

p∈Zn αq−p,1αp,2, q ∈ Zn. Further,∫
Rn

|f̂1(t)f̂2(t)|2µ2
r(t) dt ⩽ ∥f̂2∥2L∞

∫
Rn

|f̂1(t)|2µ2
r(t) dt = ∥f̂2∥2L∞∥f1∥2Hr

⩽ ∥f̂2∥2L∞∥f1∥2Hr1 < +∞,

since r1 ⩾ r. Thus, f̂1f̂2 ∈ L2
r, i.e. f1 ∗ f2 ∈ Hr, by Lemma 3.5.2 and Theorem 3.2.3 (2).

Applying the inverse Fourier transform to (6.10.1), it implies that

φ(x) = (φ1 ∗ φ2)(x) = (f1 ∗ f2)(x) ∗
∑
q∈Zn

αqδq(x) =
∑
q∈Zn

αqTq(f1 ∗ f2)(x), x ∈ Rn,

by the theorems 3.2.3 (2), 3.4.3 (3) and by Example 3.4.2. Hence, the statement holds.
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In order to introduce the property of compatible coefficient estimates, the following condi-
tions are required. Let (αkq,1)q∈Zn , (αlq,2)q∈Zn , k = 1, . . . , s1, l = 1, . . . , s2, and Λk1,Λ

l
2 ⊂ Zn,

Λk1 ∩ (−Λl2) = ∅, k = 1, . . . , s1, l = 1, . . . , s2, be such that for every k = 1, . . . , s1 and
every l = 1, . . . , s2,∑

q∈Λk
1

|αkq,1|2µ−2a1(q) < +∞,
∑

q∈Zn\Λk
1

|αkq,1|2µ2b1(q) < +∞, (6.10.2)

∑
q∈Λl

2

|αlq,2|2µ−2a2(q) < +∞,
∑

q∈Zn\Λl
2

|αlq,2|2µ2b2(q) < +∞, (6.10.3)

for some b1 ⩾ a2 ⩾ 0, b2 ⩾ a1 ⩾ 0. Moreover, let for all k = 1, . . . , s1, l = 1, . . . , s2 and
every q ∈ Zn there are C > 0 and a ⩾ 1 so that

γk,l1 (q) = card{p ∈ Zn : q − p ∈ Λl2 ∧ p ∈ Λk1} ⩽ C|q|a. (6.10.4)

New terminology, such as compatible sequences and compatible coefficient estimates are
given in the following definition.

Definition 6.10.1 ([8]). (1) Functions v1, v2 ∈ P ′ are said to have compatible coeffi-
cient estimates if for their sequences of coefficients (6.10.2)–(6.10.4) hold.

(2) Functions f1, f2 ∈ D ′ in a neighborhood of x0 ∈ Rn have compatible coefficient
estimates if for some ϕ ∈ D(Tnx0,θ), (ϕf1)pe and (ϕf2)pe have Fourier expansions
such that (6.10.2)–(6.10.4) hold.

(3) Sequences (αkq,1)q∈Zn and (αlq,2)q∈Zn, k = 1, . . . , s1, l = 1, . . . , s2, are said to be
compatible sequences if (6.10.2)–(6.10.4) hold.

A new result for the product of periodic distributions (i.e. elements of the space P ′) is
given in the following assertion, which is very significant for the following results.

Theorem 6.10.1 ([8]). Let v1, v2 ∈ P ′, i.e.

v1 =

s1∑
k=1

∑
q∈Zn

αkq,1 e
−2πi⟨q,·⟩, v2 =

s2∑
l=1

∑
q∈Zn

αlq,2 e
−2πi⟨q,·⟩,

where
∑

q∈Zn |αkq,1|2µ−2τ1(q) < +∞ and
∑

q∈Zn |αlq,2|2µ−2τ2(q) < +∞, for some τ1, τ2 > 0
and all k = 1, . . . , s2, l = 1, . . . , s2. If v1 and v2 have compatible coefficient estimates,
then there is a τ ∈ R so that v1v2 ∈ P ′τ .

Proof. First, it is not difficult to see that if

γl,k2 (q) = card{p ∈ Zn : q − p ∈ Λk1 ∧ p ∈ Λl2},

then γk,l1 (q) = γl,k2 (q).

Let v1, v2 ∈ P ′ have compatible coefficient estimates. Since the general case is just a
repetition of the following procedure, the indices k and l can be omitted (i.e. let s1 = 1
and s2 = 1). Therefore,

v1v2 =

(∑
q∈Λ1

+
∑

q∈Zn\Λ1

)
αq,1 e

−2πi⟨q,·⟩ ·

(∑
q∈Λ2

+
∑

q∈Zn\Λ2

)
αq,2 e

−2πi⟨q,·⟩

= v11v
1
2 + v11v

2
2 + v21v

1
2 + v21v

2
2. (6.10.5)
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Suppose that 2τ ⩾ max
{
4a(a1 + a2) + 2a+ n+ 1, 2a1 + n+ 1, 2a2 + n+ 1

}
. It should be

shown that every term of the sum (6.10.5) is finite.

For the first term of the sum (6.10.5),

v11v
1
2 =

∑
q∈Zn

α11
q e−2πi⟨q,·⟩, where α11

q =
∑

q−p∈Λ1
p∈Λ2

αq−p,1αp,2, q ∈ Zn,

using (6.10.4) and knowing that for a ⩾ 1, |q|a ⩽ µa(q) holds, it follows that∑
q∈Zn

|α11
q |2µ−2

τ (q) ⩽
∑
q∈Zn

( ∑
q−p∈Λ1
p∈Λ2

|αq−p,1||αp,2|

)2

µ−2
τ (q)

=
∑
q∈Zn

( ∑
q−p∈Λ1
p∈Λ2

|αq−p,1|µ−1
a1
(q − p)|αp,2|µ−1

a2
(p)µa1(q − p)µa2(p)

)2

µ−2
τ (q)

⩽ C
∑
q∈Zn

( ∑
q−p∈Λ1
p∈Λ2

|αq−p,1|µ−a1(q − p)|αp,2|µ−a2(p)

)2

µ4a(a1+a2)+2a−2τ (q)

⩽ C
∑
q∈Zn

( ∑
q−p∈Λ1
p∈Λ2

|αq−p,1|2µ−2a1(q − p)

)( ∑
q−p∈Λ1
p∈Λ2

|αp,2|2µ−2a2(p)

)
µ−1
n+1(q)

⩽ C
∑
q∈Zn

µ−1
n+1(q) < +∞,

since for p ∈ Λ2 and (q − p) ∈ Λ1,

µa1(q − p) ⩽ µa1
(
(q1 + |q|a, . . . , qn + |q|a)

)
⩽ Cµ2aa1(q), µa2(p) ⩽ Cµ2aa2(q),

again using (6.10.4).

For the second term of the sum (6.10.5),

v11v
2
2 =

∑
q∈Zn

α12
q e−2πi⟨q,·⟩, where α12

q =
∑

q−p∈Λ1
p∈Zn\Λ2

αq−p,1αp,2, q ∈ Zn,

it follows that∑
q∈Zn

|α12
q |2µ−2

τ (q) ⩽
∑
q∈Zn

( ∑
q−p∈Λ1
p∈Zn\Λ2

|αq−p,1|µ−a1(q − p)|αp,2|µb2(p)
µa1(q − p)

µb2(p)

)2

µ−2
τ (q)

⩽
∑
q∈Zn

( ∑
q−p∈Λ1
p∈Zn\Λ2

|αq−p,1|µ−a1(q − p)|αp,2|µb2(p)

)2

µ2a1−2τ (q)

⩽
∑
q∈Zn

( ∑
q−p∈Λ1
p∈Zn\Λ2

|αq−p,1|2µ−2a1(q − p)

)( ∑
q−p∈Λ1
p∈Zn\Λ2

|αp,2|2µ2b2(p)

)
µ2a1−2τ (q)

⩽ C
∑
q∈Zn

µ2a1−2τ (q) < +∞,

because µa1(q − p) ⩽ Cµa1(q)µa1(p) and b2 ⩾ a1 ⩾ 0.
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Next, Peetre’s inequality (3.5.5) for t = p, x = q and r = a2 ⩾ 0 gives

µa2(p) ⩽ Cµa2(q − p)µa2(q).

Thus, the estimate for

v21v
1
2 =

∑
q∈Zn

α21
q e−2πi⟨q,·⟩, where α21

q =
∑

q−p∈Zn\Λ1
p∈Λ2

αq−p,1αp,2, q ∈ Zn,

simply follows:

∑
q∈Zn

|α21
q |2µ−2

τ (q) ⩽
∑
q∈Zn

( ∑
q−p∈Zn\Λ1

p∈Λ2

|αq−p,1|µb1(q − p)|αp,2|µ−1
a2
(p)

µa2(p)

µb1(q − p)

)2

µ−2
τ (q)

⩽ C
∑
q∈Zn

( ∑
q−p∈Zn\Λ1

p∈Λ2

|αq−p,1|2µ2
b1
(q − p)

)( ∑
q−p∈Zn\Λ1

p∈Λ2

|αp,2|2µ−2
a2
(p)

)
µ2
a2
(q)

µ2
τ (q)

⩽ C
∑
q∈Zn

µ−1
n+1(q) < +∞,

since b1 ⩾ a2 ⩾ 0.

Finally, for

v21v
2
2 =

∑
q∈Zn

α22
q e−2πi⟨q,·⟩, where α22

q =
∑

q−p∈Zn\Λ1
p∈Zn\Λ2

αq−p,1αp,2, q ∈ Zn,

hold∑
q∈Zn

|α22
q |2µ−2

τ (q) ⩽
∑
q∈Zd

( ∑
q−p∈Zn\Λ1
p∈Zn\Λ2

|αq−p,1|µb1(q − p)|αp,2|µb2(p)µ−1
b1
(q − p)µ−1

b2
(p)

)2

µ−2
τ (q)

⩽
∑
q∈Zd

( ∑
q−p∈Zn\Λ1
p∈Zn\Λ2

|αq−p,1|µb1(q − p)|αp,2|µb2(p)

)2

µ−2
τ (q)

⩽
∑
q∈Zn

( ∑
q−p∈Zn\Λ1
p∈Zn\Λ2

|αq−p,1|2µ2b1(q − p)

)( ∑
q−p∈Zn\Λ1
p∈Zn\Λ2

|αp,2|2µ2b2(p)

)
µ−2
τ (q)

⩽ C
∑
q∈Zn

µ−2
τ (q) < +∞,

since b1, b2 ⩾ 0.

Hence, there is a τ ∈ R so that v1v2 ∈ P ′τ .

The result of Theorem 6.10.1 can be applied to the product (convolution) of elements of
SI spaces.

Theorem 6.10.2 ([8]). Let φ1 ∈ Vr1(f
1
1 , . . . , f

s1
1 ) and φ2 ∈ Vr2(f

1
2 , . . . , f

s2
2 ) such that

φ1 =

s1∑
k=1

∑
q∈Zn

αkq,1Tqf
k
1 , φ2 =

s2∑
l=1

∑
q∈Zn

αlq,2Tqf
l
2,
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where r1, r2 ⩾ 0. If (αkq,1)q∈Zn and (αlq,2)q∈Zn, k = 1, . . . , s1, l = 1, . . . , s2, are compatible
sequences, then there is an r ∈ R so that for fk1 , f

l
2 ∈ Vr ∩ Vr, k = 1, . . . , s1, l = 1, . . . , s2,

φ1 ∗ φ2 ∈ Vr
(
fk1 ∗ f l2, k = 1, . . . , s1, l = 1, . . . , s2

)
.

More precisely,

φ1 ∗ φ2 =

s1∑
k=1

s2∑
l=1

∑
q∈Zn

q−p∈Zn

αkq−p,1α
l
p,2Tq(f

k
1 ∗ f l2).

Proof. The general case is just a repetition of the following procedure so the indices k and
l can be omitted (i.e. let s1 = 1 and s2 = 1). Therefore, applying the Fourier transform
to φ1 and φ2 gives

φ̂1(t) = f̂1(t)v1(t), φ̂2(t) = f̂2(t)v2(t), t ∈ Rn,

where
v1(t) =

∑
q∈Zn

αq,1 e
−2πi⟨t,q⟩, v2(t) =

∑
q∈Zn

αq,2 e
−2πi⟨t,q⟩,

by Theorem 3.4.3 (3). Now, since v1 and v2 have compatible coefficient estimates, Theorem
6.10.1 gives a τ ∈ R so that coefficients αq =

∑
p∈Zn αq−p,1αp,2, q ∈ Zn, satisfy∑

q∈Zn

|αq|2µ−2τ (q) < +∞.

This implies

φ̂1(t)φ̂2(t) = f̂1(t)f̂2(t)
∑
q∈Zn

αq e
−2πi⟨t,q⟩, t ∈ Rn,

and thus

(φ1 ∗ φ2)(x) = (f1 ∗ f2)(x) ∗
∑
q∈Zn

αqδq(x) =
∑
q∈Zn

αqTq(f1 ∗ f2)(x), x ∈ Rn,

by the theorems 3.2.3 (2), 3.4.3 (3) and by Example 3.4.2.

Set r = −τ . Note that, under the conditions f1, f2 ∈ Vr ∩ Vr and r1, r2 ⩾ 0, the products
are well defined. Therefore, φ1 ∗ φ2 ∈ Vr(f1 ∗ f2).
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6.11 Shift-invariant spaces and wave fronts

Using the set of wave fronts, the elements of the spaces P ′ and Vr are described in the
following assertions.

Theorem 6.11.1 ([8]). Let Γ ⊂ Rn \ {0} be an open convex cone. If

v =
∑
q∈Zn

αq e
−2πi⟨q,·⟩ ∈ P ′,

∑
q∈Γ∩Zn

|αq|2µ2r(q) < +∞,

then (x0, t0) /∈ WFr(v) for every (x0, t0) ∈ Rn × Γ.

Proof. Let ϕ ∈ D(Tnx0,θ) so that ϕ = 1 in Tnx0,ε, where 0 < ε < θ. It is known that

ϕ̂ ∈ S , by (2.3.7) and Theorem 3.3.1 (3). Choose Γt0 ⊂ Γ and Γ1 ⊂⊂ Γt0 , i.e Γ1 ∩ Sn−1

is a compact subset of Γt0 ∩ Sn−1. Then, there is C > 0 so that

t ∈ Γ1 ∧ q ∈ Zn ∩
(
(Rn \ {0}) \ Γt0

)
⇒ µ1(t− q) ⩾ Cµ1(q), (6.11.1)

by elementary geometry. Using Peetre’s inequality (3.5.5) (with x = q and 2r instead of
r), by Theorem 3.2.3 (2) and Example 3.4.2, it follows that∫

Γ1

|ϕ̂v(t)|2µ2r(t) dt =

∫
Γ1

|(ϕ̂ ∗ v̂)(t)|2µ2r(t) dt

=

∫
Γ1

∣∣∣(ϕ̂ ∗
∑
q∈Zn

αqδq

)
(t)
∣∣∣2µ2r(t) dt

=

∫
Γ1

∣∣∣ ∑
q∈Zn

αqTqϕ̂(t)
∣∣∣2µ2r(t) dt

⩽
∫
Γ1

(∑
q∈Zn

|αq||Tqϕ̂(t)|
1
2 |Tqϕ̂(t)|

1
2

)2

µ2r(t) dt

⩽
∫
Γ1

(∑
q∈Zn

|αq|2|Tqϕ̂(t)|

)(∑
q∈Zn

|Tqϕ̂(t)|

)
µ2r(t) dt

⩽ C

∫
Γ1

(∑
q∈Zn

|αq|2|Tqϕ̂(t)|µ2r(t)

)
dt

⩽ C

∫
Γ1

(∑
q∈Zn

|αq|2µ2r(q)|Tqϕ̂(t)|µ2|r|(t− q)

)
dt

= C · I,

using the fact that
∑

q∈Zn |Tqϕ̂(t)| < +∞, t ∈ Rn, since ϕ̂ ∈ S . Further,

I =

(∫
Γ1

∑
q∈Zn∩Γt0

+

∫
Γ1

∑
q∈Zn\Γt0

)
|αq|2µ2r(q)|Tqϕ̂(t)|µ2|r|(t− q) dt = I1 + I2.

For I1,

I1 =
∑

q∈Zn∩Γt0

|αq|2µ2r(q)

∫
Γ1

|Tqϕ̂(t)|µ2|r|(t− q) dt ⩽ C
∑

q∈Zn∩Γt0

|αq|2µ2r(q) < +∞,
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since
∫
Rn |Tqϕ̂(t)|µ2|r|(t − q) dt < +∞, q ∈ Zn, because ϕ̂ ∈ S . Next, note that v ∈ P ′

implies that
∑

q∈Zn |αq|2µ−2τ (q) < +∞ for some τ > 0. Using (6.11.1), it follows that

µ2(τ+r)(q)

µ2(τ+r)(t− q)
⩽ C, t ∈ Γ1, q ∈ Zn \ Γt0 .

Therefore,

I2 =

∫
Γ1

∑
q∈Zn\Γt0

|αq|2µ−2τ (q)
µ2(τ+r)(q)

µ2(τ+r)(t− q)
µ2(τ+r+|r|)(t− q)|Tqϕ̂(t)| dt

⩽ C
∑

q∈Zn\Γt0

|αq|2µ−2τ (q)

∫
Γ1

µ2(τ+r+|r|)(t− q)|Tqϕ̂(t)| dt < +∞,

since
∫
Rn µ2(τ+r+|r|)(t− q)|Tqϕ̂(t)| dt < +∞, q ∈ Zn, τ > 0, because ϕ̂ ∈ S .

Hence, the statement follows.

Corollary 6.11.1 ([8]). Let f ∈ D and φ ∈ Vr(f) such that

φ =
∑
q∈Zn

αqTqf and
∑

q∈Zn∩Γ

|αq|2µ2r(q) < +∞

for an open cone Γ ⊂ Rn \ {0}. If
∑

q∈Zn |αq|2µ−2τ (q) < +∞ for some τ > 0, then for
every (x, t) ∈ Rn × Γ, (x, t) /∈ WFr(φ̂).

Proof. Obviously, φ̂ = f̂φ0, where φ0 =
∑

q∈Zn αq e
−2πi⟨q,·⟩. Applying Theorem 6.11.1,

it follows that for every (x, t) ∈ Rn × Γ, (x, t) /∈ WFr(φ0). Finally, by Lemma 4.5.3 (1),
(x, t) /∈ WFr(φ̂).

In order to determine the conditions for the existence of the product of elements from SI
spaces by the set of wave fronts, and the conditions for belonging of that product to some
SI space, it is necessary to first investigate the product of elements of the space P ′.

The following consideration of sets Λ1 and Λ2 is especially interesting. Choose the cones
Γ1 and Γ2 so that pr2

(
WFr1(f1)

)
⊂ Γ1, pr2

(
WFr2(f2)

)
⊂ Γ2, and set

Λ1 = Zn ∩ Γ1 and Λ2 = Zn ∩ Γ2.

Theorem 6.11.2 ([8]). Let v1, v2 ∈ P ′ (i.e. v1 ∈ P ′τ1, v2 ∈ P ′τ2), Γ1,Γ2 ⊂ Rn \ {0} be
cones such that Γ1 ∩ (−Γ2) = ∅ and let the following conditions hold.

(1) There are C > 0 and a ⩾ 1 so that

card{p ∈ Zn : q − p ∈ Γ1 ∧ p ∈ Γ2} ⩽ C|q|a, q ∈ Zn.

(2) Let (x0, t0) ∈ Rn × (Rn \ {0}) and let ϕ ∈ D(Tnx0,θ), ϕ = 1 in Tnx0,ε, 0 < ε < θ, be
such that

pr2
(
WFr1(ϕv1)

)
⊂ Γ1 and pr2

(
WFr2(ϕv2)

)
⊂ Γ2,

where r1 ⩾ τ2 and r2 ⩾ τ1.

Then, v = (ϕv1)pe(ϕv2)pe exists in D ′. Furthermore, v ∈ P ′.
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Proof. Let

(ϕv1)pe =
∑
q∈Zn

αq,1 e
−2πi⟨q,·⟩ and (ϕv2)pe =

∑
q∈Zn

αq,2 e
−2πi⟨q,·⟩ .

Note, if x ∈ suppϕ and t ∈ (Rn \ {0}) \ Γ1, then (x, t) /∈ WFr1(ϕv1). The same holds for
ϕv2. Since v1 ∈ P ′τ1 and v2 ∈ P ′τ2 , it follows that∑

q∈Zn∩Γ1

|αq,1|2µ−2τ1(q) < +∞ and
∑

q∈Zn∩Γ2

|αq,2|2µ−2τ2(q) < +∞.

Now, using the same procedure as in the proof of Theorem 6.10.1, it is shown that
v = (ϕv1)pe(ϕv2)pe exists and v ∈ P ′.

Remark 6.11.1. Theorem 6.11.2 can be generalized to the case when there are several
cones Γk1, k = 1, . . . , s1 (connected with v1) and Γl2, l = 1, . . . , s2 (connected with v2) such
that Zn ∩ Γk1, k = 1, . . . , s1, and Zn ∩ Γl2, l = 1, . . . , s2, contain index sets for v1 and v2,
which are compatible index sets.

Remark 6.11.2. In the case n = 2 if Γ1 ∩ (−Γ2) = ∅, then it follows that condition (1)
of Theorem 6.11.2 holds with a = 2 (hypothesis is that condition (1) also holds for n > 2
with a = n, but the structure of cones and their intersections are more complex in the
dimension n > 2, thus this is an open problem for now).

Indeed, suppose that cones are acute (if not, they can be divided into finite sets of cones).
Thus, let Γ1 and −Γ2 be acute and let Γ1 ∩ (−Γ2) = ∅. By translation the cone −Γ2 for

vector
−→
OQ, where O = (0, 0) and Q = (q1, q2), there are several different positions of the

cone. Cones may not have an intersection, but the most interesting case is when they
intersect in four points (in that case, the intersection has the largest number of possible
integer points, that is, the surface of the intersection is the largest). Therefore (without
losing generality), let

Γ1 = {(x1, x2) : kx1 ⩾ x2, x1 ⩾ 0} and − Γ2 = {(x1, x2) : lx1 ⩾ x2, x1 ⩽ 0},

where l > k > 0 (see Figure 3).

Figure 3.
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Let the cone −Γ2 be in the position shown in Figure 4, after the translation for the vector−→
OQ. The points of intersection are denoted by A1, A2, A3, A4. Each point of intersection
can be written in the form

(cj1,1q1 + cj1,2q2, c
j
2,1q1 + cj2,2q2), j = 1, 2, 3, 4.

Figure 4.

Now, by calculating the obtained area of the intersection, it is concluded that it can be
estimated by C(q21 + q22), i.e by C|q|2 for some C > 0. Hence, in the dimension n = 2, the
assumption Γ1 ∩ (−Γ2) = ∅ implies the condition (1) of Theorem 6.11.2 with a = 2.

The immediate consequences of the theorems 6.10.2 and 6.11.2 are given in the following
assertions.

Corollary 6.11.2 ([8]). Let fk ∈ Hrk , k = 1, 2, and let Γ1,Γ2 ⊂ Rn \ {0} be cones such
that Γ1 ∩ (−Γ2) = ∅. Suppose that the assumption (1) of Theorem 6.11.2 holds.

(1) Let x0 ∈ Rn, φ1, φ2 ∈ D ′ and ϕ ∈ D(Tnx0,θ) such that ϕ = 1 in Tnx0,ε, 0 < ε < θ.
Suppose that

F [ϕφ1] = f̂1
∑
q∈Zn

αq,1 e
−2πi⟨q,·⟩, F [ϕφ2] = f̂2

∑
q∈Zn

αq,2 e
−2πi⟨q,·⟩

and for some τ1, τ2 > 0 hold∑
q∈Zn∩Γ1

|αq,1|2µ−2τ1(q) < +∞ and
∑

q∈Zn∩Γ2

|αq,2|2µ−2τ2(q) < +∞.

Moreover, suppose that the condition (2) of Theorem 6.11.2 holds. Then, there is
an r ∈ R such that

ϕφ1 =
∑
q∈Zn

αq,1Tqf1 and ϕφ2 =
∑
q∈Zn

αq,2Tqf2

are elements of Vr(f1) and Vr(f2), respectively, and (ϕφ1) ∗ (ϕφ2) ∈ Vr(f1 ∗ f2).
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(2) Let φk ∈ Vrk(fk), k = 1, 2, and let (x0, t0) ∈ Rn× (Rn \{0}). For φ̂k = f̂kvk suppose
that pr2

(
WFrk(vk)

)
⊂ Γk, where vk =

∑
q∈Zn αq,k e

−2πi⟨q,·⟩, k = 1, 2. Moreover,
suppose that hold∑

q∈Zn∩Γ1

|αq,1|2µ−2τ1(q) < +∞ and
∑

q∈Zn∩Γ2

|αq,2|2µ−2τ2(q) < +∞,

where r1 ⩾ τ2 > 0 and r2 ⩾ τ1 > 0. Then, there is an r ∈ R such that

φ = φ1 ∗ φ2 ∈ Vr(f1 ∗ f2) and φ =
∑
q∈Zn

αqTq(f1 ∗ f2).
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