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Abstract

This doctoral dissertation investigates shift-invariant subspaces V, of Sobolev spaces
H" (R™), where r € R. Characterization of the spaces V, was performed using range
functions, range operators, shift-preserving operators, and wave front. Also, characteri-
zations of frames, Riesz families, and Bessel families were performed using the mentioned
operators and especially using Gram’s and dual Gram’s matrix. Relationships between
the mentioned operators were investigated, and the conditions under which the shift-
preserving operator could be s-diagonalizable and could be written as a finite sum of
products of its s-eigenvalues and corresponding projections were determined. The prob-
lem of dynamical sampling for spaces V,. was solved and different approaches to the theory
of shift-invariant spaces were identified. Elements of the spaces V, were described using
a wave front. Finally, conditions under which there exists a product of elements from the
observed spaces and conditions when such a product would belong to some shift-invariant
space were determined.

The dissertation consists of six chapters. The first chapter is of an introductory nature.
It consists of a brief overview of the achieved results in the space L?(R") including the
focus on the importance of shift-invariant spaces and other concepts mentioned in dis-
sertation. The second chapter presents the theory of distributions. The main tool used
in dissertation, the Fourier transform, is presented in the third chapter. Also, Sobolev
spaces H" (R"), r € R, and spaces Z;2(R"), Z;.(R"), are presented in the third chapter.
The fourth chapter discusses spaces of periodic functions and periodic distributions, some
important equalities used in research, and the theory of wave fronts. Theory of frames in
Hilbert spaces is presented in the fifth chapter. Finally, the sixth chapter presents original
results of this dissertation.

Key words: Sobolev spaces, shift-invariant space, range function, range operator,
shift-preserving operator, frame, s-diagonalization, dynamical sampling, wave front, pro-
duct of distributions.
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Apstrakt

Ova doktorska disertacija istrazuje translaciono-invarijantne potprostore V,. prostora Sobo-
ljeva H" (R™), pri ¢emu je r € R. Karakterizacija prostora V, izvrSena je koris¢enjem
funkcije opsega, operatora opsega, operatora koji komutiraju sa translacijama i talasnim
frontom. Takode, izvrsena je karakterizacija okvira, Risove familije i Beselove familije
uz pomo¢ pomenutih operatora i posebno koristeé¢i Gramovu i dualnu Gramovu matricu.
Istrazivani su odnosi izmedu navedenih operatora i odredeni uslovi pod kojima opera-
tor koji komutira sa translacijama moze biti s-dijagonalizabilan i moze se zapisati kao
konacan zbir proizvoda njegovih s-sopstvenih vrednosti i odgovarju¢ih projekcija. Prob-
lem dinamickog uzorkovanja za prostore V,. je resen i povezani su razliciti pristupi teoriji
translaciono-invarijantnih prostora. Elementi prostora V, su opisani pomocu talasnog
fronta. Na kraju, uslovi pod kojima postoji proizvod elemenata iz posmatranih prostora
i uslovi kada ¢e takav proizvod pripadati nekom translaciono-invarijantnom prostoru su
odredeni.

Disertaciju ¢ini Sest glava. Prva glava je uvodnog karaktera. Sastoji se iz kratkog pre-
gleda postignutih rezultata u prostoru L?(R"), ukljucujuéi i fokus na znacaj translaciono-
invarijantnih prostora i drugih pojmova koji se pominju u disertaciji. U drugoj glavi
izloZzena je teorija distribucija. Glavni alat koji se koristi u disertaciji, Furijeova trans-
formacija, predstavljena je u treéoj glavi. Takode, prostori Soboljeva H" (R"), r € R,
i prostori Z;2(R"), Z;,(R™) su predstavljeni u trecoj glavi. Cetvrta glava sadrzi pros-
tore periodi¢nih funkcija i periodi¢nih distribucija, neke bitne jednakosti koje se koriste
u istrazivanju, i teoriju o talasnom frontu. Teorija okvira u Hilbertovim prostorima je
izlozena u petoj glavi. Na kraju, u Sestoj glavi su predstavljeni originalni rezultati ove
disertacije.

Kljuéne reci: Soboljevi prostori, translaciono-invarijantni prostori, funkcija opsega,
operator opsega, operator koji komutira sa translacijama, okvir, s-dijagonalizacija, dina-
micko uzorkovanje, talasni front, proizvod distribucija.
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Chapter 1

Introduction

The role of mathematical research in solving a large number of problems in education and
society is growing amazingly. Harmonic analysis constitutes a leading part in resolving
these problems. Harmonic analysis is a branch of mathematics that arose from ancient
attempts to display functions as superpositions of some elementary functions with oscil-
latory ones, i.e. wave nature. The term ”harmonics” comes from the ancient Greek word
meaning ”skilled in music”. In the physical problems of eigenvalues, this term has come
to denote waves whose frequencies are integer multiples of a fundamental frequency, such
as the harmonic frequencies of musical notes. However, this term has been generalized
over time beyond its original meaning.

A modern branch of harmonic analysis is time-frequency analysis. Time-frequency analy-
sis includes parts of mathematics and applied mathematics that use time-frequency shifts
(translations and modulations) for analysis of operators. It is a form of local Fourier analy-
sis that simultaneously and symmetrically treats time and frequency. Time-frequency
analysis has a wide range of applications: in physics, signal analysis, engineering, image
processing, communication theory, quantum mechanics, etc.

This dissertation specifically studies the Sobolev! spaces of functions that are invariant

under translation, i.e. shift-invariant spaces of Sobolev type. The advantage of shift-
invariant spaces is reflected in the fact that the simplicity and structure of the space
are maintained, so they are more flexible for approximating real data. They are used
in the finite element method, approximation theory, the construction of multiresolution
approximations, spaces of signals and images, wavelet theory, etc. (see [10, 13, 14, 18, 40,
42, 44, 57, 73]).

The structure of shift-invariant subspaces of space L? = L*(R"™) was first studied by
Marcin Bownik, in 1999. In the paper [23], using the range function, the range operator
and shift-preserving operator, he provides a characterization of frames such that checking
whether E(o) = {T,f : f € o,q € Z", o C L*} C L? is a frame on a ”large”
subspaces of L? reduces to the problem of checking it on a “small” subspaces of ¢?(Z"),
where [ is finite set or I = N, and T,f(-) = f(- — ¢). In this way, the problem of
determining whether a set of functions is a frame or a Riesz? family in large subspaces

1Sergei Lvovich Sobolev (1908-1989) — Russian mathematician.
2Frigyes Riesz (1880-1956) — Hungarian mathematician.



of L? is reduced by switching to the Fourier® domain and a small subspace of the space
11

(? parameterized by T" = [—5,3)" Therefore, the analysis of frames and Riesz families
using the Gram’s* matrix and its dual matrix is simplified. It is proved that every (even
infinitely dimensional) shift-invariant space can be decomposed into an orthogonal sum
of spaces, each generated by a single function whose shifts form a Parseval® frame for
that space. By applying this fact, the characterization of shift-preserving operators in
the sense of range operators is given, and some facts about the dimension function are
proved. Some important results of M. Bownik are presented in more detail below since

they stimulated this research.

Let R™ denote the n-dimensional real Euclidean® space. This is space of all n-tuples
r = (21,%2,...,%,), where z; € R, j = 1,2,...,n. Similarly, the notations Z" and
Ni will be used for the corresponding n-tuples. The inner product on R" is (z,y) =
> e ThYk, T = (X1, T2, .., Ty), Y = (Y1, Y2, .., Yn). Also, throughout this dissertation,
the n-dimensional integral will be denoted by [, f(x) dz, where Q@ C R™. Recall that
L?-norm of a measurable function f is

o= ([ rora) "

where s € [1,+00). If ||f||zs < 400, then f € L*(R™). The space L*(R") is a Banach
space. A measurable function f belongs to L>*(R") if

/]

[fllzee = esssup | f(z)] < +oo0,

reR™

i.e. if f is essentially bounded. The space L*(R") is a Hilbert space with the inner product

(frghe= | f(@)g(w)dw, frg € LR,

The short notations L® and L* will be used for spaces L*(R"), s € [1, +00), and L*(R"),
respectively. Further, let & be at most countable set of functions from L? and F (<) =
{T,f : f € &, q€Z"}. In the following, I denotes a finite set or I/ = N (unless otherwise
stated). Therefore, the notation o7 will also be used when an index set [ is given. If
I ={1,...,m}, then the notation .27, will be used. An arbitrary Hilbert” space will be
denoted by . By ||-|| will be denoted the operator norm. The imaginary unit is denoted
by i (i* = —1).

Definition 1.0.1 ([43]). A (closed) subspace V- C F for which holds
f eV implies T,f € V' for every q € 7",

is said to be a shift-invariant (SI) space.

Bownik in [23] observed # = L? and used S(&) = span E(«/) to denote the SI space
generated by & C L? where span (&) denotes the closed set of all linear combinations
of vectors F(2f). Next, he introduces a new space.

3Jean-Baptiste Joseph Fourier (1768-1830) — French mathematician and physicist.

4Jgrgen Pedersen Gram (1850-1916) — Danish actuary and mathematician.

®Marc-Antoine Parseval des Chénes (1755-1836) — French mathematician.

SEuclid (325 BCE-265 BCE) — an ancient Greek mathematician active as a geometer and logician;
”the father of geometry”.

"David Hilbert (1862-1943) — German mathematician.



Definition 1.0.2 ([23]). The space of all vector valued measurable functions G : T" — (*
such that

IG(#)[|7 dt < +o0
Tn
is denoted by L* (T", (?).
Lemma 1.0.1 ([23]). The space L* (T", ¢?) is a Hilbert space with the inner product

(G, Ga) oo = / (G (1), (1)) dt,

n

and the corresponding norm

1/2
|Gl L2 (rn 2y = (/Tn |G ()2 dt) .

Further, he uses the Fourier transform defined by

FI) = Zf)t) =)= | fla)e?™00 dp, teR,
RTL
and introduces two important mappings.

Lemma 1.0.2 ([23]). The mapping 7 : L*> — L* (T", (*) defined by

~

Tt = (ft+a),cpr teT, fel?
is an isometric isomorphism. Moreover, for every f € L? holds T f(-—q) = e~2™4) T f(.),
qe’z".
Definition 1.0.3 ([23]). A mapping

J:T" — {closed subspaces of 62}

(t— J(t), t € T") is called the range function.

The range function J is measurable if for any a,b € 2, t — (P (a), b),2 is a measurable
scalar function (i.e. if Pjqy, t € T", are weakly operator measurable), where Py : 2 —
J(t), t € T", are the associated orthogonal projections. Range functions are said to be
equal if they are equal almost everywhere (or a.e. for short).

In the following theorem he connects SI spaces with the range function and vice versa.
Bownik got the idea for this claim from Helson’s® book [43].

Theorem 1.0.1 ([23]). A space V' C L? is SI if and only if there is a measurable range
function J so that

V={fel’: 7f(t)€J{) for aetecT"}.
The relationship between V' and J is one-to-one. If V.= S(<a7), then

J(t) =span{ T f(t): [ € o}.
8Henry Berge Helson (1927-2010) — American mathematician.
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Some authors call .7 f(t), i.e. (f(t + q))qezn
J(t) the fiber space for V" at t (see [4, 5]).

the fiber for function f at t, and the space

The idea for the characterization of frames is implicitly observed in the work [68]. For
the notation in the theorems 1.0.2 and 1.0.3, the reader can refer to Chapter 5.

Theorem 1.0.2 ([23]). Let V = S(<7). Then, E(9) is

(1) a frame of V with frame bounds A and B if and only if { T f(t) : f € &} C % is a
frame of J(t) with frame bounds A and B for a.e. t € T";

(2) a Riesz family (basis) of V with bounds A and B if and only if {7 f(t) : f € <1} C (*
is a Riesz family (basis) of J(t) with bounds A and B for a.e. t € T";

(3) a Bessel family of V with bound B if and only if {7 f(t) : f € &} C (? is a Bessel
family of J(t) with bound B for a.e. t € T";

(4) a fundamental frame of V if and only if {T f(t) : f € <} C ¢? is a fundamental
frame of J(t) for a.e. t € T".

Bownik then introduces the definition of dimension function, the definition of spectrum
of SI space and proves the decomposition theorem.

Definition 1.0.4 ([23]). Let V = S(7;) and J be the corresponding range function.

(1) A mapping dimy : T* — N U {0, +oo} defined by dimy (t) = dim J(¢) is called the
dimension function of V.

(2) The spectrum of space V is defined by oy = {t € T" : dim J(t) > 0} or equivalently
oy ={teT": J(t) #{0}}.

Theorem 1.0.3 (The decomposition theorem, [23]). Let V be a SI subspace of L.
Then, V' can be decomposed into an orthogonal sum, i.e.

V=D 5(f),

keN

such that {T,fi : q € Z"} is a tight frame of S(fx) and oy, .,) C oy, for every k € N.
Moreover, dimg(s,)(t) = ||.7 fr(t)|le2 for every k € N, and

dimy (t) = > (|7 fi(t)lle  for a.e.t € T".

keN

Furthermore, he introduces another very important operator, the range operator. This
operator is defined as a family of operators, and gives a very significant connection bet-
ween range operators and shift-preserving operators. An operator L is shift-preserving if
it is linear and bounded and commutes with translations.

Definition 1.0.5 ([23]). An operator defined on J (with values in (*) by
R : T" — {bounded operators defined on closed subspaces of (*},

such that the domain of R(t) is J(t) for a.e. t € T", is called the range operator. The
range operator R is measurable if t — R(t) Py, t € T", is a weakly measurable operator.



Theorem 1.0.4 ([23]). Assume that V C L? is a SI space and J is its associated range
function.

(1) If L : V — L? is a shift-preserving operator, then there is a measurable range
operator R on J so that

(ZL)f(t)=R(t)(Tf(t)) foraeteT" feV. (1.0.1)

(2) If R is a measurable range operator on J so that esssup,ep |R(t)| < +oo, then
there is a shift-preserving operator L : V' — L? so that (1.0.1) holds.

The correspondence between L and R is one-to-one and esssup,cpn ||R()|| = || L]].

Further, Bownik uses these obtained results and gives the properties of the dimension
function and determines a dual frame for a given frame. M. Bownik’s work was follo-
wed by A. Aguilera and collaborators. They continued to study the range function,
shift-preserving operators, and range operators [4, 5]. They introduced the definition of
s-diagonalization and determined conditions under which the shift-preserving operator L
could be s-diagonalizable and represented by using a finite sum of products s-eigenvalues
of the operator L and the corresponding orthogonal projections. Also, Aguilera and
collaborators dealt with the problem of dynamical sampling for shift-preserving operators
defined on SI subspaces of L2

Dynamic sampling deals with the problem of reconstructing a signal from its samples.
That is, it is necessary to determine the conditions for a bounded operator T : 5 — ¢
defined on a Hilbert space ¢ and a set of functions F = {f; : j € J} C J€ so that the
set {T%f; : j € J, k € E} is a basis or frame for %, whereby the index sets J and E
are the subsets of Ny. In this way, it is possible to compensate the lack of information
for the signal f, by sampling the signals T'f, T?f, T°f, ... This problem has recently
attracted a lot of attention from mathematicians and there are different interpretations
of it [1, 2, 3, 9, 11, 12, 20, 50].

Furthermore, the mentioned results and papers are followed by papers [21, 24, 25, 55, 60)]
and many others. In the dissertation, all the important results of Bownik and Aguilera,
papers [23] and [4, 5], are extended to SI spaces of the Sobolev type (the sections 6.1-6.5
and 6.7-6.9). Further, using the Fourier transform, an additional structure of SI spaces
was obtained (Section 6.6). On the other hand, there was also a somewhat different
approach to SI spaces, such as the approach of the authors in [15] and [64]. They consider
SI spaces of form

— {f =)0 agiTofe (Qgp)gezn €0, fr € L¥NLE k=1,... ,m}. (1.0.2)

k=1 qeZn
Recall that the space of weighted sequence /7 is defined by
3= 03(2") = { A)gezr = Y lagliq) < —l—oo}, s>1,reR,
qeEL™
where y,(-) = (1+]-|?)"/2. Obviously, u® = ps, for s € R. Note, the space ¢2 is a Hilbert

space with the inner product

<<O‘q71)q€Z”= (avg.2) q€Z" E :O‘q,laqﬁﬂw
qEL™



The space £ defined by

2% = £l = sup 3 [T 0] < 00}

qeZ™

is a subspace of L? (see [15, 64]), and the space L? is defined by

L? = L*(R") = {f : / |f ()P g (t) dt < +oo}, r € R. (1.0.3)

The space

Yo = {f f = Z Z agiTyfe, (Qgp)gezn € O, fr € L, k= 17---,7’1}

k=1 qezZ"
is analyzed in [15].
The following two statements are the main results of papers [15] and [64].

Theorem 1.0.5 ([15]). Let M, = {fr : fx € L, k =1,...,m}. Then, the following
statements are equivalent.

(1) ¥ is closed in L2.
(2) E(AMy) is a frame for ¥;.

Theorem 1.0.6 ([64]). Let %, = {fr : fo € L>*NL% k = 1,...,m}. Then, the
following statements are equivalent.

(1) ¥, is closed in L2.
(2) E(A,) is a frame for ¥;.

An important difference is that with this approach to SI spaces, the sequence of coeffi-
cients belongs to space 2. In the dissertation, these two approaches to SI spaces are
connected (Section 6.6). Moreover, Pilipovi¢ and Simi¢ in paper [64] observe spaces ¥,
with sequences from ¢7, but in this dissertation only the case s = 2 is significant.

In the further research of SI spaces of Sobolev type, this dissertation uses the wave front
of Sobolev type introduced by Hormander? in [46], and results of paper [56] in which
Maksimovi¢, Pilipovié¢ and collaborators performed the discretization of the wave front of
Sobolev type of a distribution f € 2'(R") in terms of Fourier series coefficients.

A wave front (or a wave front set) is a term that appeared in the period of research
related to the classification of singularities by means of their spectrum and it is at the
base of microlocal analysis (microlocal analysis is a part of analysis in which properties of
distributions are studied). Until the late 1990s, wave front rarely appeared when solving
physics problems. During the 1990s, the wave front set was proved to be a crucial in
defining quantum fields in curved space-times, Dirac!? fields, quantization of gravity, etc.,
followed by the intense studies of different types of wave front sets. Hormander’s concept
of the wave front (set) [46]-[48] has attracted the mathematicians’ attention and there

9Lars Valter Hormander (1931-2012) — Swedish mathematician.
0Paul Adrien Maurice Dirac (1902-1984) — English theoretical physicist.



is extensive literature on it and its important role in the qualitative analysis of partial
differential equations and pseudo-differential operators.

Using the discretization of the wave front of Sobolev type from [56], the elements of the
observed spaces will be described in the dissertation. Also, conditions are obtained under
which the product of two elements from different SI spaces exists, and moreover belongs
to some SI space (the sections 6.10 and 6.11).

Before presenting all the obtained results, the chapters 2-5 will cover the necessary theo-
retical framework for a better understanding of the noted results. Therefore, let us take
a short trip through the theoretical background of the topic.



Chapter 2

Theory of distributions

The theory of distributions (theory of general functions) was created with desire to find
a correct mathematical approach to the mathematical models of various processes, which
were not clearly based (mathematically speaking), and enable mathematical solutions
that will have a natural sense.

The concept of functions and operations with functions in the classical analysis, due to
its pronounced narrowness, did not always enable an adequate solution of those models.
This resulted in several attempts to generalize the notion of function and operations
with it. The results of Sobolev [70] and [71] have the most prominent place. In the
monograph ” Théorie des distributions” (1950/1951) L. Schwartz! was the first who publish
a systematized theory of one class of general functions — distributions (the latest edition
[69] was issued in 1966).

The theory of distributions represents a mathematical tool for various areas of mathe-
matical physics, the theory of partial differential equations, harmonic analysis, the theory
of pseudo-differential and Fourier operators. Its applications can be found in [19, 26, 32,
34, 37, 75] and many other papers and books.

In classical analysis, continuous functions do not have to be differential. Distributions are,
roughly speaking, a generalization of the concept of functions so that every continuous
function is a distribution. Its derivative is not a function, it is a distribution. Moreover,
every distribution is differentiable and its derivative is a distribution. For example, in
physics, one comes across quantities that have a very large value in a very small domain,
but are equal to zero outside of it. In 1926, Dirac introduced a mathematical notation for
such cases by defining the J-distribution, which is also called the Dirac delta distribution.

It is defined by
=0
do(z) = oo =0 /(50(1’) dz = 1.
O, xT 7é O, R

This led to birth of a new theory, the theory of distributions.

In this chapter, the basic definitions and properties that are needed for further work will
be listed, for details you can see [16, 36, 37, 38, 45, 49, 65, 69, 74, 75].

Laurent-Moise Schwartz (1915-2002) — French mathematician.



2.1 The spaces Z(R") and Z'(R")

Let us introduce the basic notation that will be used in this chapter and in the dissertation.
If v = (x1,29,...,2,) € R" and a = (a1, a9, ...,a,) € N}, then

xt = ax{tag? i
and |z|® = |z1|* + |z2|® + - - + |zn|®, s € [1, +00). For every a = (ay, a9, ...,a,) € Nj,
Hlal

0 = D"

= al as
0x}' 0x5? - - - Oxdn

The set © C R” will denote the open set, and €'(€2) the set of continuous functions on €.
The label Q indicates the closure of the set (.

Definition 2.1.1 ([65]). The set supp ¢ = {x € Q: ¢(x) # 0} is called the support of the
function ¢ € €(Q).

Using relation AU B = AU B, for sets A, B C R", the next assertion follows.

Lemma 2.1.1 ([45, 65]). Let ¢, € €(R™). Then, supp(¢ + 1) C supp ¢ U supp ¢, and
supp(C¢) = supp ¢ for every C' € C\{0}.

Definition 2.1.2 ([65]). Let £ € Ny or { = +oo. The set €%(Q) denotes the set of
functions that are defined over €2 and have all continuous derivatives up to order {. The
set G1(Q) is a subset of €4(Q) of those functions whose supports are compact in 2.

Note, if £ = 0, then €°(Q) = €(Q).

Remark 2.1.1. (1) Since every compact set in S is also compact in R™, it follows that

Q) C ER.
(2) The spaces €4(Q) and €, () are vector spaces over the field of complex numbers.
(3) The functions from €>°(§2) are called smooth functions.
eleP=D7" g < 1
0, lz| > 1

to the space €5°(R™) and supp ¢ = K0, 1], where K[0, 1] is the closed ball with center at
zero and radius 1.

Example 2.1.1. The function ¢(x) = , giwven on Figure 1 belongs

A set A is said to be a convex set if aA + A C A holds for any a > 0 and § > 0 such
that a + 6 = 1.

Definition 2.1.3 ([45, 58, 65]). (1) A vector space W over the scalar field K = {C, R}
provided with a topology is called a topological vector space if the mappings (x,y) —
r+yeW and (N, x) — Az € W are continuous, where x,y € W, A € K.

(2) A topological vector space that has a neighborhood base at O composed of convex sets
15 called a locally convex space.

Recall, a topological vector space W is a locally convex space if and only if the topology
of the space W is given by a family of seminorms.



(1)t

e , |z < 1,
x) =

¢(@) { 0, |z| > 1.

0 x

Figure 1.

Let K C Q be a compact set and ¢ € Ny or £ = +o0o. The space 6, (K) is a subspace of
€L(Q) whose elements have supports contained in K. Moreover, the space 62°(K) with
the family of norms

pre(@) =D sup |[D(z)|, €€ Ny,

la|<t TeEK

is a locally convex space. The sets

1
Ukem = {¢ € 657 (K) : pre(9) < E}’ m € N, £ € Ny,

form a neighborhood base at 0.

Definition 2.1.4 ([65]). The vector space 65°(K) equipped with the given topology is a
locally convex space P(K).

If K and K are compact sets such that K C K, then P(K) C 9([?) and the topology in
9(K) coincides with the topology which Z2(K) induces on Z(K). For every non-empty
open set 2 C R" an increasing sequence of compact sets K; C €, j € N, such that (for
every j € N)
K;CIntK; and Q=|[]JK;
jEN

can be constructed, where Int K is the interior of Kj;. Thus, 2(Q) = oy Z(Kj). Let
the space Z(Q2) be equipped with the finest topology for which all the canonical injections
i P2(K;) = 2(9Q), j €N, are continuous.

Definition 2.1.5 ([45]). The space 2(X) is called the space of test functions.
Remark 2.1.2. The space 65°(Q2) is often denoted by Z(S).
Some properties of the space of test functions are stated in the following theorems.

Theorem 2.1.1 ([65]). A linear mapping T of space 2(2) into a locally convex space is
continuous if and only if T is continuous over Z(K) for every compact set K C Q.

Theorem 2.1.2 ([65]). For sequence (¢,),en € Z(82) holds 1, — ¢ in 2(Q2) if and only
if there is a compact set K C € such that for every v € N, supp v, C K, and there is a
test function ¢ such that for every a € N, D), converges uniformly to D).
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Theorem 2.1.3 ([45]). The space Z(2) is a complete space.

Proof. Fix j € N. Since the space Z(Kj;) is complete, it follows that it is closed in
PD(Kjt1). Thus, 2(Q) is a complete space. ]

Definition 2.1.6 ([65]). A continuous linear functional on the space of test functions is
called a distribution. The set of all distributions defined on ) is denoted by Z'(£2).

The action of a distribution f on test function v is denoted by (f, ), i.e. f: ¢ — (f, ).
Thus, Z'(2) is the dual space of Z(Q).

Convergence in 2'(2) is given by the next definition.

Definition 2.1.7 ([75]). A sequence (f,),en from Z'(2) converges to f € P'(R2), i.e.
lim, 100 fu = f in Z'(Q), if im,,oo(fo,¥) = (f,0) for every p € 2(9Q).

Some important properties of distributions are given in the following theorems.
Theorem 2.1.4 ([45, 65]). (1) The space Z'(R2) is a complete space.
(2) The space 2(Q2) is dense in the space ' ().

Theorem 2.1.5 ([65]). A linear functional f defined on Z(2) belongs to 2'(?) if and
only if for every sequence (V,),en € Z(Q) such that ¥, — 0 in 2(Q) it follows that
(f,) = 0inC, as v — +o0.

Theorem 2.1.6 ([65]). A linear functional f on the space () is a distribution (i.e.
belongs to 2'()) if and only if for every compact set K C Q there is a constant C > 0
and ¢ € Ny such that for all » € () with support contained in K holds

[(f, )] < Cpre(). (2.1.1)

Proof. Let (¢,),en € 2(Q) such that ¥, — 0 in Z(Q2) as v — +oo. Then, (f,¢,) — 0in
C, by (2.1.1). Thus, according to Theorem 2.1.5, f € 2'(Q).

For the opposite implication, suppose that f € 2'(€2) and that (2.1.1) is not valid. Then,
there is a sequence (,),eny € Z(K) for some compact set K, such that

(f,00)] > vpr, (i), veEN. (2.1.2)

Let (¢, ),en be given by ¢, = (ffizu), v € N. Then, pk,(¢,) = % < %, v € N, by

viously, for ever < v holds pre(0,) < pro(0,) < =. us, o, — 0 in
2.1.2). Obviously, f y hold : (0 L Th 10} 0i

v

2(K). But, on the other hand (f,¢,) = 1 for every v € N, i.e. (f,¢,) - 0 in C. This
contradicts the fact that f € 2'(Q2). Therefore, (2.1.1) is valid. O

Remark 2.1.3. Theorem 2.1.6 is used in some papers and books (monographs) to define
the distribution (for example see [46]).

Example 2.1.2. Let xy € 2. The Dirac distribution o.,(-) = do(- — x¢) is given by
(000:¥) = ¥(w0), ¥ € 2(2).

Indeed, since

& (5m07 wl) + O, (51}007 1/J2) = Clwl(x0> + Cz¢2($0)
= (5z0701¢1 + 021/12), C1,Cy € C, 1,109 € (),
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it follows that 0., is a linear functional. Further, let K C 2 be a compact set. Then,

|(0zp, V)| = [W0(20)| < pru(p)  for every ¢ € P(K).

Thus, by Theorem 2.1.6, 6, s a distribution.

Definition 2.1.8 ([46, 65]). The singular support of f € 2'(QY), denoted by signsupp f,
is the set of points in §2 that do not have a neighborhood where f is a smooth function.

In other words, the singular support is the complement of the union of all open sets in {2
over which f is a smooth function. Thus, signsupp f is closed in ).

Theorem 2.1.7 ([65]). The distribution f is a smooth function in the complement of
sign supp f.

The next theorem gives the conditions under which distribution f € 2'(2) can be ex-

tended to fy € Z'(R™).

Theorem 2.1.8 ([65]). A distribution f € 2'(Q2) can be extended to Z'(R") if and only
if for every point T € Q2 \ Q there are an open neighborhood Uz of point T, a constant C
and ¢ € Ny so that

((f) <CY sup [D*(z)], ¢ €6 (QNT;).

|a|<€ zeQNUz

In the continuation, the shorter terms ¥ = Z(R"), ' = 2'(R"), € = €(R"), 6, =
%o (R") and 65° = %°(R™) will be used, where 4, = %,(R") is the Banach? space of
continuous functions vanishing at infinity.

The motivation for the definition of derivative of distribution will be noted in Section 2.3.

Definition 2.1.9 ([75]). The derivative D*f, a € Ny, of f € 2" is defined by

(D*f,4) = (=1)I(f, D), ¢ € 2.

Theorem 2.1.9 ([75]). The mapping D* : ' — 9', a € Ny, is continuous.
Proof. Let lim,_ ., f, = f in &'. Then,

lim (Dafww) = lim (_1>|a‘(f1/7Daw> = (_1)‘a|<f7 Daw) = (Daf,¢)7 w € -@7

v——400 v—+400

by the definitions 2.1.7 and 2.1.9. Hence, lim,_, ., D*f, = D*f in &'. O

2Stefan Banach (1892-1945) — Polish mathematician, one of the most influential mathematicians of
the 20th century; the founder of modern functional analysis.
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2.2 The spaces &(R") and &'(R")

In this dissertation, spaces & (R™) and &”(R™) will only be defined, but readers interested
further on this can refer to [45, 53, 65, 75].

Let a family of seminorms (¢xq) k.. be defined by
Gra(¥) = max|[D*(z)|, ¢ € T=(Q), (2.2.1)

where K passes through compact subsets of €2 and a € Nj.

Definition 2.2.1 ([45]). The subspace of the space €>°(Q2) equipped with a locally convex
topology induced by the family of seminorms (2.2.1) is denoted by &(€2).

Remark 2.2.1. (1) The notation &(2) is also used for €>°(£2).
(2) The space 2(Q2) contains those ¢ € &(2) whose supp ) is compact.

Definition 2.2.2 ([65]). The space of continuous linear functionals defined over &(2) is
denoted by &' ().

Theorem 2.2.1 ([53, 65]). (1) The space Z is dense in & = &(R™).
(2) The space & = &'(R™) is a subspace of 7'.

Theorem 2.2.2 ([45]). Let f € 2'(?). Then, f € &(Q) if and only if the set supp f C 2
18 compact.

The space &”(€2) can be identified with the subspace of distributions &’ whose elements
have a compact support contained in 2.

2.3 The spaces .¥(R") and .%/(R")

The space .#(R™) is better known as the Schwartz space. This space is very useful in
Fourier analysis. It contains smooth functions ¢ (x), z € R™, which together with all its
derivatives decay rapidly when |z| — +o0.

Definition 2.3.1 ([65]). The vector space . (R"™) (L for short) is the set of functions
Y € € such that
Gap(1) = sup |z*D(x)| < +oo (2.3.1)

z€R™

for any a,b € Nj.
Example 2.3.1. The function ¢(x) = e” " € .7, but ¢ ¢ €5°.

From the previous example, it follows that the Schwartz space is larger than the space

©s°. Moreover,
Cy° C S CE™.

The space .¥ has the following properties.
Theorem 2.3.1 ([49, 53, 67, 75, 77]). (1) The embedding P — .7 is continuous.
(2) The space Z is dense in 7.

13



(3) The space .7 is dense in &.
(4) The space . is complete.

(5) If 11,19 € L, then 11by € . Moreover, the space .7 is: closed under linear com-
binations; closed under multiplication by polynomaials; closed under differentiation;
closed under translations and multiplication by e*®t) .

Instead of the family of seminorms (2.3.1), it is sometimes convenient to use the family
of seminorms

o) = [ " Dho(a) e (23.2)
or

1/2
o) = ([ e proac) 233)

Lemma 2.3.1 ([53, 65]). The families of seminorms (2.3.1), (2.3.2) and (2.3.3) are
equivalent. Also, the families of seminorms

Gep(¥) = sup |(1+ |2[*)/* Doy ()|

reR™

and
(V)= sup |(1+ [z])/*DPy(x)|

z€R™,|b|<c

are equivalent with (2.3.1), where ¢ € Ny.
Note, if the families of seminorms are equivalent, then they define the same topology.
In the space ., the convergence is defined as follows.

Definition 2.3.2 ([75]). It is said that a sequence (,),en from . converges to ¢ € .7,
e lim, o0, = in L, if

lim gup(¢y — ) =0 for any a,b e N{.

v—+00

Therefore, it is obvious that if a sequence converges in the space of test functions Z, then
it also converges in Schwartz space.

Definition 2.3.3 ([51]). A function f is of slow qrowth if there are constants C' > 0,
s>0, and A > 0 so that
[D*f(x)] < Clzl®, || > A,

for every a € N .

Definition 2.3.4 ([65, 75]). The space of continuous linear functionals on . is the space
of tempered distributions (generalized functions of slow growth). It is denoted by %' (R™)
or simply ..

Hence, ¢ € &' if and only if ¢ : . — C is linear and lim,_,, ., ¥, = ¥ in . implies that
lim, 1 (¢, ¥,) = (p,9) in C.

Theorem 2.3.2 (L. Schwartz, [75]). Let ¢ be a linear functional over . Then, p € .’
if and only if there are C' > 0 and ¢ € Ny such that

(0, 9)| < Cgqe(¥) (2.3.4)
for every ¢ € ..

14



Proof. Let ¢ € . and assume that (2.3.4) is not valid, i.e. C' and ¢ do not exist. Then,
there is a sequence of functions (1,),eny which belong to . so that

(@, )| = vg, (), veN. (2.3.5)
Define the sequence (¢, ),en to be

V()
bu(z) = Vg, (1)

Then, lim, ;. ¢, = 0 in ., and for v > max{|al, |b|},

amb 2D, (x)] _ Ch
|£L‘ D ¢V(x)| - I/l/QQV(wV) < 1/1/27

by Lemma 2.3.1. From this, since ¢ € ., it follows that
lim (¢, ¢,) = 0. (2.3.6)

v—+00

v e N.

But, from (2.3.5),

(0.00] = St > v,

contrary to (2.3.6).

Now, let ¢ be the linear functional over .# which satisfies (2.3.4) for some C' > 0 and
¢ € Ny. Let (¢¥,),en be a sequence such that lim,_,, o 1, = ¢ in .. Then,

lim q.(¢, — ) =0
V——+00
and thus lim, (@, ¥,) = (v, ¥), by (2.3.4). Hence, ¢ € .7". O
In the following definition, the convergence in .’ is given.

Definition 2.3.5 ([75]). It is said that a sequence (p,),en from ' converges to p € &,
de. limyh 00 o = @ in ', if limy sy oo(u, ) = (0, 0) for every ¢ € 7.

From the definitions, it follows that .’ C 2’ and if the sequence (i, ),en converges in .,
it implies that (¢, ),en also converges in 2’. Moreover, the space . has the following
properties.

Theorem 2.3.3 ([45, 49, 53, 65]). (1) The spaces P and .# are dense in ..
(2) If p € S, then its restriction on 9 belongs to the space 7', i.e. ¢, € 7'.

(3) Hold
9CcSCéE and ECS CD, (2.3.7)

with continuous imbeddings.

Theorem 2.3.4 ([49, 53]). The spaces Z and . are dense in L, s € [1,+00). Moreover,
the space L*®, s € [1,4+00], is dense in ..

Theorem 2.3.5 ([51]). If a function f is of slow growth, then it generates a distribution
by the formula

(F0) = [ Japdr, ves

Proof. 1t is not difficult to see that it is a linear functional. Let (¢,),en be a sequence in
# such that lim,_, ;. ¥, = 0 in .. Then, for sufficiently large ¢ > 0,

15



x
=] [ romtoan =| [ TP
wﬂ+|U
< sup |[(1+ [z]*) Yy (x ’/ +|’ ~dr =0, as v— +oo.
Thus, lim, o (f,%,) = 0, i.e. the linear functional is continuous. ]

The spaces Z', & and .’ are weakly complete in the following sense.

Theorem 2.3.6 ([53, 72]). Let 2" be @, & or ., and let X' be its dual space. The space
2 is (weakly) complete, i.e. if (f,)ven is a sequence from X such that ((f,,V))en is a
Cauchi?® sequence for every 1 € 2, then there exists lim,_, o f, = f in 2.

Now, the motivation for introducing the definition of derivative of distributions in the
space 2’ (Definition 2.1.9) follows. Let f € 2'(2) and ¢ € Z(2). Since the support of
the function 1 is contained in some compact set K C (2, using partial integration, it gives

D)= | Df(@p(e)de= ()1 | f(e)D%W(e)dz = (=1)"(f, D).

R
Also, this equality is taken to define the derivative of tempered distributions.

Definition 2.3.6 ([75]). The derivative D*p, a € N§, of ¢ € %" is defined by

(D%, 9) = (=1)(p, D), ¢ €7

Theorem 2.3.7 ([75]). If p € ', then Dp € .', a € Nj.

Proof. Since D : .¥ — . is continuous, the right-hand side of the equation in Definition
2.3.6 is a linear continuous functional over .. Thus, D% € .¥". ]

Example 2.3.2. Let @(%) be a linear functional defined by

(D)) e | S [ [ [ 50], e

Then, Z(1) € S"(R) C Z'(R). Indeed,

(,@G)w) :p.v./Rqﬁ(;) — pv. /w dx—/w (6)d

since p.v. fR p Ldz = 0, and ¢(x) — (0) = 24)/(z) for some 6 € [0,1] by Lagrange’s*

theorem. Thus,
"(0z)|(1 2 - d
/1/1 (fx)d /W +x)dx<q2,1(w)/ a < 400,

(#()+)I-

(see Lemma 2.3.1) i.e. (1) : S (R) — C is continuous.

3Baron Augustin-Louis Cauchy (1789-1857) — French mathematician, engineer and physicist.
4Joseph-Louis Lagrange (1736-1813) — Italian mathematician, astronomer and physicist (later natu-
ralized French).
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2.4 Regular distributions

Regular distributions are defined by locally integrable functions. Therefore, the definition
of locally integrable functions is given.

Definition 2.4.1 ([65]). The function f belongs to the space of locally integrable func-
tions on Q, i.e. f € LI*°(Q), if the integral [, f(x)i(x)da converges absolutely for every

e D).

If a function is integrable, then it is also locally integrable. However, the opposite is not
true. For example, a non-zero constant function is locally integrable but not integrable
on R™.

For each function f € L'¢(Q), the distribution £ is assigned by

(f,9) = Rnf(x)¢(x)d$:/Kf(x)@b(x)dx, e 7(Q), (2.4.1)

where K = supp .

Definition 2.4.2 ([65]). The distribution defined by a locally integrable function with
(2.4.1) is called a regular distribution.

Obviously, two different locally integrable functions define the same distribution if they
are equal almost everywhere.

The next theorem shows that the space of locally integrable functions is isomorphic with
the subspace of regular distributions.

Theorem 2.4.1 ([65]). Let f,g € L'%¢(Q)) and let f, § be the corresponding regular dis-
tributions. If (f,¢) = (g,v) for every » € P(Q), then f = g a.e. in .

Proof. Let K = {x € R" : z; € [a;,b;], j = 1,...,n} C Q be an arbitrary set, and let
W(x) =1(z1) -+ - Yp(xy,), where

e~ V(wi=as)=1/(bs=z5) . € [ay, bj]
) J VR RE
¥i(2;) {07 otherwise,

for every j € {1,...,n}. Then, ¥ € 2(Q) and lim,_, o /¥ = 1. Since
0= (F0) = @) = [ (1) - g(@) o’ (@) d,
K
and |7 (-)| < 1, applying the Lebesgue® Dominated Convergence Theorem, it leads to

0= tim_ [ (f@) = g0 (@) de = [ (1) - gla) do.
v—+oo [ K

Therefore, f = g a.e. in €. O

Since there is an isomorphism between the spaces L'¢(Q) and 2/(Q2), the regular distri-

bution f defined by f € L¢(Q) will be denoted also by f in the continuation.

However, there exist distributions that are not regular. One of the distributions that is
not regular is the Dirac distribution, which is discussed in the next example.

SHenri Léon Lebesgue (1875-1941) — French mathematician.
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Example 2.4.1. The Dirac distribution oy is not reqular. Indeed, assume that oy is a
reqular distribution. Then, there is &y € L'°°(Q2) such that

(G0.) = [ dula)le)de = (). v € H(@).

Choose s(z) = ¢(*,..., "), s > 0, where ¢ is the function from Evample 2.1.1. Then,

%: by (0) = / So(x)1hs(z) da = / So(z) e/ 1#P=5") g < / So(x) da — 0,
n ‘Jj|<$ |LL"<S

as s — 0, which is impossible. Hence, Dirac distribution dq is not reqular.

2.5 Product of generalized functions

The product of two distributions can not be defined in the general case as an operation
that is an extension of multiplication of continuous functions. In 1954, Schwartz showed
that the product of distributions does not exist over the space whose subspace is the
space Z(R). However, it is possible to define the product of a distribution with a smooth
function as follows.

Let f € L'(Q) and ¢ € €°°(Q). Then,

(0f ¥) = ” o(@)f(2)(z)de = (f,¢¥), ¢ €. (2.5.1)

The previous equality is taken for the definition of product of f € 2’ and ¢ € €.
Definition 2.5.1 ([74, 75]). The product of f € ' and ¢ € € is defined by (2.5.1).

Since the multiplication of distribution and function ¢ € %€ is linear and continuous
mapping between spaces of test functions, the next assertion follows.

Lemma 2.5.1 ([74, 75]). The product of f € ' and ¢ € € is element of ¥’ and

supp(¢.f) C supp ¢ Nsupp f.

Lemma 2.5.2 ([74, 75]). Let f € 9'. If ¢ € €= so that ¢ = 1 in neighborhood of supp f,
then f = ¢f.
Proof. Let ¢ € &. Then,

(f=ofi) = (A =0)f,¢)=(f,(1=¢)¥) =0,

since supp f Nsupp(1 — @) = 0. Thus, f —¢f =0, i.e. f=of. O

Example 2.5.1. (1) ¢(-)3 = ¢(0)do, since (¢0, &) = (3o, ) = B(0)(0) = ($(0)0, ¥),
for every ¢ € 9.

(2) 22(2) =1, z € R, since

(x@(é)zﬁ) :/wa)dx: (L,¢), vea.
18



Using Example 2.5.1, it can be see that the product of two distributions can not be defined
so that the product is commutative and associative. If it were possible, then it would be

= a(e(2)) = i (1) w0 (1) o

i.e. 0o = 0, which is impossible.

The main reason why it is not possible to extend the product of continuous functions to the
product of distributions is that, unlike functions that are defined at each point separately,
distributions are defined at a neighborhood of a point, and the value of the distribution
at each point is not defined in the general case. The multiplication of distributions can
be defined in some cases. If the singular supports of two distributions are disjoint, then
their product exists.

Theorem 2.5.1 ([65]). Let f,g € P’ so that signsupp f Nsignsuppg = 0. If

xo ¢ (sign supp f N sign supp g),

then the distribution h is defined by

h(l’) = fm(‘T)g(x) or h(l’) - gm(l’)f(l’), LS Orm

in sense of the definition of the product of a smooth function and a distribution over O,,,
where Oy, 1s an open neighborhood of the point xy in which f or g is a smooth function,
and [y, 1.€. Gu,, 1S the restriction of f, i.e. g, over O, .

A more detailed overview of different definitions of distribution products is presented in
(61, 62].

Mathematicians have dealt with the issue of the product of distributions, because nume-
rous problems in physics, for instance, quantum field theory, are related to the impossibi-
lity of defining the product of arbitrary elements from 2’. A significant contribution to
this problem is the introduction of the product of distributions using the Fourier transform
(for more details, see [65]).
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Chapter 3

The Fourier transform

Integral transformations play an important role in classical analysis when solving vari-
ous mathematical models. The theory of generalized functions (theory of distributions)
influenced the development of integral transformations since integral transformations are
continuous in those spaces. More about integral transformations can be read in [31, 77].

One of the most frequently used integral transformations is the Fourier transform. The
theory of the Fourier transform can be found in many books, e.g. [52, 65, 67, 75].

3.1 Fourier transform on L*(R")

As it is already said in Abstract, the Fourier transform is one of the main tools in this
research. On the space L', it is defined as follows.

~

Definition 3.1.1 ([40]). The Fourier transform F f = F[f] = f of f € L' is defined by

Ff(t) = i f(z)e 2@ dz t e R™ (3.1.1)

It immediately follows from Definition 3.1.1 that Hﬂ| oo < ||fllzr. Moreover, Riemann!-
Lebesque lemma holds.

Lemma 3.1.1 (Riemann-Lebesque, [40]). If f € L', then f € G, i.e. F : L' — %,.

The inverse Fourier transform exists under specified conditions. The proof will be given
in the next section.

Theorem 3.1.1 ([40)). If f € L and f € L', then

F (@)= fle)= [ ft)e*™ @D dt, zeR" (3.1.2)
&

Remark 3.1.1. The conditions f € L' and fe Li imply that f € 6y. Indeed, applying
Lemma 3.1.1 to f EALl gives J/C\G Go and similarly fe %o follows from condition fe LY.

Using the fact that f(x) = f(—x), x € R, it follows that f € .

!Georg Friedrich Bernhard Riemann (1826-1866) — German mathematician.
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The next statement follows directly from Theorem 3.1.1.
Theorem 3.1.2 ([65]). Let f € L' and f(t) =0 for a.e. t € R". Then, f = 0.

In Fourier analysis one of fundamental results is the Plancherel theorem. Namely, Plan-
cherel’s theorem proves that the Fourier transform preserves the energy of the signal. This
theorem will be used frequently in this dissertation, and the proof will be given in the
next section.

Theorem 3.1.3 (Plancherel?, [40]). Let f € L' N L2. Then, f € L? and
[fllz2 = [l f]l L2 (3.1.3)

A consequence of Plancherel’s theorem is that Fourier transform can be extended to a
unitary operator on L? and

(f,9)r2 = (F,G)z2 forall f,g € L2 (3.1.4)

Formula (3.1.4) is known as Plancherel’s formula. Note, there are other definitions of
the Fourier transform (without 27 in the exponent), but then a constant appears in
Plancherel’s equality (3.1.3) (see [65, 74]).

For arbitrary f € L2, f can not be defined pointwise with (3.1.1). On L? the Fourier
transform is defined as follows. Let @Q C L'NL? be a dense subspace of L?, and let (f,),en
be such that f, € Q and ||f, — f|lzz — 0, as v — +oo. Then, since f, € L' for every
v € N, it implies that f, is well defined by (3.1.1) for every v € N. The equality (3.1.3)
yields that (f,),en is a Cauchy sequence in L?. Since L? is a Hilbert space, it follows that
hmy—H—oo fz/ = f

Moreover, the Fourier transform can be defined on other L°-spaces.

Theorem 3.1.4 (Hausdorff*-Young?, [40]). If s € [1,2] and r is such that 1 + 1 =1,

then the Fourier transform maps L* into L™ and ||f]|1- <

In engineering language, .Z f(t) is the amplitude of the frequency ¢ (|| f||3. is the energy
of the signal), while in the physical interpretation, |.Z f(t)|/||-Z f||7. is the probability
density for ¢, where ¢ is the momentum variable.

Example 3.1.1. The Fourier transform of the function (z) = e ml* e L1 is the function
w(t) — e 71t t € R". Indeed, it suffices to show the case n = 1. Since

Gy = [ et qe et [Temet an rer

o0 o0

e ™ (x+it)?

1t 1s enough to prove that f dx = 1. Fort = 0 the following calculation shows

that the integral is equal to 1

2
(/e_”2 dx) = </e_”2 dx> (/ —my? dy) // (@ +5%) g dy
R
o0
—mp? _ _
/ / pe dpdé Qﬂpginoo( o )

2Michel Plancherel (1885-1967) — Swiss mathematician.
3Felix Hausdorff (1868-1942) — German mathematician.
4William Henry Young (1863-1942) — English mathematician.

= 1’
p=0
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where the change in polar coordinates was used: x = pcosf, y = psind, 6 € [0,2x],
p > 0. The function e_’r(”“)Q, x,t € R, is analytic in the complex plane and therefore
the integral over the contour from Figure 2 of function e @i 45 equal to zero.

Imz
—p+it : p+it
—p p x = Rez
Figure 2.
Thus,
P )2 P 2 t )2 t )2
/ e T(@+it) dx:/ e ™ dx+/ e~ (ptit) idt—/ e TP H 4 qt.
W p 0 0
Since
t t
’/ e7r(p+it)2idt‘ _ ‘/ efﬂ'(pQ—tQ) 6727ript dt‘ < ’t| efﬂ(p27t2) 0
0 0
and

t t
‘/ efw(prrit)? Zdt‘ _ ’/ efn(p27t2) e2mipt dt‘ < |t‘ efﬂ(p27t2) N 0’
0 0

as p — +00, it follows that

“+o00
/ e_W(x+Zt)2 dx - / e_ﬂ'mg dx — ]-7
—00 R

which had to be proved.
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3.2 Basic operators

In this part, basic operators such as translation, modulation, involution and reflection
will be defined. Also, the convolution will be defined.

Definition 3.2.1 ([40]). The translation by y € R™ (or the shift by y € R™), T, f, is
defined by T, f(x) = f(x —y), x € R". The modulation by t € R", M,, is defined to be
M, f(z) = ™% f(z), x € R™.

In harmonic analysis the fundamental operators take the form T, M, and M,T,, y,t € R".
These operators are called time-frequency shifts. It is not difficult to see that

T,M, = e Wb MT,  y,t € R™

Thus, T, and M; commute if and only if (y,t) € Z". Moreover, these operators are
isometric.

Theorem 3.2.1 ([40]). Let f € L*, s € [1,400|. Then, | T,Mf||rs = ||fllre, v, t € R™.
Proof. Let f € L* s € [1,+00). Then,
TS = [ M@ de= [ M=)l de = [ (e =p)de
= Pz =1fl. gt € R
In a similar way, || T,M:f| L = || f|lz~ for f € L™, y,t € R". O

Theorem 3.2.2 ([40]). Let f € L'. Then, T, f, M, f € L* andf;f = M_,J, ]\/J-y\f = T,f,
for every y € R™.

Proof. If f € L', it is easy to check that T,f € L' and M,f € L', y,t € R". Using
Definition 3.1.1,

fy?(t) = /Rn(Tyf)(@ e~ 2mi(@t) 1y — 5 Fz —y) e 2@t dy

— o 2mify,t) flz) e~ 2milzt) q0 — M_yf(t), y,t € R",
R?’L

and
@(t) _ f(x) e2mily,x) o=2mi(zt) 4, :/ f(:c) o 2mi{Et=Y)
R™ "
=Jt—y) =T,/(t), y.ter"
which completes the proof. O

Definition 3.2.2 ([40]). The involution of a function f is the function f° defined by
fe(z) = f(—x), x € R". The reflection operator . is defined by & f(z) = f(—x),
x e R™

It can be easily proved that fo = }Aand }\f =4 f The involution yields .# ! = .#.%.
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Definition 3.2.3 ([40]). The convolution of functions f,g € L', f x g, is defined by

(fxg)(x) = . fWg(x —y)dy, =eR"

The fundamental property of convolution is given in the following theorem.

Theorem 3.2.3 ([58]). If f,g € L', then:
(1) frg=gxf,
(2) «?[f*g} = Z[f17g],
fRn g(at)dt = fRn t)dt for every a > 0.
Pmof. (1) It follows directly from the definition, by substitution of variables.
(2) Using Fubini’s® theorem (see [63]), it follows that

Fralt) = / ([ gt - may) e o

f( ) —27r7, (y,t) (/ g(l’ . y) e—Qﬂi(z—y,t) d!lf) dy
:f( tg(t), teR™

(3) After a change of variables t=at, T = £ and using Fubini’s theorem, it follows that

[ Fgtana= [ ([ e )t a
( s flaz) e 2@ 4z ) (t)dt

/
_ / n f(a%)( / glpyeniEn d’t“) A7

Fa®)§@) 7, a >0,
o

and thus the assertion holds. OJ

Convolution has a particularly important role in the theory of distributions. Differentia-
tion is actually a convolution with the corresponding derivative of dg, i.e. D®f = D%y * f,
a € Nf; similarly, this is true for translation 7}, f = d, * f, y € R™.

The convolution can be extended to other spaces.

Theorem 3.2.4 (Young, [40]). Let f € LP and g € L". Then, fxg € L* and
1 * gllee < (ApArAs)™ ([ fll ol

where L+ 1 =1+ 1 and A, = (yB/ ¥/¥)'* ' = ;B

In the space L'*(R™) convolution is introduced as follows.

5Guido Fubini (1879-1943) — Italian mathematician.
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Definition 3.2.4 ([74, 75]). The convolution of f,g € L'*(R") is defined by

Feaw= [
if there exists [, f(y)g(x —y) dy for a.e. x € R, and [, f(y)g(z —y)dy € L'°(R").

Since by Definition 3.2.4, f x g € L'°¢(R"), it is clear that the regular distribution from
2’ is determined. Using the Fubini’s theorem, it leads to

(fxg,¢0) = / ( - fWglz —y) dy)w(x) de = / f(y)(/n g(z — y)v(z) dg;) dy
- / f(y)(/n 9(2)¥(z +y) dz) dy= | f@y(e+y)dedy  (32.1)

for every ¢ € 2. Since for ¢¥(z) € 65° the function ¢¥(z + y), z,y € R™, does not
have a compact support, the formula (3.2.1) can not define the convolution of arbitrary
distributions. Convolution of distributions can be defined as follows.

f)g(x —y)dy for a.e. z € R",

n

First, a sequence (¢, ),eny € 65° is said to be the unit sequence if both of the following
conditions hold:

(1) for every compact set K C R" there is a 1y(K) € N so that ¢,(z) =1 for z € K
and v > vyp;

(2) (Vv € N)sup {|D,(z)| : z € R"} < C,, a € Nj.

Such a sequence always exists, for example let ¢ € 65° so that ¢(x) =1 for |x| < 1, then
the sequence (¢, ),en defined by ¢, (x) = gzﬁ(%), v € N, x € R", is a unit sequence.

Definition 3.2.5 ([65, 74, 75]). The convolution f g of f,g € 2’ can be defined by
((fx9)(@) () = lim (f(@)g(v), du(,9)e(x +)), ¢ €2,

if f and g are such that there exists lim,_, | o (f(x)g(y), o (z, y)¢(x+y)) for everyy € 9,
where the limes does not depend on choice of the unit sequence (¢, (x,y))en € G5°(R*™).

According to the given definition, the convolution of distributions does not always exist.
There are sufficient conditions for the existence of convolution which will not be stated
here (for more details see [65]), but still there are no known conditions for the existence
of convolution which would be both necessary and sufficient. With Definition 3.2.5, f x g
stays in the distribution space. This property and other properties are given in the next
statements.

Theorem 3.2.5 ([74]). Let f,g € 9" and f * g exist. Then:
(1) fxge 7',
(2) there exists gx f and f*xg=g=x* f,
(3) for every y € R™ there exists (T, f * g)(z), x € R", and
(Tyf *g)(x) =T,(f *g)(z), zeR"

Lemma 3.2.1 ([74]). If f € &', then fxdg=6o* f = f.

Similarly, the convolution of Schwartz distributions does not exist in the general case, but
it may be defined as follows.
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Definition 3.2.6 ([65, 74, 75]). The tempered convolution f * g of tempered distributions
f and g is a linear functional defined by

((f*g)(@),v(x)) = lim (f(2)g(y), ¢z, y)0(x+y)), ¢ €L,

v—+00

if the limes exists for every v € % and does not depend on the unit sequence (¢, (x,y)),en €
C5o(R*™).

It is not difficult to see that also the following statements hold.
Theorem 3.2.6 ([65]). Let f,g € " and f * g exist. Then:
(1) frges,
(2) there exists g* f and fxg=g=* f,
(3) for everyy € R" there exists (Tyf * g) (), z € R", and

(Tyf*g)(x) :Ty(f*g)(x), xr eR".

Lemma 3.2.2 ([65]). If f € ., then fxdg=0bo* f = f.

Note, a convolution of two distributions always exists if at least one of two distributions
has a compact support.

Finally, the proofs of the theorems 3.1.1 and 3.1.3 follows.

Proof of Theorem 3.1.1. Let g(z) = e~e* 2 € R". Then, by Example 3.1.1, it follows
that ¢(0 = Jan 9(z) dz = 1. Applying Theorem 3.2.3 (3) and using Example 3.1.1
gives

- f(t)g(at) dt = - flat)g(t)dt = - flat)g(t)dt, a > 0.

Letting a — 0 leads to

fityat=1(0) [ gle)de= 00,

R

since f € %y (see Remark 3.1.1). This is the inverse Fourier transform for = 0. Now,
applying T, f to the last equality and using 7_,f = M, f (by Theorem 3.2.2) gives

f@) =Toaf0) = [ Tojwae= [ foyemoa, sewre,

R’ﬂ
which completes the proof. U
Proof of Theorem 3.1.3. Let f € L* N L? and h = f * f°. Using Theorem 3.2.3 (2),

~

h=|f]* and h(0)= | f@)Pdz,
since f° = }A On the other hand, from the equality (3.1.2) (for z = 0), it follows that
h(0) = / nﬁ(t) dt.
Hence, [|fllz2 = [Ifllz2- O
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3.3 Fourier transform on .7 (R")

In the space ., the Fourier transform is defined in the same way as in the space L',
because .# is dense in L' (Theorem 2.3.4).

Definition 3.3.1 ([40]). The Fourier transform F1 = Z[] = 1 of a function ¢ € .&
18 defined by

F(t) = M_y(x)de, teR"™

]Rn

The Fourier transform is well defined, since from the fact that ¢ € ., it follows that
¥ is an absolutely integrable function. Moreover, the Fourier transform is a continuous

mapping.

Theorem 3.3.1 ([40, 75]). Let ¢ € .¥ and a € Nj.
(1) DF[YI() = Fl(~2riz)b](t), t € R,
(2) FIDI(t) = @rit) F[](0), t € R
(3) Z Y — .7 is a continuous linear mapping.

Proof. (1) Let ¢ € . and a € N§. Then, (—2wiz)*) € . and

D“F[y](t) = D* Y(z)e et de _/ (—2miz)*)(z) e 2mi{zit) 4,
Rn n
= F[(—2mix)"Y](t), teR"
(2) Using integration by parts and the fact that ¢ € .7, it follows that

F[DW|(t) = /n e 2miwt) D*)(z) dx = /n(2m't)“¢(x) e~ 2miTt) dy
= (2mit)*F[Y](t), teR" aecNj.

(3) Let ¢ € . and a,b € Njj. The linearity of the Fourier transform simply follows from
the linearity of the integral. By (1) and (2),

tPDAFY(t) = .F[(—2miz) Y](t) = (=1)19l(2mi) =Lz [ D (224)] (1), t € R™

Therefore,

sup [P DF(t)| < (2m)1d =l sup ‘Db (z%)) e~ 2@t | da
teR™ teRn”

= (2q)lal= 1o |Db($aw)‘ dz < +o0, (3.3.1)
RTL

since D°(x%)) € . C L'. This means that %1 € .. The continuity of the mapping
follows from (3.3.1). Indeed, let lim, 1o ¥, = ¢ in .. Then, by (3.3.1) for all a,b € Nf,

sup [t D F[1, —v](t)] < @m) "= [ D (a*(v, — ¥))| da

teR™ Rn

(2mr)lal=lel
< sup | Db 1—1—36 ”H/ dz.
s 1Pt A f T

Thus, using that lim,_,, ¥, = v in . it yields lim,_,, o F ¢, = F1 in 7. O
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Consider the conjugate Fourier transform of ¢ € ., which is defined by

Flt) = Fy(t) = | Mp(z)de, teR"

R

Theorem 3.3.2 ([65]). The conjugate Fourier transform .7 : . — & is a linear and
continuous mapping. Moreover, F[F] = and F[.F ] = for every ¢ € 7.

Proof. The first part of the theorem can be proved in the same way as in Theorem 3.3.1.
Let us prove the first equality, the second equality can be proved in a similar way. For

¢, € % and € > 0 hold
(ﬁ(gt)"(;(t) 2mi(x,t) dt / (b( ){ 1/}( ) 727rz (t,y) dy} eZm’(x,t) dt
R" n
—/[ Rn¢(€t) e 2Ty dt}w( ) dy
=[] [ o= awiay
n R

—e [ (e dy
S(t)(z +et)dt, xR, (3.3.2)
Rn

by Fubini’s theorem and corresponding substitutions. Letting ¢ — 07, it follows that
$(0) | ()N dt = p(x) [ G()dt, zeR" (3.3.3)
R™ R”

Putting ¢(t) = e, t € R", in equality (3.3.3) yields Z[Z] = ¢ (by Example
3.1.1). O

Theorem 3.3.3 ([45]). The Fourier transform # : . — . is an isomorphism with the
1muverse given by

UP)(e) = ¢(x) = | Myap(t)dt, xeR"

R"

Proof. According to Theorem 3.3.2, [/ Y] = ¢ and F[FY| = 4 for every o € .. If
F1p =0, then 0 = F[F] = =, ie. F s mJectlve For given ) € .7, F[F] = 1 and
thus .# is surjective. Hence, .Z is the inverse of .%. Since ¥ :.¥ — . is a continuous
linear mapping (by Theorem 3.3.1) and .% : . — .¥ is a continuous linear mapping (by
Theorem 3.3.2), it follows that % is an isomorphism. O

The next theorem gives some useful formulas.

Theorem 3.3.4 ([65]). If ¢,v € .7, then:
(1) Z[ZW)](x) = d(~2), v € R",
) @(@ )do = [ ¥(@)3(0) da,

3) Jan U( () de = Jgn ¥( A (;S( )dx (Parseval’s equality),
1) Jpn [9(2) |2dx = Jou [(@)[? dz.
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Proof. It is not difficult to see that (1) holds. Putting + = 0 and ¢ = 1 in (3.3.2), (2)
follows. Substituting ¢(x) = ¢ (x), x € R™, into (3) gives (4). It remains to prove (3).

Let ¢1(z) = ¢(x), # € R™. Then, ¢(z) = ¢1(z), © € R™. If the mentioned changes are
introduced in (2), it leads to (3) for the functions ¢ and ¢;. O

Theorem 3.3.5 ([65]). The Fourier transform % : ./ — ¥ can be extended to L* as
isometric transform between L? spaces, i.e. for f € L? the Plancherel’s formula (3.1.3)

holds.

Proof. Since . is dense in L? (Theorem 2.3.4), by Theorem 3.3.4(4), the assertion
follows. O

The following example is important in the further work.

Example 3.3.1. Let A be the Laplace® operator, i.e.

0? 0?

= — 4 -4+ — = D(2701“"070) + -4+ D(0,0,...,O,Q)‘
ox? ox?

A
If v € 7, then F[AY|(t) = —47r2\t|217//;(t), t € R*. Indeed, it is sufficient to prove the
case n = 1. Therefore, by Theorem 3.3.1(2),

FIAY(t) = F[D*P)(t) = 2mit 22 [P = —4n*2.Z[P], teR™

3.4 Fourier transform on .#'(R")

The largest space of distributions making it possible to define the Fourier transform is
the space of tempered distributions. Note, if ¢ € Z(Q2), then ¢ ¢ 2(£2), unless ¢ = 0.

Let ¢ € ., then using Fubini’s theorem

&9)= / LPBu(n)de = / i ( / () e~ 2mie) dx>w(t) dt
— / ) ( anb(t) o—2mi(z,t) dt) o(x)dr = (QP@)? Ve

This equality is taken to define the Fourier transform of a tempered distribution.

Definition 3.4.1 ([75]). The Fourier transform 7 p = 7 [¢| = ¢ of a distribution ¢ € "
15 defined by
(Fo,¥) = (¢, FV), e

Theorem 3.4.1 ([75]). For every ¢ € ' the Fourier transform % : " — " is a
continuous mapping with the inverse transform F ] = F ¢ given by

Fel(z) = Zp)(—z), zeR"

Proof. Since ¢ € . for every ¢ € . (by Theorem 3.3.1(3)), (¢, #1) is a functional,
obviously linear in .. Let lim, o %, = ¥ in .. Also, using Theorem 3.3.1(3), it

6Pierre-Simon, Marquis de Laplace (1749-1827) — French mathematician and astronomer.
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follows that lim, . F1, = F¢ in .7, and so lim,_, (0, F1,) = (¢, F), p € S
Thus, the functional (p,.Z#) is continuous in .. Hence, # : " — ’. Now, let
lim, o ¢, = ¢ in .’. Then,

lim (Feou, )= lim (o, FY) = (p, FY) = (Fp.¥), e

V——+00

Thus, % : . — ¢ is a continuous mapping. Finally, for every ¢ € .,

(Z 7 Fo,0) = (FFp(—2),9(x) = (Fo(- ) »(1)) = (Fet), Fy(=1))
= (Fo(t), 7 (1) = (p(z), F.F 0(x)) = (¢,9), w€T",

-1

ie. F 1% p = p. In the same way, it is proved that .#.% 1o = ¢. Thus, .Z ! is the

inverse of .%. O
The next statement is easily proved using Theorem 3.4.1.
Theorem 3.4.2 ([75]). The Fourier transform % : %" — %' is an isomorphism.

Some important properties of the Fourier transform on the space .¥’ are given in the
following statement.

Theorem 3.4.3 ([45, 75]). If p € " and a € Ny, then:
(1) D*Zp] = F[(—2mix)%], x € R",
(2) Z[D"p] = (2mit)*F|p], t € R",
(3) F[Tuyp] = M_yyF¢], w € R,
(4) Ty T[] = F [ My ], to € R™.

Proof. (1) Let ¢ € ./ and a € Nj. Then, using Definition 2.3.6 and Theorem 3.3.1 (2),
it follows that

(D2 F (], ) = (~1)(F g, D) = (—1)(p, FID]) = (—1)") (i, (2miz) " F ]

= ((=2miz)"p, F ) = (F[(2miz)"¢], )
for every ¢ € .7, and so D*%[p| = F[(—2miz)*p], v € R™.
(2) Let ¢ € . and @ € Nj. Similarly, using Theorem 3.3.1 (1),

(FID"6),6) = (D%, FI]) = (=1 (p, DZ (] = (—1)1(, F[(~2rit) "))
= (Flp], @mit)*y) = ((2mit)" Fgl, ), e
Therefore, Z#[D%| = (2mit)*.Z [¢], t € R™.
(3) Let ¢ € " and xy € R". Then, by Theorem 3.2.2,
(F (Tl ¥) = (Toop, F[Y]) = (0, Toay Z[Y]) = (0, F M2y 0])
= (Flel, M_ayh) = (Mo, F[p],¥), ¢ €7,

and thus Z [T, 0] = M_,, F|p].
(4) The assertion can be proved in a similar way as (3). O

The main concept of classical Fourier analysis is to connected the properties of the function
or distribution f with f. The smoothness of f implies the decay of f, which is stated in
the following assertion.

30



Lemma 3.4.1 ([40]). Let a € N§. Then:

Dfel? & FOPL+[tP) dt < +o0, 7= |al.
Rn

Proof. Using Plancherel’s theorem and the theorems 2.3.4 and 3.3.1(2) gives

1D" fIIz2 = [|1D° £Iz2 =/ [(2mit)" f(1)]" dt = (2m)" A P10 dt, e NG,

Let > |a|. Based on the fact that there exists a constant C' > 0 so that

1

S+ <D IP < CO+ ), teR”,

la|<r
the statement follows. O

The next two examples will be used to prove some of statements that are obtained in this
research.

Example 3.4.1. Let &y be the Dirac distribution (see Ezample 2.1.2). Since
(F 00, ¥) = (00, Z[¥]) = FI0) = | d(z)de=(1,¢), ¢ €,
Rn”

it follows that F 6] = 1. Moreover, F[1] = dy, because &y = F [1] = F[1].
Example 3.4.2. Combining Ezample 3.4.1 and Theorem 3.4.3 (3) gives
F0u] = F [ Tuy00] = M_py F[6) = e 2500 g0 € R™,
The following example is very important for the next chapter of this dissertation.
Example 3.4.3. Let p € . and A be the Laplace operator (see Example 3.3.1). Then,
F(1 - ﬁA)T/Q@}(t) = (1+[tP)"2Z[g](t), teR" reR.

This follows by applying the binomial formula and by Example 3.3.1.
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3.5 Sobolev spaces

The study of Sobolev spaces is of great importance for the theory of partial differen-
tial equations. The first results in this area belong to S. L. Sobolev [70, 71]. In this
dissertation, only Sobolev spaces which are also Hilbert spaces are considered.

Definition 3.5.1 ([40, 58]). The Sobolev space (or Bessel' potential space) H(R"), r € R,
is defined by

o~

H(®RY) = {f e m()F() € L2},
In the continuation, the shorter notation H” will be used instead of H"(R"). The rela-
tionship between the spaces H" and L? is given by the following statement.
Lemma 3.5.1 ([40]). For every r > 0 hold H" C L> C H". Moreover, H° = L.

Proof. The first part of the statement simply follows from the definition of the space H".
If r = 0, then the Plancherel’s equality implies that H® = L2 O

The Sobolev space H", r € R, is equipped with the inner product
(f,9)mr = | F(O)G(E)par(t) dt, (3.5.1)
]Rn

and the corresponding norm is
N 1/2
| fllzr = (/ | F ()] o (£) dt) : (3.5.2)
R?’L

Theorem 3.5.1 ([49]). The space H", r € R, equipped with the inner product (3.5.1) is
a Hilbert space.

Proof. 1t is not difficult to verify that (3.5.1) defines the inner product on the space H".
The completeness of the space H" follows by Theorem 3.4.2 and the fact that the space
L? is complete. O

The connection between the spaces H” and L? is given in the next statement.

Lemma 3.5.2 ([58]). Let r € R. Then, L2 = Z[H"], i.e. f € L2 if and only if f € H".

Proof. Let r € R. Then,

fel? = 1F(0)Puar(t) dt < 400 & |F () par(t)dt < 400 & [ H".
R" R"

Therefore, the statement holds. O

Theorem 3.5.2 ([49, 66]). The space . is dense in H", r € R.

Proof. Let f € .. Then, f € .% and thus (14 |- [2)"/2f(-) € ¥ C L% r € R, by the
theorems 3.3.1(3) and 2.3.4. Hence, f € H", r € R, i.e. ¥ C H", r € R. Further, let
r€Rand f € H". Since Z is dense in L? (by Theorem 2.3.4), it follows that there exists

"Friedrich Wilhelm Bessel (1784-1846) — German mathematician, astronomer, physicist and geodesist.
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a sequence (g, )yen € Z such that lim, o g, = fpr in L. Set f, = F gu_], veN
Then, f, € ., because g,u_, € ¥ C .. Moreover,

If = fullzr = s () = gu ()p—r () pias (t) At
F)pe(t) — g ()P dt =0, as v — +oo,
Rn
which completes the proof. O

Thus, for every r € R (see (2.3.7)) hold

9CcSCH csCP. (3.5.3)

Remark 3.5.1. Since Z is dense in . and . is dense in H", r € R, it follows that &
is dense in H", r € R, by (3.5.3).

Some important characteristics of the spaces H" are given in the following statement.

Theorem 3.5.3 ([35, 38, 49, 58, 65]). (1) Ifr,s € R such that r < s, then H® — H"
18 continuous.

(2) Let a € Ny and s > |a|. Then, D*: H" — H"*°, r € R, is continuous.
(3) If r € Ny, then H" = {f € ' : D*f € L? for every |a| < r}.
(4) Ifr€eNo and f € H™", then f =37, D*fo, where f, € L2

Proof. (1) Let r < s. Then, for f € H*,

Hs$»

Wz = [ 1F @) Puar(t) dt =/ P (DI F () Ppas(t) dt < [ |F(0)Ppias(t) dt = | £1I7
R" R Rn

since s (1) <1, t € R, for r < s.
(2) Let f € H". Then, by Theorem 3.4.3 (2),

1D sees = [ DO Prae-a®)dt = [ e ) P ()

< (2m) / LT O o (£ At < @m)* | (0 Ppar(t) dt = @m)* 1

because [t%)? < [¢t[* < (14 |¢]?)% = uas(t), t € R™, for s > |al.
(3) The claim follows from Lemma 3.4.1.
(4) Let f € H™", r € Ng. Then, h = J?,u,r € L? and so

Ft) = h(t)pn (1+Z\t|)1+z|t| <1+Z|ty>

Jj=1 Jj=1

Ztr | J| teR, (3.5.4)
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where

h()ue(t) 12
1+ ﬁ: |t5]"

Set fo = F'g and f; = F(glt;|"/t;). Now, applying .F ! to (3.5.4), the assertion
follows. O]

g(t) =

The following theorem is known as Sobolev’s embedding theorem. The proof is more
complicated and will be omitted here.

Theorem 3.5.4 ([36, 58]). If r > %, then H" C 6y. Moreover, if r > 5§ + m for some
m € N, then H" C 63".

Corollary 3.5.1 ([35]). If f € H" for every r € R, then f € €.

The next two theorems are very significant for this dissertation. The first theorem asserts
that the multiplication of a function from . and a distribution from H" is continuous.

Theorem 3.5.5 ([66]). IfvY € % and f € H", then ¥ f € H" and the mapping f +— ¥ f
is continuous. Moreover, ||[O f||gr < C(r,n) |||l || f || -

Proof. First, let us prove the estimate
() < 22 (@) (t — ), T ER, 2t €RY, (3.5.5)

known as Peetre’s® inequality. Since (1 + 5)? =1+ 25+ 5% < 2(1 + s%), s € [0, +00), it
implies that

(L4 )Y < (L [2) 2 + [t =2 < (L4 [2) 21+ [t - 2])

<22+ |22+ |t —2HYE ozt € R™

)

Hence, the inequality (3.5.5) follows for r > 0. The case r < 0 follows from

prt) _ (@) Q‘Tl/Z”‘”(t)“'”(t —) _ 22y (t —2)  x,t € R™
prle) () S p (1) " |
Thus, the estimate (3.5.5) holds.

Next, by Theorem 3.2.3 ((1) and (2)) the Fourier transform of ¢ f is given by

t—a: x)dz, teR"™

\

Then,

Ff :/ Dt —z)f #T(t)ur(x)dx, t e R",

and by Peetre’s inequality (3.5.5),

[ Z A1) < O [ 1t = @)t = 2)] - @) (@) de = Ca(jpupn |+ | Frual) (1),

Rn
for every t € R™. Now, by Theorem 3.2.4, it follows that

[ f e = 1 Z 0 fluwllz < Ol * 1 f || 2 < Clomell el Freell 2 = Cl | ol fll e
Therefore, the statement holds. n

8Jaak Peetre (1935-2019) — Swedish mathematician.
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Theorem 3.5.6 ([66]). Let r,s € R. The mapping (1 — 1 A)S/2 H"™ — H" defined by

5/2 n r+s
(1_4 ) f T [f,us]a fEH+7
is an isometry between spaces H™* and H".

Proof. According to Example 3.4.3, the mapping is well defined and

2 / F O Priar ) dt = | 170 Prtngrny(8) At = [ F1Z0re.
s

for r,s € R. Therefore, the statement holds. O
Theorem 3.5.7 ([65]). The Sobolev spaces H", r € R, are reflexive and separable.

H( o 1 As/2f|

Proof. Since L? is a reflexive and separable space, from the previous theorem, it follows
that H", r € R, are also reflexive and separable spaces. O]

Example 3.5.1. Let 6y be the Dirac distribution. Then, dg € H" if and only if r+% < 0.
Indeed, F[0o] = 1 (see Example 3.4.1) yields

doeH & wtF)H) el < (L4 [¢?) dt < +00 & r+2<0.
]Rn

In the continuation, it will be proved that the dual space of H" is the space H™", r € R.
Lemma 3.5.3 ([58]). Let r > 0. Then, inner product {-,-)2 : H" x L* — C extends into

a continuous sesquilinear® form

(N H xH"=C, (fg)= 5 F)g(t) dt. (3.5.6)

Proof. Let f € H" and g € L?. Then,

[(frg)ee| = [(f,9)2| = ‘/R F&)r (0)g(E) i (2) dt‘ < | fllellglz--
by Plancherel’s theorem and Cauchy-Schwarz inequality. Now, the statement follows from

Lemma 3.5.1. O

Theorem 3.5.8 ([58]). The form (3.5.6) establishes the duality between spaces H" and
H7, r>0, e

(H) ={f=(f.g)r:geH T}, (HT)={f—(f9g)r:9g€H} (3.5.7)
Moreover, the isomorphisms (H")' = H™" and (H™") = H" are isometries.
Proof. Let g € H™". Then, f — (f,g), is an element of (H")’, by Lemma 3.5.3. On the
other hand, let f € (H")'. Then, by Riesz Representation Theorem, there exists h € H"

cuch that K]l = | ]| and for every f € H7, J(f) = (f, hygr. Defiie hn(t) = h(t)ar (1)
t€R”, and let g = . % 'h;. Now, g € H™" and

FUY = by = | FOROw(t)de = (f.g)r f € H"

The second equality is proved in the same way. Finally, from the previous calculation, it
follows that || f|| = ||hllar = ||g||z--- Therefore, the statement is proved. O

9A form is sesquilinear if it is linear in the first argument and semi-linear in the second argument.
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3.6 The spaces Z,2(R") and Z,,(R")
Spaces Z2(R™) and Z;.(R") actually represent the corresponding intersections and the
corresponding unions of Sobolev spaces H", r € R, respectively.

Definition 3.6.1 ([65]). The space D12 = D12(R™) is a subspace of €°° such that f € Dye
if and only if D*f € L? for every a € NJ. The topology in D12 is defined by the family of

norms e
Hfl!mz(ZHDpf\lia) men

p|<m

Since the identical mappings from Z;2 to H", r € Ny, are continuous, from Theorem
3.5.3(3) and Corollary 3.5.1, the next statement holds.

Theorem 3.6.1 ([65]). For the space ;2 holds Pr2 = (5 H'.

The dual space of the space Z;: is denoted by %7, = Z;,(R"). Using the theorems 3.5.8
and 3.6.1, it follows that the next statement holds.

Theorem 3.6.2 ([65]). 2, =J 5 H™".
Some properties of the spaces Z;2 and %), are given in the next assertions.
Theorem 3.6.3 ([58, 69]). (1) The space D12 is dense in H", r € R.

(2) The space Z is dense in Dye.

(3) The space D12 is a complete topological vector space, locally convex and reflexive.
Theorem 3.6.4 ([65, 69]). (1) The space Z is dense in Z;,.

(2) A mapping D* : D7, — D1., a € Ni, is continuous.

(3) In order for the distribution to belong to 9., it is necessary and sufficient for it to
be the finite sum of derivatives of functions from L2.

(4) The distribution ¢ € " if and only if ¢ = x*f for some a € N§ and f € Z;,.
Finally, it is not difficult to see that ¥ C ;. C 9}, C /.
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Chapter 4

Periodic distributions and
wave fronts

The space of periodic distributions is one of basic Schwartz spaces. The motivation for
studying periodic distributions stems from local analysis and microanalysis of functions
and distributions. In this way, many problems in the scope of R™ can be simplified and
transferred to the torus T". More about periodic functions and distributions can be read
in [16, 17, 51, 69].

A wave front (or a wave front set) is a term that arose in the period of research related to
the classification of singularities using their spectrum and it is at the basis of microlocal
analysis. The reader can read more about the wave fronts in [46, 47, 48, 59, 65].

4.1 Periodic functions

Definition 4.1.1 ([17]). A function w : R™ — C is periodic with period n € R", n # 0, if
Tyw=w,

i.e. wix —n) = w(x), x € R". The set of all continuous periodic functions is denoted
by Cpe = Cpe(R™), and the set of (-times continuously differentiable periodic functions is
denoted by €', = €', (R"), £ € N.

The norm on the space 6. is defined by

., = sup w(a)], w € G (4.1.1)
reR™

It is not difficult to check that the next statement holds.
Theorem 4.1.1 ([17]). The space of continuous periodic functions €, is a Banach space.
Example 4.1.1. The function f defined by
flz) = Z ay e 2milar) e R,
—

where (ag)qezn is a sequence such that lag| < 400, is continuous and periodic.

qEL™
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Definition 4.1.2 ([17]). A function w : R™ — C is said to be 1-periodic if Tyw = w for
every q € Z".

There is another notation for introduction of periodic functions with value of the n-
dimensional torus T" = [—%, %)" An equivalence relation ~ can be introduced on R" as
follows:

x~y ifand onlyif x—yeZ".

The resulting factor space is an n-dimensional torus
™ =R"/.=R"/Z" = (R/Z)".

Then, 1-periodic functions are identified with their restrictions over T™ or with their
projections on T". For example, it is said that w is an element of the space 4. (T") if it
is periodic (1-periodic) function on R" and w € €.

4.2 The space Z(R")

Definition 4.2.1 ([17]). A subset of €. which contains all functions w € €pe(T™) which
are infinitely differentiable, i.e. smooth, is denoted with & = P (R™), i.e.

ﬂ%ﬂ (T"),  CoT") = Cpe(T").

The functions from the space &2 are called smooth 1-periodic functions.

Example 4.2.1. The function f(z) = |sinz| belongs to the space €pe, but does not belong
to the space . Therefore, P # Cpe.

Theorem 4.2.1 ([17]). The space & is dense in Cpe.

It is not difficult to notice that if w € &2, then D*w € &, a € Nj. Therefore, the
topology on & can be defined by the family of norms

lwllze = sup  |[D*w(z)], £eN.

z€T™ |a|<l

A very significant space is the space L?(T"). It contains all measurable periodic square-
integrable functions. The space L?(T") is a Hilbert space with the inner product

(f, @) r2my = | f(z)g(x)dz

Tn

Lemma 4.2.1 ([40]). The set Ay = { e 2™0% ¢ P . q € Z", v € T"} is an orthonormal
basis of the space L*(T™).

A sequence (w,),ey € & is said to be Cauchy in the space & if for every a € Ny,
(D%w, ) en is a Cauchy sequence in ,.. Also, a sequence (w,),eny € & is said to converge
tow € & if lim, ;o D, = D% for every a € Nj.

Theorem 4.2.2 ([17]). Let (w,)yeny € & be a Cauchy sequence in the space &2. Then,
it converges to w € .
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Proof. 1t is sufficient to prove the case n = 1. Assume that (w,),en € & be a
Cauchy sequence in the space &. Then, (D"w,),en is a Cauchy sequence in %, and
thus lim,_,; o Dw, = u, € 6, uniformly for every a € Ny. Obviously,

Dw,(x) = D"w,(0) +/ DM, (t)dt, a € N,.
0

Therefore,

uy(r) = lim D%w,(z) = lim D"w,(0)+ lim Dy, (t) dt

v—+00 v—+00 v—too [
= u,(0) + /01’ Ugy1 () dt,
and thus Du, = u,. for every a € N. This means that if w = wug, then u, = D*w and
lim,_, o D*w, = D*w. Hence, lim,_,,,, w, = w in Z. O
The characterization of the space & is given in the following theorem.
Theorem 4.2.3 ([16]). The function w belongs to the space & if and only if

— —27Fi<q,->
w = E W, € ,

qEL™

where wy = [p, w(z)e 2™ dx, g € Z", and D gezn [Wqlp(q) < +o0 for every p € Z.

4.3 The space Z'(R")

The dual space of the space & is &' = Z'(R").

Definition 4.3.1 ([17]). A continuous linear functional on the space & is called a periodic
distribution. The set of all periodic distributions is denoted by &'.

If v is a periodic distribution, then v is a tempered distribution, as the following statement
says.

Theorem 4.3.1 ([16, 65]). The set of periodic distributions &' is a subset of the set of
tempered distributions ., i.e. P C .

Characterization of the space &2’ is given in the next theorem.

Theorem 4.3.2 ([16]). The distribution v belongs to the space &' if and only if

v = Z v, e e and Z g 1_2:(q) < 400,
qezn g€z
for some T > 0.
To underline the importance of real number 7, &' is written.
The dual pairing between v = Y ;. vge™ ™) € P and w = Y 0 wee ™) € P is

given by
(v, W)z = E VgWy.
qEL™
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4.4 Some equality

Some of the more significant equalities used in this dissertation are introduced in this
section.

Theorem 4.4.1 (Plancherel, [40]). Let f € L*(T") (i.e. f € L? be periodic function)

and f an e=27at) At be the q-th Fourier coefficient. Then,
f Z f e2milg
g€z
and
111720y = OPdt =" 1F @) = 1(F(@)qez 13- (4.4.1)
" qeEZL™

Remark 4.4.1. If f € &, then the decomposition f = ;. f(q) 2mia) holds, by
Theorem 4.2.3 with w_, = F(q). If additionally f € L2(T"), then (4.4.1) holds.

The following ”periodization” trick will often be used in the last chapter.

Lemma 4.4.1 ([40]). Let f € L'. Then, for every s > 0

5 flz)da = /[O . ( > Tof (:c)) dz

qeEL™

Proof. Since f € L', by Fubini’s theorem, it follows that
=Y [ g [ (3T )as
NG qezn [0,s]"+gs [0,s]™ qezn
Hence, the assertion holds. O

Theorem 4.4.2 (The Poisson' summation formula, [40]). Assume that the assump-
tions |f| < C(1+ |- )=+ and |f| < C(1+|-|)~"*), for some ¢ > 0 and a positive
constant C', hold. Then,

Z qu(ZE) = Z M:cf(‘])’ r € R, (4.4.2)

qEL™ qeEZ™

and sums converge absolutely.

Proof. Assume that the conditions given in the theorem hold, and let h(x) = 3 ;. Ty f (2).
Then, using Lemma 4.4.1,
> Tl

Hmew=/|M@Mw=/
L qeZ™

</ _Cde
X oo,
g (14 [x])mte

1Siméon Denis Poisson (1781-1840) — French mathematician and physicist.

|f ()] dz
R
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i.e. h € L'(T™). Thus, using Lemma 4.4.1 again, it follows that

) = [ iy ao= [ (5 g jemiei ) a

jezr

Since

~ C
Z|f(Q)|<Zw<+OO>

qeZ™ qeZ™

h has the absolutely convergent Fourier series
h(z) =Y M, f(q), z€R",
qeEL™
which completes the proof. O
Remark 4.4.2. If
Y Tyf(@) e LT and Y |f(g)]* < +oo,

qEL™ qEZL™

then holds a weaker version of the Poisson summation formula, i.e. the equality (4.4.2)
holds almost everywhere.

4.5 Wave fronts

As it is already mentioned in Introduction, the wave front represents a very important
mathematical concept in the last fifty years. It is a well-known result that the product
of two distributions can be defined if their wave fronts are in the ”good” position with
respect to each other. This led us to study the product of the observed spaces and wave
fronts.

4.5.1 The wave front of distributions

The conic neighborhood of a point is used to define the wave front.

Definition 4.5.1 ([46]). A set I' C R™\ {0} is called a cone if
tel' wmplies M el for every A > 0.

The conic neighborhood of point ty, denoted by I'y,, is an open cone that contains t.

Definition 4.5.2 ([8, 59]). (1) The mapping pry : Q1 xQy — Q defined by pri(x,t) = x
1s called the projection on the first factor.

(2) The mapping pra : Q1 X Qo — Qy defined by pro(z,t) =t is called the projection on
the second factor.

The set X(+) is defined as follows.
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Definition 4.5.3 ([46, 48]). It is said that to ¢ 3(f) C R™\ {0}, where f € &, if there
exists a conic neighborhood 'y, of point to such that for everyt € I'y, and for every N > 0,
there exists a constant Cy > 0 such that

(O] < Crvpan(t).

It is not difficult to see that f € €5° if and only if X(f) = 0.
Lemma 4.5.1 ([46, 48]). Let ¢ € 65° and f € &'. Then, X(¢f) C X(f).
Let f € 2'(Q2) and x € Q. Set
0= (] S
PEE (2),6(z)#0

Then, for ¢ € €5°(§2) such that ¢(z) # 0, by Lemma 4.5.1, it follows that
lim = 3(¢f) = Xa(f).

supp ¢—{z}
Thus, X,(f) = 0 if and only if x ¢ signsupp f.
Definition 4.5.4 ([46, 48]). The set

WE(f) = {(z,t) € A x (R*\{0}) : t € ,.(f)}
is called the wave front set of f € 2'(Q).
The definition of a wave front can be reformulated as follows.

Definition 4.5.5 ([46, 48]). The point (xg,ty) € R™ x (R™ \ {0}) does not belong to the
wave front set WE(f) of f € 9" if there exists ¢ € €5° so that p(xy) # 0 and to & 3(Pf).

Remark 4.5.1. The statement (x,t) ¢ WE(f) can be understood as f € € at (z,t).

Obviously, the wave front set is closed in  x (R™\ {0}) and invariant under multiplication
by a positive real number of the second factor, i.e. (x,t) € WF(f) implies (z, A\t) € WF(f)
for A > 0. Therefore, WEF(f) C Q x S*!, where S*~! is the unit sphere. Moreover,
the wave front set contains all information in signsupp f and in ¥(f) as the following
statement says.

Lemma 4.5.2 ([46, 48, 59]). Let f € 2'(QY). Then:
(1) pri(WF(f)) = signsupp [,
(2) pro(WE(f)) = X(f).

Proof. (1) Let zq € R™ so that x ¢ signsupp f, and let ¢ € €5° satisty supp ¢ = K[z, €],
where K[z, €] is a sufficiently small closed ball with center at xy and radius €. Then,
of € € and ¢f has compact support. Thus, ¢f € .. Since .% : . — . (by Theorem

3.3.1(3)), of € .. Therefore, (o, t0) € WEF(f).

Conversely, let o € R" so that (xg,ty) ¢ WE(f). Then, for each t, € R"\ {0} there
are an open set O containing xy and a cone I';,, such that the conditions in Definition
4.5.5 hold. Since the sphere in R" is a compact set, it ensures the existence of a finite
number of couples (O, F{O) such that the cones F{O cover R"\ {0}. For ¢ € 65° satisfying

supp ¢ C (; O; holds ¢f € 7. Therefore, o ¢ signsupp f.
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(2) According to Definition 4.5.4, it is obvious that pro(WE(f)) C 3(f). In the other
direction, let I be a conic neighborhood of pro(W F(f)). Then, for every xy € R™ there
exists a neighborhood O,, so that for ¢ € €5°(0O,,) holds ¥(¢f) C I'. Since supp f is a
compact set, there is a finite number of such neighborhoods O,,. Choose ¢; € 65°(O,,)
so that >, ¢; =1 in supp f. Then,

S(f) = E(Zcbjf) cUs@ner,

Hence, X(f) C pra(WE(f)). O
Other important properties of wave fronts are given in the next assertions.
Lemma 4.5.3 ([48]). Let f € 9'. Then:

(1) WF(of) CWE(f), ¢ € €,

(2) WE(D"f) CWF(f), a € N,

(8) WE(f +9) CWEF(f)UWF(g), g€ 7.

Proof. Assertions (1) and (3) follow directly from Definition 4.5.4. To prove (2), let
Y € 65° such that ¢ = 1 in a neighborhood of z, and let ¢ € €;° so that v = 1 in
supp ¥. Then,

.(D"f) C E(WD"f) = S(WD ) C (D f) S B(0f), aeN;.

Thus, $,(D°f) € lim  S(¢f) = S.(f), i.e. the assertion (2) holds. O

supp ¢ —{z}

Theorem 4.5.1 ([48]). If A C Qx (R™"\{0}) is a closed conic, then there exists f € P'(R2)
such that WE(f) = A.

Example 4.5.1. A wave front for the distribution g € Z'(R) is WE(dy) = {(0,t) : t # 0}.

Definition 4.5.6 ([48]). A distribution f € 2’ is said to be homogenous (of degree s) in
R™\ {0} #f

(f,0) = (f, 9c),
where ¢ € €5°(R™ \ {0}) and ¢.(x) = "¢(cx), ¢ > 0.

Theorem 4.5.2 ([48]). Let f € 9’ be homogeneous in R™\ {0}. Then,
(1) (x,t) € WF(f) if and only if (t,—x) € WF(f) for t #0 and x # 0;
(2) ze€suppf if and only if (0,—zx) € WF(]/C\) for x # 0;
(3) te suppf if and only if (0,t) € WF(f) fort # 0.
A wave front is also used to determine the existence of the product of two distributions.

Theorem 4.5.3 ([65)). If f,g € 2'(Q) and
(2,0) ¢ WF(f)OWF(g) = {(z,t1 + t2) : (z,t1) € WE([), (z,12) E WF(g9)}, z €,
then there exists the product fg and
WFE(fg) CWF(f)UWF(g)U (WF(f)SWF(g)).
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4.5.2 The wave front of Sobolev type
In this research the wave front of Sobolev type will be used. A slightly reformulated

Hormander’s definition of Sobolev type wave fronts is given in the following definition.

Definition 4.5.7 ([46, 56]). It is said that f € 9' is Sobolev microlocally reqular of order
r € R at (xg,t)) € R" x (R*"\{0}) (f € H],,. at (xg,1t) for short), i.e. (xo,t0) ¢ WE.(f),
if there is an open cone I'y, and ¥ € 9, ¥ =1 in a neighborhood of xy so that

[ @R 0 < o

to

Using this definition and some auxiliary statements, Hormander proves the following
statement related to the product of elements of Sobolev spaces.

Theorem 4.5.4 ([46]). Let f € H", g € H* and r +s > 0. If p < min{r,s} and

n

p<r+s—15 (ifr=7%5 ors=14 orp=—7%, then the inequality is strict), then fg € HP.
Theorem 4.5.5 ([46]). Let f € H" and g € H".
(1) If r >
(2) If r <
(3) If r+s >0, then fg € leocsf%.
Let 6 € (0,1]. The set

3

and r + s> 3, then fg € H,

loc

0|3

andr+s—75>p=0, then fg € H,

loc

n

Tyo = H (zj — 5.2 +35)

j=1
is denoted by T7 .

Definition 4.5.8 ([56]). If f € &' has the support in T} ,, 0 € (0,1), the periodic
extension of localization of f in some neighborhood of the point xq is

foel) =Y T,f(x)

qEL™

By discretization of the wave front, the authors in [56] concluded the following statement.
Theorem 4.5.6 ([56]). Let f € 9. The following conditions are equivalent.

(1) There is an open cone I'y, and ¢ € 2D(T7 ,), ¥ = 1 in a neighborhood of o,
0 € (0,1), so that

Z g P paar(q) < +00,  where (Y f)pe = Z a o 2mila)

q€ZN Ty, qEZ"

(2) (w0,t0) & WE.(f).

Proof. Suppose that condition (1) holds. Let I" be an open cone such that t; € T' and
I' c I't, U{0}. Choose € € (0 0) so that ¢ = 1in Ty _. First, it is necessary to prove the
next assertion: if Q C Z'(T? ) is a bounded set, then

o, 5)

sup Y 16 (@)|* ar(q) < +o0. (4.5.1)

P€Q qgel’'nzn
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Let Q C 2'(T}, ) be a fixed bounded set. Since ¢f = Y¢f, it gives

— Z aqa(q —p) for every ¢ € Q.

pEL™

Fix a constant ¢ € (0,1) such that ¢ < min {d(0T,, I N S*™),d(oT,R* \ Ty, NS" 1)},
where d is the distance between two sets. Then, |t; — to| > cmax{|t1|,|t2|}, t1 € T,
ty € I'y,. Using Peetre’s inequality (3.5.5), it follows that

(FZWIQTﬂq)f)m (E;ZH(ZMW )élg — p)lpe(a — p>)2)w

< C(L(9) + I2(9)),
where [1(¢) and I5(¢) are
R o\ 1/2
Ii(¢) = ( > < > \Oép!ur(p)ld)(q—p)!um(q—p)) > ,
1/2

(Z ( S oyl (p)éla — p)lue (g — p))2>

q€TNZM N pgTy, NZ"

Young’s inequality leads to
1/2
sup I1(¢) < ( )3 |aq|2ﬂ2r(Q)> sup > o) (q) < +oo,
oeQ q€Ty,NZ" Q gezn
since @ is a bounded set. Further, for the estimate I5(¢), the next two estimates are used:
(a) for every ¢ € Z", |a,|*1.(q) = ]w(q)mr(q) < Chps(q) for some Cp > 0 and s > 0;

(b) |($(Q)| < C’gu;j|r|+3(n+l)/2(q) for some Csy > 0.

The estimate (a) follows from the fact that ¢ f has a compact support, while (b) follows
from the fact that () is bounded. Thus,

sup (I(9))* < Y ( > (p)usig(n+1)/2(q—p)>2

$€Q g€ETNZ" N pgTy, NN
2
—25—3(n+1) -1
< O3 N (g )( > un+1(p))-
qel’'nzn ngtoﬂZ”

Hence, (4.5.1) holds.

Let us choose an open cone I'; so that ¢p € I'y and I'y C I'U {0}. Let @w € 2(Ty, ) so
that @ = 1 in a neighborhood of xy. Choose R > 0 so that I'y N {t € R" : |t| > R} C
('MZ™) +[0,1)". Set Z, =q+[0,1]", ¢ € ' NZ". Then,

N0 @ a < e Y e / | Zl 0] d

|t|>R qel’'Nz™
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_c /[ o X |Z ) ) de

2
<C sup Y | F[M_wf)(9)] narlq) < oo,
" gernzn

by Peetre’s inequality (3.5.5) and (4.5.1). Thus, (zo,to) ¢ WF,.(f), i.e. (2) holds.

Suppose that (zg,ty) ¢ WE,.(f), i.e. that the condition (2) holds. Then, there are ¢ €
(0,1) and an open cone I';, so that

Sup/ |o f(£)]2dt < 400 (4.5.2)
weR Tzq

for every bounded set @ C 2(T7 _). This claim can be proved by the analysis similar
to that in the proof of (4.5.1). Further, let I be an open cone so that ¢, € I' and
I c Ty, U{0}. Then, there are R > 0 so that (I' + [0,1]") N {t € R : |[t| > R} C Ty,.
Let v € 2(T7,,) so that ¢ = 1 in a neighborhood of zg, and let A : I';; — [0,1]" be a
measurable function. Consider the bounded set

= {wjn € D(T},.) : wjn(x) = z; e M @hO) (), t € Ty, j=1,... ,n}
n (4.5.2). Then, there exists a constant C' > 0 (C' is independed of h) so that

/ IVFZ [ fI(t + h(t)) | par(t) dt < C, (4.5.3)
Tug
where V is the operator nabla, i.e. V = (8%1, e %). Let Z, = q+[0,1]", ¢ € Z™. Note,

Z, C I', for |g| > R. Therefore,

(Z @q)m(q)) (Z 57 (0) \M2T(Q)dt>l/2<h+f2,

gernzr qeTNzZ»

where 12 = 3 rozn [, [0F(q) = 0 F (£)[Piar(q) dt, and

13- Z/w )Py ()

qel'NzZ™

Z Wf )2 pi2r (q) dt + 01/F |W(t>’2,u/2r(t> dt < +o0.

/<R
It remains to prove that I; < +oo. For given z > 0 define h, : I';, — [0,1]" by
ha(t) = {z(q —1), te Zq,'|t| >R
0, otherwise.
Since .
070 - P <lo—t] [ [VEWAE+2(a - 0)[ d,
it follows that 0

fi< 0 (@) = D (1) Ppar(q) dt + € ha(6)] iar () d
P2, W@ B0t € sy /FZO; FIOAI+ b)) s (1)

< +00.
Therefore, (1) holds. O
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4.6 The spaces &*" and &,

loc

In this research, the spaces 21", 22" and 9’}0’;, @i,g are used to determine the appro-

priate products. Therefore, the spaces &7°" and &) are introduced in this part.

Definition 4.6.1 ([16]). The spaces 2", s > 1, r € R, are defined by

P = {f eP:f= Z ay e~ 2milar), (0g)qezn € Ei},

qeEZL™

with the corresponding norm || f|| zsr = ||(aq)qezn |-

Lemma 4.6.1 ([16]). The spaces 2>, s > 1, r € R, are Banach spaces.

Definition 4.6.2 ([16]). The function (¢f)p. of f € 2" and ¢ € D(T7, ) is defined by
(@f)pe = D age 0,

qeL™
where ag = [, (6f)(t)e 27 dt, q € 2.
0,0

Definition 4.6.3 ([16]). The local spaces ;.. s > 1, r € R, are defined by

loc?

P {f €D (¢f )pe € P for all zog € R and ¢ € Q(Tgo,e)}-

loc

The topology in the local spaces 22", s > 1, r € R, is defined by the family of seminorms

loc?

Hf”acoxzﬁ = ‘|(¢f)pe”323ﬂ"~

Lemma 4.6.2 ([56]). For all s > 1 and r € R hold:
(1) s C 20

loc’

(2) 2= 2,
r=0

3) 2 = | 2
r<0

The product of two distributions from spaces &2°'"" and &?%2" is defined by Fourier coef-
ficients.

Definition 4.6.4 ([56]). The product of functions fi = Y cpn f1 €™ 2™ € 22" and
fa= quzn Ja2 e=2milar) € 527 s defined by

f=ht=>_ fye @)

qGZn

where f, = ZpEZn fo—pifp2, q €Z".

Theorem 4.6.1 ([56]). Let f; € &2V and fo € P>, If i + é = %—1— 1, then the

mapping
fife : PV x PN — T (4.6.1)
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s continuous. Moreover, if fi € P25V fo € P22 and r,ri,19 € R such that ri+19 > 0
and r < min{ry, ro}, then the mapping

Fifs: P x ey gper (4.6.2)

18 also continuous, where i + é = % + 1.

Proof. By Young’s inequality, it follows that || f1 fo|| #s. < C|| f1]| 2510 || fo|| #s2.-. Therefore,
the mapping (4.6.1) is continuous. Further, assume that r; > 0 and r = ry. Then,
r1 = |ra| provided that r + 75 > 0. Now, using Peetre’s inequality (3.5.5), it follows that
the mapping (4.6.2) is continuous. [

The product in local versions of these spaces is introduced as follows.

Definition 4.6.5 ([56]). Let fi € 22", fo € 2,27, 0 € (0,1), and let ¢ € 2(T}, ;)

loc loc

be so that ¢(x) = 1 for all x € T? _, ¢ < 0. The product f = fifs is defined locally by

xo,E’
fro0 € D'(T}, ), where fo,9 is the restriction of the product (¢ f1)pe(dfa)pe to Tl 4

The following statement is a consequence of Theorem 4.6.1.

Corollary 4.6.1 ([56]). Let fy € &))" and fo € Py If -+ - = - + 1, then the
mapping

flf? s PV Gy gt

loc loc loc

is continuous. Moreover, if f1 € P20, fo € 22" and r,ri,ry € R such that ri+ry >0

loc loc
and r < min{ry, ro}, then the mapping

f1f2 . 1,71 X 52,71 N ST

loc loc loc

1s also continuous, where i + é = % + 1.
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Chapter 5

Frame theory in Hilbert spaces

The theory of frames belongs to the branch of modern mathematics and it has seen rapid
development in the last twenty years. This was primarily contributed by a wide field
of applications, primarily in signal analysis. As an advantage of using frames in various
algorithms, they state efficiency, compression of data, speed of numerical calculations, and
removal of noise. When transmitting data over the internet, the decomposition coefficients
of a signal and the corresponding tools of linear algebra and numerical mathematics
are used to create fast and reliable algorithms that decompose, process, transmit, store,
and reconstruct the given signal. The orthogonality condition makes it impossible to
reconstruct the lost coefficients from the obtained ones so that part of the information they
carry is lost forever. When transmitting an image or sound, it turns out that algorithms
based on results of linear algebra, numerical analysis, and operator theory becomes more
efficient if the uniqueness condition is omitted. In this way, the most important properties
of orthonormal bases, linear independence and orthogonality, lead to serious difficulties.
On the other hand, frameworks can be constructed to meet certain specificities imposed
by nature of problem. Today, frame theory is used to compress fingerprint images that
make up the FBI files, to remove noise from audio signals, to remove white noise from
satellite photos, determine the level of different layers of the earth based on the reflection
of acoustic waves emitted from the surface, etc.

Frames are a more flexible tool than an orthonormal basis, because they allow each vector
in a vector space equipped with an inner product can be written as a linear combination
of the elements in a frame, but linear independence and orthogonality are not required
between the frame elements.

In this chapter, only frames in Hilbert spaces are presented. However, K. Grochening
extended the theory of frames to a large class of general Banach spaces, but as the theory
there is somewhat more complex and is not needed by us, it will be omitted in this chapter.
For a more complete study of frame theory, the reader can see [28, 29, 30, 40, 41, 44].
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5.1 Basic terms and definitions

In this dissertation, (-,-) and || - ||~ denote the corresponding inner product and norm
in Hilbert space ¢, respectively. In this chapter, I denotes at most countable set.

The most important notion for the convergence of a non-orthogonal sum over a general
set of indices is unconditional convergence. A series is said to converge unconditionally if
changing the order of terms in the sum does not affect the convergence of the series as it
is stated in the next definition.

Definition 5.1.1 ([41]). A series Y, ., fx, where fi € A, k € I, is said to be uncondi-
tionally convergent if the series ), ; fxx) converges for all permutations m of I.

In finite dimensional spaces, a series converges absolutely if and only if it converges un-
conditionally. However, in infinite dimensional spaces, absolute convergence implies un-

conditional convergence. For more details on unconditional convergence the reader can
look at [41].

Definition 5.1.2 ([29, 41, 42]). A family {fx € S : k € I} is a basis for F€ if for every
f € A there are unique scalars oy, so that

f=Y afi. (5.1.1)

A basis is unconditional if the series (5.1.1) converges unconditionally. It is bounded if
0 < infrer || fulle < supper || fellw < +00. A basis is orthonormal if (f;, fe)wr = Ok,
k,j € I, where 0y ; is Kronecker’s' delta function®.

Let us recall the statement about orthonormal bases. Therefore, let us introduce the
following notations that will be used in the sequel. The set of all linear combinations of

vectors {fy : fx € I, k € I}, ie.

{Zakfk:akeC, fke%”,kel}

kel

is denoted by span{fy : fx € H, k € I}, and its closure in J# is denoted by span { f} :
fred ke ]}.

Theorem 5.1.1 ([42]). Let {fi : fx € J, k € I} be an orthonormal basis in a Hilbert
space 7. The following assertions are equivalent.

(2) [ =2 kel fu) e fu for all f € .
3) 1% = > wer 10 fx) e |? for all f € S (Parseval’s® equality).

4) (f,9) e = D perlfs o) w9, fi)ow for all f,g € .

Note, a Hilbert space has an orthonormal basis if and only if it is separable.

Leopold Kronecker (1823-1891) — German mathematician.
L, k=,

0, k#j.
3Michel Plancherel (1885-1967) — Swiss mathematician.

20,5 =
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In order to introduce the definition of a Riesz basis, it is necessary first to introduce the
definition of equivalent bases.

Definition 5.1.3 ([41]). Basis {fx : k € I} and {gx : k € I} are equivalent for J if
there exists a topological isomorphism S : 7 — F such that S fy = gi for every k € I.

Definition 5.1.4 ([41]). A basis for A is called a Riesz basis if it is equivalent to some
orthonormal basis for 7.

Lemma 5.1.1 ([41]). Let {fx : k € I} be a Riesz basis for 74 and let S : 74 — 5 be
a topological isomorphism between two Hilbert spaces. Then, {Sfy : k € I} is Riesz basis
for 7.

Proof. Assume that {fy : k € I} is a Riesz basis for 4 and S : 74 — 74 is a
topological isomorphism between two Hilbert spaces. Then, since 57 has a basis, it is
separable. Further, since S : 54 — 745 is a topological isomorphism, it follows that 7%
is also separable. Thus, there is an isometric isomorphism T : J# — 4. According
to Definition 5.1.4, there is some orthonormal basis {g; : k € I} for .74 and there is
a topological isomorphism K : J# — J# so that Kg, = fi for every k£ € I. Finally,
SKT: 5 — 5 is a topological isomorphism and

SKTﬁl(Tgk) ISngIka, ]CE[,
i.e. {Sfi : k € I} is a Riesz basis for .4, since {T'gy : k € I} is an othonormal basis for
6. O
A Bessel family is defined as follows.

Definition 5.1.5 ([41]). A family {fx : fr € H,k € I} is said to be a Bessel family for
Hif

D F f)wl® < Hoo for every f € A,

kel
i.e. there is a constant B > 0 so that Y ., [(f, fu)r|* < Bl f|% for every f € .
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5.2 Frames in Hilbert spaces

Much effort has been invested in determining orthonormal bases that satisfy additional
properties for various Hilbert spaces. It is often difficult to determine such an orthonormal
basis, because the orthogonality condition is quite strong. As an alternative, this chapter
presents the theory of frames. The advantage of frames over the orthonormal basis is that
additional conditions can be more easily imposed. For more details about frame theory
in Hilbert spaces, the reader can refer to [29, 33, 40, 41, 42, 44].

Definition 5.2.1 ([29, 40, 42]). A family {fi : k € I} of elements in a (separable) Hilbert
space € is said to be a frame for € if there are positive constants A and B so that

Alf 1% < DN Sy P < BIfIZe for every | e 2. (5.2.1)

kel

The constants A and B are called frame bounds. If the constants are equal, the frame is
called tight. If the frame bounds are equal to 1, it is called a Parseval frame. A frame
is exact if omitting one element in the family results it ceases to be a frame. A frame
{fx : k € I} in H is said to be fundamental if span{fy : k € I} is dense in . The
coefficients (f, fx)w, k € I, are called the frame coefficients.

Example 5.2.1. Let {fy : k € I} be an orthonormal basis for 5. Using Parseval’s
equality, it follows that it is a tight frame with frame bounds equal to 1, i.e. Parseval’s
frame. Moreover, it is an exact frame.

Lemma 5.2.1 ([41)). If {fx : k € I} is a frame for A, then {fi : k € I} is complete in
I .

Proof. Let {fx : k € I} be a frame for 5 and let f € S so that (f, fr)» = 0 for every
k€ I. Then, A||f|I% < > 4er (f, fr)oe? = 0. [

Example 5.2.2. Let {fy : k € I} be an orthonormal basis for . Then, {fi, %, %, .

is a complete orthonormal set. Moreover, it is a basis for €, but it is not a frame (it
does not have a lower frame bound).

Lemma 5.2.2 ([40]). Let {fy : k € I} be a Parseval frame. If || fx||» = 1 for every k € I,
then {fx : k € I} is an orthonormal basis.

Proof. Using the inequality (5.2.1), it follows that
1= fl% = Z (s fre)oe? = Z [(fis fyel? +1, G EL

kel kel
k#3j

Thusa <fj7f/€>%ﬂ :5l€,j7 k7] el O

In order to better understand frames and reconstruction methods, some important ope-
rators should be studied, such as the analysis operator, the synthesis operator, and the
frame operator.

Definition 5.2.2 ([29, 40]). Let {fx : k € I} be a subset of .

(1) The operator C, : 2 — (*(I) defined by Cof = {{f, fr)w : k € I}, f € I, is
called the coefficient operator (or the analysis operator).

(2) The operator S, : (*(I) — S defined by Soov = Y ;o fr, @ = (ow)per € (1), is

called the synthesis operator (or the reconstruction operator).
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(3) The operator Fy, : A — H defined by F,f =, ([, fr)wfr, [ € H, is called the
frame operator.

Theorem 5.2.1 ([40, 41]). Let {fi : k € I} be a frame for .
(1) The operator C, is bounded with closed range.

(2) The operator S, is the adjoint operator of C,, i.e. S, = C¥. As a consequence of
this, S, is bounded and holds ||Syc||» < VB|||e.

(3) The operator F, = C*C, = S,S* is a positive, invertible, self-adjoint operator and
hold Al < F, < Bly and B™'1,, < F;' < A1 . Specially, {fy : k € I} is a
tight frame if and only if F, = Al 4.

(4) The frame bounds Aoy = ||F; ™" and By = || Fyl|| are the optimal frame bounds.
Proof. (1) Since { fy. : k € I} is a frame for S, the inequality (5.2.1) implies the statement.

(2) Combining

(Cra, fyor = (@, Cof)e =Y anlf, fidw <Zakfk7 > = (Soev, f)r

kel kel

with ||C,|| < VB (by (5.2.1)) leads to S, = C* and ||S,|| < VB.

(3) It is not difficult to see that F, = C*C, = S,S¥. Thus, the operator F, is self-adjoint
and positive. Using the inequality (5.2.1) and (Fof, f)or = > e [(f, fo)re]?, it follows
that A1, < F, < Bl . Since A is a positive constant, F}, is invertible. Further, applying
the operator F,;"! to the previous inequalities gives B™11,» < F; ' < A7'1 4, because F; !
is a positive operator and commutes with F,.

(4) Since the norm of the positive operator Fj, is given by

[Eoll = sup{{FLf, foe « [ fllr < 1},

using the inequality (5.2.1), it follows that B, = | F,||. A similar argument yields
A = IESL O

Lemma 5.2.3 ([40]). Let a = (o )rer € C2(I). If the set {fy : k € I} is a frame for I,
then Y c; arfi converges unconditionally to f € H.

Proof. Let € > 0. Choose J C I so that } ;. lap|? < eB™Y2 for Jy D J, and let oy, =
a-x, € (*(I), where X o is the characteristic function of Jy. Then, ZkeJ ar fr = Seay,
and

= ||Soa = Soa |l = [1So(@ — @) < VBlla = agle <,

Hf > owfi|

keJg

by Theorem 5.2.1(2). O

Lemma 5.2.4 ([41]). Let S : 54 — 4 be topological isomorphism, and let {fy : k € I}
be a frame for 7. Then:

(1) {Sfx : k € I} is a frame for 5, moreover, if A, B are the frame bounds for
{fx: k €I}, then A/||S7Y|?, B||S||* are the frame bounds for {Sfy : k € I};
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(2) if F, is the frame operator for {fy : k € I}, then SF,S* is the frame operator for
{ka . /{ € [},

(3) {fx: k €I} is exact if and only if {Sfy : k € I} is an exact frame.
Proof. Since

SF,$%g = S(Z<S*g, fkmfk) = (9. Sf)mS . g€,

kel kel
(according to Theorem 5.2.1(3)) the assertions (1) and (2) hold if

A

HSAHzljfz < SF,S" < B||S|* L. (5.2.2)

Therefore, it suffices to prove that (5.2.2) holds.

Since F, is the frame operator, it implies that A1, < F, < Bl,4, by Theorem 5.2.1 (3).
Thus,
S g < (SE.S'g.9)0 < BIS'gl. g€ . (529

because (SF,S*g, 9).n = (FuS*g,5*g)m, g € #5. On the other hand, S : /4 — 75 is a

topological isomorphism, it gives

lglles _ lgll. . ‘
IIS—1|2| = HS*_fH < [15%gllm < 157Mlglle < IS99 € . (5.2.4)

Now, by (5.2.3) and (5.2.4), it follows that

Allgli%s

TSP <(SFS"g,9)m < BlSIP9ll%s, 9 € 56,

i.e. (5.2.2) holds.

Finally, since a topological isomorphism preserve complete and incomplete families, it
follows that the assertion (3) holds. O

o4



5.3 Dual frames and Riesz bases

A function f can be reconstructed using frame coefficients in the following way.

Lemma 5.3.1 ([40]). Let {fx : k € I} be a frame for 7€ with fmme bounds A and B.
Then, the set {EF; fi. - k € I} is also a frame with frame bounds Loand L 4, and for every
f € I hold

F=Y L FE ) fi (5.3.1)
kel
and
F =Y At iy Fy fie (5.3.2)
kel

Moreover, the both sums converge unconditionally.

Proof. Since

STULE fidael? =Y KEf fidoe2 =D AE o fo o (S F, Fi)or

kel kel kel
=Y A o S (S Fy e = (Fo(F ), F e = (B e
kel

and using Theorem 5.2.1 (3), it follows that

B I3 < CES U fhoe = D W ES e P < AT
kel
Further,
f=F(F ) =D (FS e ke =Y A F fe) e fi
kel kel
and

f=F (Ff)= Fo_l(ZU, fk>32”fk> = (o fu)oe Fy e

kel kel

By Lemma 5.2.3, since ((f, fx)z)xer € (*(I) and ({f, F; " fu) #)xer € €*(I), the both series

converge unconditionally. O]

Definition 5.3.1 ([41]). A frame {F,; ' fx : k € I} is called the canonical dual frame of
{fr : k €I} for , where {fy: k € I} is a frame for F.

Proposition 5.3.1 ([33, 42]). Let {fr : k € I} be a frame for 5€. If there are scalars
B # ([, E; fr) e so that f =3, Brfe, then

STBP =D K F P+ D I E i) — Bil.

kel kel kel

Proof. Denote ay = (f, F; fi) e, k € 1. Note that (fie, F,; 7 Yo = (ES i, [l = i,
kel Since f=>,; Oékfk, it implies that

(f, F e = <Zakfk, >Jf = Z | | (5.3.3)

kel kel
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On the other hand, since f = >, _; Bifi, it gives

(f B fhow = <Zﬁkfk, Fo_lf>%ﬂ = Btk (5.3.4)

kel ’ kel

Now, from (5.3.3) and (5.3.4), it follows that >, ; |ax|* = > .c; Bkax. Therefore,

Z || + Z | — Bil* = Z o] + Z (low|® — B — @Bi + 18kI?)

kel kel kel kel
= 216"
kel
Hence, the statement holds. O]

Remark 5.3.1. According to Proposition 5.3.1, the coefficients {f, F; ' fu)w, k € I, in
the equality (5.3.1) are not unique in the general case.

Theorem 5.3.1 ([33, 41, 42]). Let {fy : k € I} be a frame for .
(1) If (f;, F; M fi)or # 1 for some j € I, then {fy : k € I, k # j} is a frame.
(2) If (fj, E; M fi)or = 1 for some j € I, then {f: k € I, k # j} is incomplete.

Proof. Let j € I be fixed and denote oy, = (f;, E;  fi)or = (F, 7 f5, fr) ey k € I. Now,
fi = rerowfe and f; = >, o Bifr, where B = x5, k € I. Thus, by Proposition 5.3.1,

1= 182 =Y a3 =il = Y P+ oy P+ Jowl? + oy — 1% (5.3.5)

kel kel kel kel kel
k#£j k#j

Assume that o; = 1. Then, 37, ;- |o|* = 0 and thus oy = (F, ' fj, fi)r = 0, k # 3.
Since (' f;, fr)r = aj = 1, it implies that F, ' f; # 0. Therefore, {f : k € I, k # j} is
incomplete.

Ifaj # 1, then f; = ﬁ > kel kzj Ok fr. Thus,

2
S ulf S| SO fet,

J ker kel
k#j k#j

U F) o = \

where C' = [1 — ;|72 37, 1s; law|*. Now, since

S UE feyoel? =D U i) P+ 1 fi)oe P < (L C) YIS, fi)ore

kel kel kel
k#j k#j
it implies that {fx : k € I, k # j} is a frame with frame bounds Hicv B. O

Corollary 5.3.1 ([41, 42]). Let {fi : k € I} be an ezxact frame for 7. Then, {fx : k € I}
and {E; fi - k € I} are biorthonormal, i.e. {f;, E; fi) e = Ok

Proof. Let {fx : k € I} be an exact frame for 7. Then, according to Theorem 5.3.1,
(fi, E; fYr = 1, j € I. Therefore, by the equality (5.3.5) (with ay = (f;, F, " fx)»
and By = (fj, E; 1 fi) ), it follows that (f;, ;' fe)or = (F,V f, fr)e = 0 for k,j € I,
k+# 5. O
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The conditions for the uniqueness of the sequence of coefficients o € £2(I) in (5.3.1) are
derived in the following theorem.

Let G denote the Gram’s matrix with elements Gy ; = (f;, fx).», k,J € 1.

Theorem 5.3.2 ([40]). Let {fx : k € I} be a frame for . The following conditions are
equivalent.

(1) The sequence of coefficients a € (*(I) in the equality (5.3.1) is unique.
(2) The operator C, maps H onto (*(I).
(3) There are positive constants A" and B’ so that

Z@kfk

kel

Alalle < < Bllale (5.3.6)

for every finite sequence o = (g )rer-

(4) The image of an orthonormal basis {gr : k € I} under the bounded invertable
operator Q : F — F is the frame {fy : k € 1}.

(5) The Gram’s matriz defines on (*(I) a positive invertabile operator.

Proof. Note, since {fy. : k € I} is a frame, the operator C, is one-to-one with the closed
range (by Theorem 5.2.1) and the operator F, is onto (by (5.3.1)).

The sequence of coefficients « € ¢2(I) in the equality (5.3.1) is unique if and only if the
operator S, is one-to-one if and only if its adjoint S = C, is onto. Hence, (1) is equivalent
to (2).

(1) = (3) According to Theorem 5.2.1 (2), it follows that the constant B’ in the inequality
(5.3.6) exists. The existence of A’ follows from the fact that the operator S, is continuous
(the operator S ! is continuous by the Open Mapping Theorem, because S, is a bijective
operator).

(3) = (4) Let {gr : k € I} be an orthonormal basis for J# and let Qf = >, _; [,
where f = 3", ; agr. Then, ||f|» = |la| 2 and

E:ahﬁ ~—HQfH% Bllalle = B'||fll,

kel

A flloe = Allalle <

for every f € €. Therefore, () is well defined invertible operator and for every k € I,
Qg = [

(4) = (1) Let {gx : & € I} be an orthonormal basis for .7, and let () be a bounded
invertable operator such that Qg = fi, k € I. Then,

jg:(ij% ::CQ<:§E:(1kgk) =0 < j{:(lkgk =0 & ap,=0, kel

kel kel kel

Hence, the sequence of coefficients o € ¢*(I) in the equality (5.3.1) is unique.

(3) & (5) Let @ = (au)res be an arbitrary sequence. Then,

(Ga,a)e = (fi, [ wroua = Z&kfk

k.jel kel

Therefore, by the equality (5.3.6), the operator G is positive and invertable on £2(1). ]
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Now, Definition 5.1.4 can be reformulated as follows (Definition 5.3.2 (2)).

Definition 5.3.2 ([40]). (1) The set {fx: k € I} is said to be a Riesz family for 7€ if
it satisfies the condition (3) of Theorem 5.3.2.

(2) The set {fy : k € I} is said to be a Riesz basis for € if {fi : k € I} is a frame for
FC and satisfies the conditions of Theorem 5.3.2.

Hence, a Riesz basis is a Riesz family which is complete in 7.

Theorem 5.3.3 ([76]). A family {fx : k € I} is a Riesz basis for A if and only if
{fx : k € I} is a bounded unconditional basis for F .

Therefore, a bounded unconditional basis is equivalent to an orthonormal basis.

Theorem 5.3.4 ([29]). Let {fi : k € I} be a frame for 7. Then, the following assertions
are equivalent.

(1) {fx: k € I} is Riesz basis for H.

(2) {fx:k €I} is an exact frame for F.

(3) {fx: k €I} is a basis for F.

(4) If > pcr anfr = 0 for some (ay)rer € (*(I), then oy, = 0, k € N.

Recall that a positive linear and continuous operator has the positive and continuous
square root. Therefore, ;! has the positive and continuous square root F,, V2 (F;hHY2,

Lemma 5.3.2 ([28, 40]). Let {fx : k € I} be a frame for 7. Then,
(1) the set {Fo_l/2fk :k €I} is a Parseval frame;
(2) the inverse frame operator F, ' is given by

FoUF =Y (f F e Fy

kel

Proof. (1) Since the frame operator F, is positive, it follows that Fi, 2 is well defined
and a positive operator. Further, since

f=F"PE(F ) = (L F P fo) e Fy P

kel

it implies that || f||12, = (f, f)or = > per | ([ F{1/2fk>%7‘2. Hence, {F;“ka ckellisa
Parseval frame.
(2) Obviously

FoNf = F F (B ) =D (L F ) By s

kel
which had to be proved. O

Definition 5.3.3 ([29]). A frame for 5 is called overcomplete frame if it is not a basis
for .
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Definition 5.3.4 ([29]). Let {fy : k € I} be a frame for 7. A family {gr - k € [} C H#
such that

F=> Aot feA, (5.3.7)

kel

is called a dual frame of {fy : k € I}.

Theorem 5.3.5 ([29]). A frame {fy : k € I} for 7€ has a unique dual frame if and only
if it is exact.

Proof. The necessary condition is proved by Proposition 5.3.1 and Corollary 5.3.1. In
the opposite direction, suppose, contrary to our claim, that {f; : k¥ € I} is an inexact
frame. The proof consists of two cases. First, assume that f; = 0 for some j € I. Then,
F;lfi=0. Let gr = F, ' fi, k € I, k # j, and let g; # 0 be arbitrary chosen. Thus, the
equation (5.3.1) holds and {g;, : k € I} # {F, ' fx : k € I'}. In this case, a new dual frame
is obtained (it is not the canonical dual), a contradiction.

Now, assume that fj, # 0 for every k € N. Then, since {fy : k € I} is overcomplete, there
is a sequences (Bg)rer € €*(I) \ {0} so that

> Bifs =0, (5.3.8)

kel

by Theorem 5.3.4. Thus, there exists j € I such that ; # 0. Therefore, from (5.3.8), it

follows that 5
=Y _ﬁfk‘
J

kel
Py

Hence, {fx : k € I, k # j} is complete in # and thus it is a frame, by Theorem 5.3.1.
Further, let {gx : k € I, k # j} be its canonical dual frame and set g; = 0. Then,
{g9x - k € I} is a dual frame for {f; : k € I}, but it is not the canonical dual since g; =0
while F,; 1 f; # 0, which is impossible. O

Some statements about dual frames are given in the following lemmas.

Lemma 5.3.3 ([29]). Let {fx: k € I} and {gx : k € I} be Bessel famillies for 7. Then,
the following assertions are equivalent.

(1) f=2weilfsa)wfr, [ €A
(2) f =2 peilfs fe)oegn, €.

3) ([, 9 e = D perfs o) w9k, 9> [ 9 € .
Lemma 5.3.4 ([29]). Let {fx: k€ I} and {gx : k € I} be two Bessel families. If

Hf“if = Z(f, fi) e grs e

kel

holds for every f from a dense subspace of H, then {fx : k € I} and {gy : k € I} are
dual frames.

Lemma 5.3.5 ([29]). Let {fx : k € I} and {gr : k € I} be dual frames for 7. If
S A — A is a unitary operator, then {Sfy : k € I} and {Sgx : k € I} are also dual
frames for €.
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Chapter 6

Shift-invariant subspaces of
Sobolev spaces

After a short trip through the theoretical basis for the dissertation, this chapter presents
the research results of this doctoral dissertation. These are the results of papers [6]—[8].
The initial results of this dissertation derive from Bownik’s approach [23] which is now
applied to the Sobolev spaces H", r € R, leading from the Sobolev spaces H" to the
weighted sequence spaces (2. In this chapter, unless otherwise stated, the statements are
valid for every r € R.

6.1 Notations and basic assertions

Let o, C H", ie. o, ={f € .7 : f = Gu_, for some g € A} and E.(o,) = {T,f :
f € o, q € Z"}, where &/ C L? is at most countable set. Obviously, E,.(«,) C H".
Note, in the continuation I denotes a finite set or I = N. Therefore, the notations
oty ={fr €S f = grp—, for some gy € o7, k € I} will also be used when an index
set [ is given. If I = {1,...,m}, then the notations <7, ,, will be used. The SI subspace
of Sobolev space will be denoted by V,, C H", r € R (see Definition 1.0.1).

Further, let S,(«,) = Span E,(«,) = span { (1 — 5 A)"/*T,g: g € o, q € Z"}. It is not
difficult to see that the space S,.(4.) generated by 7. is a SI space.

Definition 6.1.1 ([6, 23]). A SI space V, is called a finitely generated shift-invariant
(F'SI) space if V, is generated by a finite set of functions, i.e. V, = S.(%.m). A SI space
V. is called a principal shift-invariant (PST) space if V,. is generated by only one function,
ie. Vi =S.(f) = S.({f}).
Similarly, like in Bownik [23], a new space and a new mapping are introduced.
Definition 6.1.2 ([6]). The space of all vector valued measurable functions H : T™ — (2
such that
[H(t)[|7 dt < +o0
Tn

is denoted by 7 (T™, (?), or shorter .
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Lemma 6.1.1 ([6]). The space S is a Hilbert space with the inner product

(i M) ee = [ (HL(0), Haft) .

n

and the corresponding norm

I1H]

1/2
W:<TnHw@w).

Lemma 6.1.2 ([6]). The mapping , : H" — €7 defined by

where (1 — ﬁA)Tﬂf = g € L2, is an isometric isomorphism. Moreover, for every f € .
holds Z3T,f(-) = M_, 7, f(-), ¢ € Z".

Proof. Theorem 3.5.2 brings enough to prove the statement for an arbitrary function
f € 7. Therefore, let f € . and let f = gu_,. Then,
(ﬁ(t + q)

QJT: % t 22dt:/
o= [1rolga- [ (25

=/JWW&=AJ%Wﬁ@d:W%M

where Theorem 2.3.4 and Lemma 4.4.1 are used. The second part of the assertion follows
by the theorems 3.2.2 and 2.3.4. O

Note, if » = 0, then Ff(t) = (f(t + q))qezn = Jft),teT fe H =17 ie
H0 = L?(T™, (?). The next assertion is obvious.

[

/ Z]gt—i—q 2 dt

Lemma 6.1.3 ([6]). The diagram of isometries

2 L o
1 a, 1 By
oz o

commutes, where a,(g) = ﬂ_l(ﬁ) and B, ((9(- + q>)qun) = (g;f:(rqq))
The following definition is analogous to Definition 1.0.3.

Definition 6.1.3 ([6]). A mapping
Jp T — {closed subspaces of Ef}

(t — J.(t), t € T") is called the range function.

The range function J, is measurable if for any a,b € €2, t — (P, )(a), b)2 is a measurable
scalar function (i.e. if P; ), t € T", are weakly operator measurable), where Pj, 02—
J.(t), t € T", are the associated orthogonal projections. Note, in the separable Hllbert
space weak and strong measurability are equivalent.
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In the continuation, unless stated otherwise, the family {e, : v € Z™} denotes the standard
basis for ¢2 (the standard form of representation of the vector e, is (0,...,0,1,0,...,0),
where 1 is on the v-th position). Define the subspace of J#" by

Ny ={H e " : H(t) € J(t) for ae. t € T"}.

Lemma 6.1.4 ([6]). Assume that J,. is a measurable range function. Let
P, :T" — {space of projections of {2 onto closed subspaces of 63},

so that Py, : (2 — J,(t) for a.e. t € T™ be the associated orthogonal projections, and let
P, be the orthogonal projection

"> Hw— P.(H) € Ny,
such that (P,H)(t) € J.(t) for a.e. t € T". Then, for every H € " holds

(PH)(t) = Py (H()) forae teT" (6.1.1)

Proof. Let P! : 7" — " be given by
(PIH)(t) = Py (H(t)) for ae. t € T"

Since || Py, ]l < 1, the measurable vector function Py, ) (H(t)) belongs to #7. It is clear
that P! is an orthogonal projection with range N;. To prove N; = N/, it only remains
to verify N; C N/. Suppose, contrary to our claim, that there exists 0 # H; € N,
orthogonal to N/. Then,

0= /T (P (1), H(1)) = /T (Pao (H), (),

= [ (H(t), Py (Hi(1))) dt for all H € 7.
- 2

Since Hy(t) € J,(t), it follows that Hy(t) = Py, (Hi(t)) = 0 for a.e. t € T", which is
impossible. [

Lemma 6.1.5 ([6]). Let J,. be an arbitrary range function (not necessarily measurable).
Then, the space Ny, is a closed subspace of F€". Moreover, if for some measurable range
functions J, and K, holds N;. = Nk, then J.(t) = K,(t) for a.e. t € T".

Proof. Let (H,),en C Ny, be a sequence such that lim, ., H, = H in 5#". Then, there
exists a subsequence such that lim;_ . H, (t) = H(t) in £ for a.e. t € T". Thus, using
the fact that J,.(t) is closed, it follows that H € N, .

Further, let for some measurable range functions J,. and K, holds N; = Nk and let
P;. and P, be associated orthogonal projections, respectively. Let H(t) = e, for some
q € Z" be a constant function, where e, € ¢? is the standard vector. Applying Lemma
6.1.4 to H(t) = e, gives Py )(eq) = (Preg)(t) = Pr,)(eq), i.e. Py t)(eq) = Pr,)(eq) for

a.e. t € T", g € Z". Hence, P; ) = Pk, () for a.e. t € T". O

Remark 6.1.1. The equality (6.1.1) is equivalent to Z,(Py,f)(t) = P (7 f(t)) for
a.e. t € T", f € H", where Py, is othogonal projection on V, (see [5]).
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The following theorem is extremely important, SI spaces are connected with the range
function and vice versa. Range functions are said to be equal if they are equal almost
everywhere.

Theorem 6.1.1 ([6]). A space V,, C H" is SI if and only if there is a measurable range
function J,. so that

Vi={feH : Jf(t)€ J.(t) for a.e. t € T"}. (6.1.2)

The relationship between V. and J, is one-to-one. If V, = S,(<. ), where o/, C H",
then
J.(t) =span{Z.f(t): f € .1} (6.1.3)

Proof. Suppose V,. = S,(4, 1), where 7.1 C H", is a SI space and J,.(t) is given by (6.1.3).
Let N, = Z,V,. According to Lemma 6.1.2, a subspace V, C H" is SI if and only if N, is
a closed subspace of " (closed under multiplication by exponentials). Thus, for every
H € N, there exists a sequence (H,),en such that

I 'H, € span{T,f : f € 1, ¢ € Z"} and lirf H,=H.
V—+00
From Lemma 6.1.2, it follows that H,(t) € J.(t) for every v € N. Hence, H(t) € J,(¢)
and finally N, C N .

Suppose that there exists 0 # H; € J¢" orthogonal to N,. Since for all H € .47, ; and
q € Z" hold

/ e M (H (), Hy(t)) e dt = / (e H(t), Hi(t))e2 dt = 0,
it follows that (H(t), H,(t)),2 = 0 for a.e. t € T" and all H € J.4/.;. Thus, Hy(t) €
(J,(t))* for a.e. t € T" and therefore there does not exist 0 # H; € N, orthogonal to
N,.. This clearly forces N, = N .

It remains the measurability of J,. (given by (6.1.3)) to be proved. From what has already
been proved, for H € 2" and the orthogonal projection P, of 7" onto N,, it follows
that H(t) — (P.H)(t) € (J,(t))* for a.e. t € T". Using N, = N,

PJT(t) (H(t)) = PJT(t) ((PTH) (Zf)) = (PTH) (t) for a.e. t € Tn, (6.1.4)

where P;, ;) are associated projections. The vector function H can be taken to be constant.
Then, (P,H)(t) is measurable, and by (6.1.4), J, is measurable.

On the contrary, let J, be a measurable range function. Then, N, is a closed subspace
of #" and consequently V, = 77N is closed, SI and according to Lemma 6.1.4 the
space V,. clearly satisfies (6.1.2). By Lemma 6.1.5, it is obvious that the correspondence
between V, and J, is one-to-one. O

Therefore, by Theorem 6.1.1, for every SI space V, there is the range function J, such
that V., = 271N, . Moreover, for every range function J, there is the SI space V, so that
Ny = Z,.V,.. It is said that the range function J, corresponds to V,. or associated to V. if
V., = z_lNJT, i.e. NJT = %V;
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Corollary 6.1.1 ([6]). If J, is a range function (not necessarily measurable), then there
is a unique measurable range function J. so that J.(t) C J.(t) for a.e. t € T", and
NJ; = NJr'

An additional relation between the range function .J, and the corresponding SI space V.
is given in the next assertion.

Proposition 6.1.1 ([7]). Let V,,U. C H" be SI spaces and Jy,, Jy, be associated range
functions, respectively.

(1) Let V& be the orthogonal complement of V,. Then, VX is also a SI space and
Jyi(t) = (Jv,(t)*+ for a.e. t € T™.

(2) If Jy,(t) = Jy,(t) for a.e. t € T", then V, = U,.

(3) The space V., N U, is a SI space with the associated range function Jy,qp,(t) =
Jy, (t) N Jy, (t) for a.e. t € T™,

Proof. (1) Let f € VX, Then, f ¢ V, and T,f ¢ V, for all ¢ € Z". Thus, T,f € V- for
all ¢ € Z". Hence, V' is also a SI space. Further, let H € #". Then, H(t) ¢ Jy.(t)
if and only if H(t) € (Jy.(t))*, for a.e. t € T". Using Theorem 6.1.1, it follows that
H(t) ¢ Jy,(t) if and only if Z,7'H ¢ V, if and only if H(t) € Jy.(t), for a.e. t € T".
Therefore, Jy.(t) = (Jy,(t))" for a.e. t € T".

(2) Let Jy,(t) = Jy,(t) for a.e. t € T". Then, N;, = Ny, and thus V. = U,, because
ZV, = Ny, and ZU, = Ny, .

(3) The first part of the statement is obvious. Let H € J#". Using Theorem 6.1.1, it
follows that

H(t) € Jyru,.(t) forae.teT <« I 'HeV,NU,
& J'HeV, NI 'Hel,
& H(t)e Jy(t) N H(t) € Jy,(t) forae. teT"
& H(t) € Jy,(t)NJy,(t) for ae. t € T,
Hence, Jv.qu, (t) = Jy,(t) N Jy, () for a.e. t € T™. O

The next definition is Definition 1.0.4 adapted to the observed spaces.
Definition 6.1.4 ([6]). Let V, = Z."'N; , where J, is a given range function.

(1) A mapping dimy, : T" — NU {0, 400} defined by dimy, (t) = dim J,.(t) is called the
dimension function of V.

(2) The spectrum of space V, is defined by oy, = {t € T : dim J,.(t) > O} or equivalently
oy, = {t € T": J(t) # {0} }.

In the continuation, a positive constant will always be denoted by C, and it will be clear
from the context whether it is the same constant or not. The Lebesgue measure of a
measurable set () will be denoted by m(Q).
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6.2 Characterization of frames

For the characterization of frames, the following auxiliary assertion is very important.

Lemma 6.2.1 ([6]). (1) If E.(4,.;) is a Bessel family, then

ST Tt o | = Z/ (T f (1), Trp(t)) |t

fedu qEL™ fe, I

for every ¢ € a7, ;.
(2) Let g1,g92 € L? and fi = Gipi—r, fo = Gopr—y. Then,

(Lyfr, f2)ur = (Tyon, 92)12, q € Z".

Proof. (1) Let E,.(<7.1) be a Bessel family. Then, using the equality (4.4.1), it follows
that

2

Z ZKquaSO) Z Z

fed 1 qeL™ fedy 1 qeZ™

=3 3| [ e g a

gEYT QEL™

“Y ST [ e g 03 a

gEAy qeL™ ' keZ™

-y Y / el S Gt R)a(t + k) de

/ o~ 2mit.q) f@)%;ﬁ(t} dt

2

g€ qEL" kezn
2
_Z/ Gt +k)p(t+ k)| dt
gEAy kezm™
= 3 [ U0, Fpt) et
fe€dr 1

where fu, =g € L* and Gp, = ¢ € L.
(2) Since gy, g» € L?, using Theorem 3.2.2 and Plancherel’s formula (3.1.4), it follows that

~

Tt S = [ TRORO@O®= [ o200 Fiofau i

n

—

— / e~ 2mbD g1 (1) gy () At = / T,01(0)3(0) dt = (T,g1, G3) 12 = (Tyg1, g2) 1

for every q € Z". O]

The connection of frames in the observed function spaces and frames in the spaces of
weighted sequences is given in the next statement.
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Theorem 6.2.1 ([6]). Let V. = S,(<.;). Then, E.(%,.1) is

(1) a frame of V, with frame bounds A and B if and only if {7, f(t): f € o1} C (% is
a frame of J.(t) with frame bounds A and B for a.e. t € T™;

(2) a Riesz family (basis) of V.. with bounds A and B if and only if {7, f(t) : f € .1} C
0% is a Riesz family (basis) of J.(t) with bounds A and B for a.e. t € T";

r

(3) a Bessel family of V, with bound B if and only if {7, f(t) : [ € 1} C (2 is a
Bessel family of J,.(t) with bound B for a.e. t € T";

(4) a fundamental frame of V, if and only if {F,f(t) : f € .1} CL? is a fundamental
frame of J,.(t) for a.e. t € T™.

Proof. The assertions are valid based on the lemmas 6.1.2, 6.1.3, 6.2.1 and on Theorem
1.0.2. O

According to Theorem 6.2.1, the problem of checking whether E,(47.;) is a frame or a
Riesz family or a Bessel family or a fundamental frame on a "large” subspaces of H" is
reduced to the problem of checking it on a ”small” subspaces of (2.

Also, in [6], the characterization of frames was done using the Gram matrix. Therefore,
let us introduce the definition of the Gram matrix.

Set
W= (@))yen G ke, (6.2.1)
where *(q) is defined by 7%(q) = :"\I’Zit—&)q) for fixed t € T", and g, € L? such that f, =

Grtt—r, k € I. Suppose that (7%)c; is given. One defines an operator D, by

po=(Yant@) | (6:2:2)

kel

where oo = (o )rer is a sequence with compact support (only a finite number of elements
are non-zero). If the mapping D, is extended as a continuous mapping D, : £*(I) — (2,
then its adjoint operator is given by D¥ : (2 — (*(I),

D = (<5777]f>53)kef’ B = (By)qezn € L. (6.2.3)

It is not difficult to see that: D, is continuous if and only if D} is continuous if and only if
{~*: k € I} is a Bessel family. Therefore, {v* : k € I} is a Bessel family with the bound
B if |D;||? < B.

Definition 6.2.1 ([6, 23]). (1) The mapping G, = DD, : (*(I) — (*(I) is called the
Gramian of {~* : k € I}.

(2) The mapping G* = D, D} : (> — (2 is called the dual Gramian of {y* : k € I}.

Note that, in addition to the Gramian, the name Gram’s matrix is also used. By Definition
6.2.1, the following assertion is obvious.

Lemma 6.2.2 ([6]). The Gramian G, and the dual Gramian G are self-adjoint and
IDx[* = IDI1* = |Gl = 1G]]

A matrix notation of the Gramian is given in Lemma 6.2.3.
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Lemma 6.2.3 ([6]). Let t € T be fized and {v* : k € I} be given by (6.2.1). Then, the
Gramian G, can be written as a matriz with

Go(t) = [(Fefelt). Z,0)] -

= {;qu)m} )

and the corresponding dual Gramian with

G (1) = {Z gr(t+4) Gt +p)

kel ILI/T(Q) luT‘(p> ‘| q,pEZ”

Proof. Suppose that {e; : k € I} and {é, : ¢ € Z™} are the standard basis of £2(I) and ¢2,
respectively. Since (G, ey, ej)e = (Dyeg, Dyejhz = (7F,78) e, k,j € I, and (Grreg, €,)2 =

(Dreg, Dieyye = > 45 (q)v5(p), q,p € Z", the assertion follows. O
kel

Characterizations of frames and Riesz families via Gram’s and dual Gram’s matrix are
given in the following theorem. Note, the spectrum of an operator P will be denoted by
o(P).

Theorem 6.2.2 ([6]). Let V. = S, (<. ). The family E, (<. 1) is

(1) a Bessel family of V, with the bound B if and only if esssup,crn ||Gr(t) |2 < B if
and only if esssup,crn ||Gr(t)]|2 < B;

(2) a frame of V. with frame bounds A and B if and only if

AllBllz < (G (1)B, B)e < BlIBIIEe, (6.2.4)
where 8 € span{.7, fx(t) : fx € <1, k € I} for a.e. t € T™ if and only if
o(Gr(t)) C{0}U[A,B] forae teT"; (6.2.5)

(3) a fundamental frame of V, with frame bounds A and B if and only if o(G:(t)) C
[A, B] for a.e. t € T";

(4) a Riesz family of V,. with bounds A and B if and only if
Aol < (G(aya)e < Bllols forae.t €T ae (1), (626
if and only if
o(G.(t)) C[A,B] forae. teT"; (6.2.7)
(5) a Riesz basis of V. if and only if (6.2.7) holds and 0 ¢ o(GL(t)) for a.e. t € T™.

Proof. The proof of the statement is similar to the proof of the corresponding theorem in
[23] for r = 0. The statement under (1) follows from Theorem 6.2.1 and the lemmas 6.2.2
and 6.2.3. By
* * * 2
<Gr(t>ﬁ7ﬁ>€%:<Dq~/B7Drﬁ>f2 :Z}</B771]f>@% ) 66672”7

kel

and Theorem 6.2.1, the first equivalence follows. Since by Lemma 6.2.2, G;(t) is self-

adjoint, it follows that
(% = ker G*(t) ® rank G%(t).
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Let J, be the range function of V;.. Then, rank G:(t) = J.(t) for a.e. t € T™, because
ker G%(t) = ker D} = (J.(t))* for a.e. t € T". Therefore, observing the restriction of
GE(t) to J.(t) yields to the equivalence between (6.2.4) and (6.2.5). Moreover, E, (< )
is a fundamental frame of V, if ker G%(t) = {0} for a.e. t € T". Further, by

2
;o= (ap)rer € gz(f),

e

<G7«Oé, OK>€2 = <Dra7 DTO‘>ZE = H (Z ak’yf(q))
qez”

kel

and Theorem 6.2.1, the first equivalence under (4) follows. It is not difficult to see that
the operator G, is non-negative definite. Thus, the equivalence (6.2.6)<(6.2.7) follows.
Moreover, E (7 5) is a Riesz basis if ker G%(¢) = {0} for a.e. t € T". O

6.3 The decomposition of shift-invariant spaces

De Boor et al. in [22] claimed a statement about the decomposition of finitely gene-
rated SI spaces in quasi-regular spaces. Then, Marcin Bownik proved the decomposition
theorem for SI subspaces of L? in [23]. In this dissertation, the decomposition theorem of
SI subspaces of the Sobolev space H" is being proved.

Definition 6.3.1 ([5, 7]). A set 4, ,, is said to be a frame generator for S, (<, ,,) if their
integer translations form a frame for S, (), i.e. if E.(%.m) is a frame for S,(2, ).

Definition 6.3.2 ([6, 23]). A function fo € V. = S.(f), f € H", is called a tight frame
(or quasi-orthogonal) generator of V. if for all ¢ € V,. holds

el = [(Tufo, lar

qezn

2

To prove the decomposition theorem, the following auxiliary assertion is necessary.

Lemma 6.3.1 ([6, 22, 23]). The function fy € V, = S,(f) is a tight frame generator of
V. if and only if | 7, fo(t)llez = 1o, (t) for a.e. t € T".

Proof. By the theorems 6.1.1 and 6.2.1, the assertion follows. [

Note, unless stated otherwise, @& will denote the orthogonal sum, and W =V & U or
V =W 6 U will be written.

Theorem 6.3.1 (The decomposition theorem, [6]). Let V, be a SI subspace of H".

Then, V,. can be decomposed as an orthogonal sum of PSI spaces, 1i.e.

V. = @B S-(f), (6.3.1)

keN

such that fi is a tight frame generator of S,(fi) and os,(s,.,) C Os,(s.) for every k € N.
Moreover, hold:

(1) dims, gy (8) = |1 T (Ol for ae. t €T, K EN,
(2) dimy, () = > pen | 7 fu(t) |2 for a.e. t € T™.
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Proof. Let U, C H" be a Sl space with the associated range function J, and the cor-
responding projections P; . Let m : N — Z" be a bijection. The function F € J,.U, is
defined as follows. If U, = {0}, then F' = 0. Otherwise, let 7, € ", v € N, be defined

by
Pr(erw) ;
TP memnlla €A
’Yl/(t) = { HPJT(t)eW(V)”e%7 Vs

0, otherwise,
where A, = {t € T" : P; wexu) # 0}, v € N, and define F' by

F= ZVI/IBW

veN

where Bl = Al, Bu+1 = AV+1\UZ:1 Ak, v e N. I\IOW7 F(t) S Jr(t) and HF(t)Hg% = 1UUT (t)
for a.e. t € T", because oy, = J, oy Av. Let f = Z7'F. Then, by Lemma 6.3.1, f is a
tight frame generator of S,(f) C U,. Moreover, og, (y) = oy,. Obviously,

T (U, ©8.(f)={H € : H(t) € J.(t), (F(t),H(t))z =0 for a.e. t € T"}.
Further, let vy = min{v € N:m(A,) # 0}. For H € Z,.(U, & S,(f)) holds
<H(t), eﬂ(,,)>gg = <H(t), Pjr(t)eﬂ-(y)>€% =0 foraeteT", v=1,...,1. (6.3.2)

Now, by induction on v, a sequence of tight frame generators can be defined, as follows.
Choose f; = 7 'F(V,) and assume that fi,..., f, are constructed for some v € N such
that:

(a) fr €V, is a tight frame generator of S,(fx), k =1,...,v;
(b) for all k # [, the spaces S,.(fx) and S,.(f;) are disjoint;
(c) if H e ZV)Y, then (H(t), exry))2 =0, k =1,...,v, for a.e. t € T", where

V=vo (gblsr(m). (633)

Further, let f,41 = 7,7 'F(V). Then, by construction, it follows that the set {f1, ..., fo11}
satisfies conditions ( ) (c). Indeed, since [|.7, fu41(t)[le = 1oy, (2), it follows (a); (b) foll-
ows from the fact that S,.(f,4+1) C V¥ and by (6.3.3); (¢) is a consequence of (6.3.2).

Choose H € Z,((N;25 V,F). Then, using (c), it follows that (H(t), ex))e = 0, k € N, for
a.e. t € T™. Hence, H 0 and thus ;=5 V¥ = {0}, i.e. (6.3.1) follows. Since V! C V¥,
it leads to TS, (fri1) = Oyrtt C Oyk = 05,.(f)-

Finally, by (6.3.1), dimy, () = >, o |7 fi(t)] 2 for a.e. t € T™. O

Remark 6.3.1. The decomposition of a SI space V, C H" is unique only in the case
when dimy, (t) < 1 for a.e. t € T". If esssup,eqn dimy, (t) = ko for some ko € N, then
the decomposition has ko non-trivial components S,(f1), ..., S.(fr,) and S.(fr) = {0} for
k> k.

One of the consequences of the decomposition theorem is the following statement. Other
consequences will be listed in the following sections.
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Proposition 6.3.1 ([7]). Let J, be the range function associated with the SI space V,, C H”
such that dim J,.(t) < +oo for a.e. t € T". Then, there exist {fy : fr € H", k € N} and
measurable sets (Ap)men, S0 that UmeNO An =T, AyNA; =0, k#j, and hold:

(1) {T,fx : k €N, g € Z"} is a Parseval frame for V,,

(2) if k > m, then J, fi(t) =0 for a.e. t € A,,,

(3) the family { 7, f1(t),..., Tpfm(t)} is an orthonormal basis for J.(t), for a.e. t € Ay,
(4) dim J.(t) =m for a.e. t € Ap,.

Proof. Let {fx : fr € H", k € N} be the set of functions from Theorem 6.3.1. Then,
{T,fx :+ k € N, q € Z"} is a Parseval frame for V,. Moreover, {7, fi(t) : k € N} is a
Parseval frame for J,.(t) for a.e. ¢ € T", by Theorem 6.2.1.

Since o, (5,,) C 05, (s, for all k € N, it implies that the family of disjoint sets (A, )men,
can be defined as follows:

Ag=T"\oy, and A, =0s.(5.) \ 08, (fmsr) for meN.

The assumptions dim J,.(t) < 400 gives Y, || 75 fi(t)|| 2 < +00, and thus (), oy s, (1) = 0.
Therefore, A, =T"

meNy ™M
Now, for m € N, (2) holds. Using (1), Theorem 6.3.1 and Lemma 6.1.2, (3) follows. Thus,
dim J,.(t) = m for a.e. t € Ay,. If m =0, then J,.(t) = {0} for a.e. t € Ay. O

6.4 Shift-preserving and range operators

For further characterization of SI subspaces of the Sobolev space H", r € R, it is necessary
to introduce and investigate the relationship between shift-preserving operators and range
operators.

Let V. C H" be a SI space with the corresponding range function J,. and projections P; .
The definition of shift-preserving operators is given in Introduction, and here it will be
formally introduced for the spaces V.

Definition 6.4.1 ([7, 23]). A bounded linear operator L, : V, — H" is called a shift-
preserving operator if L,T, = T,L, for every q € Z".

Analogous to Definition 1.0.5, the definition for the observed spaces is introduced.

Definition 6.4.2 ([7]). An operator defined on J, (with values in () by
R, : T" — {bounded operators defined on closed subspaces of (2},

such that the domain of R.(t) is J.(t) for a.e. t € T", is called the range operator.
The range operator R, is measurable if t — R.(t)Pj, 4, t € T", is a weakly measurable
operator.

Now, following [23] analogous results are obtained for SI spaces V,, C H".

Theorem 6.4.1 ([7]). Assume that f € H" is a tight frame generator of S,(f) and
L. : S, (f) — H" is a shift-preserving operator. Let F = ,f. Then,

(FLe T ) @F)E) = w(t) (7L, 7Y F) (641
for a.e. t € T", w € L2(T™).
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Proof. Let the assumptions given in the theorem hold. By Lemma 6.1.2,
(71,7 (M_yF) = (ZLT,) [ = (FT,L)(F 7 Fof) = Moy( 51,5 F, g€ T

Therefore, using linearity, for all polynomials

pr(t) = > age?0 ke N,

lg|<k

holds
(7L, T ) (ouF)(t) = pr(t) (T Ly 1) F(t)  for ae. t € T™ (6.4.2)

Using the lemmas 6.1.2 and 6.3.1 and boundedness of L, it follows that

L n@PlaL g F@l; = [ L2 ) o),

= 7Lz P
< CllpeF 5.
—C [ PPl a

=C [ |pe(t)1qy,,,,(t) dt < +o0. (6.4.3)
T’ﬂ

It is known (by Lusin’s theorem) that for every function ¢ € L (T") there is a sequence
of polynomials (p} ),en so that:

9% oo < [¥|loc; ¥ €N, and  lim py (t) = (t) for a.e.t € T"

v—+400

Thus, using the Lebesgue Dominated Convergence Theorem, (6.4.3) leads to

[ w@rl@LgFrolha<c [ worirold.

and so
|(Z L, TYF@)|lee < C|[F ()] for ae. t € T (6.4.4)

Finally, take a sequence of polynomials (p}, ),en so that p} — w in LZ(T") and

lim pf (1) =w(t), lim (7,70, F)0) = (L7 )wF)(b),  (645)

V—+00 v—r—+00

for a.e. t € T". From (6.4.2), using (6.4.4) and (6.4.5), it follows that (6.4.1) holds for
every w € L2(T"). O

An immediate consequence of the theorems 6.1.1 and 6.4.1 is Corollary 6.4.1.

Corollary 6.4.1 ([7]). Assume that V, C H" is a SI space and L, : V., — H" is a
shift-preserving operator. Let F € .V, and let w be a measurable function such that
wF € A" (and therefore wF € . V,). Then,

(L, T ) (wF)(t) = w(t) (7L, T, ") F(t)  for ae. t €T
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The basic connection between the shift-preserving operator and the range operator is
given by the following theorem.

Theorem 6.4.2 ([7]). Assume that V,, C H" is a SI space and J, is the associated range
function.

(1) If L, : V., — H" is a shift-preserving operator, then there is a measurable range
operator R, on J, so that

(ZL)f() = Ri(t)(F.f(t) for ac.t €T, f €V, (6.4.6)

(2) If R, is a measurable range operator on J. so that esssup,cq | R, (t)]] < 400, then
there is a shift-preserving operator L, : V, — H" so that (6.4.6) holds.

The correspondence between L, and R, is one-to-one and esssup,cqn | R (t)|| = ||L-]|.

Proof. (1) First, by Theorem 6.3.1, V,, = ®kenS,(fi) where fj is a tight frame generator of
Sr(fx). Now, V¥ = @&Y_,S,(fx) with the corresponding range function J? is observed. Set
Fr = . fr. Then, {Fi(t),..., F,(t)} \ {0} is an orthonormal basis of J”(t) for a.e. t € T".
Note, if t ¢ oy, then Fj(t) =0, k =1,...,v. Define the operator RZ(t) : J¥(t) — 2 by

O L awsi0) = X el AL7 A

where, o, € C, k = 1,...,v. This operator RY is well defined by (6.4.4). Now, for each
o €V there exists g € S,(fi), k= 1,..,v, 5o that ¢ = o, +--- + o, and

Trp=To1+ -+ Tpy =B+ +w F,

for some wy, € L2(T™). Thus,

(FiL)elt) = (51, 7 (Zwkn) Zwk (2.1, 7))

_Zwk R” ZRV ())

_ RUO(Tl1), (6.4.7)
by Theorem 6.4.1. Since 7, is an isometry, it implies that RY is a measurable operator.
Since L, is a shift-preserving operator, it is bounded i.e. ||L,|| < C. In order to prove

|RY(t)]| < C for a.e. t € T", one must first prove

esssup || 12()(0a(1))[lez < C, (6.4.8)

teTn

where ©, € " is given by

for a = (ay,...,a,) €S" 1, 8" 1 ={aeC”: \a1]2 -+ +]a,|? = 1}. Tt is not difficult to
see that [|O,(t)[|z = 1.
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Assume that (6.4.8) is false. Then, there are ¢ > 0 and a measurable set () C T™, whose
measure is not zero, so that ||R}(t)(04(t))||le > C +¢ fort € Q. Set © = ©,15 and
=770 €V Then,

(7 Le)Bl e = [ Labl| e < Cll]| 1 = C|[O] v,

because .7, is an isometry and ||L,|| < C. However, using (6.4.7),
L0 = [ IRO©IE = / IR (1)(©a(1) I at
> (C+ef / dt=(C+e [ [0u0ldt = (C+ Ol
Q Q

which is impossible. Hence, (6.4.8) is true. Finally, for a dense subset (@, )men of S¥71,

esssup [/ (1) = esssup sup [[RZ(£)(O,(0)]lz = esssupsup | R(1)(©s,, (1) < C.
E n

teT™ qesv—1! teT™ me
by (6.4.8). Therefore, |RY(t)|| < C for a.e. t € T™.
Let j < v and note that Ri(t) = RY(8)] jiy- Define Ry.(¢) : Ujen JI(t) = 2 by R.(t)(a) =
Ri(t)(a), a € Ji(t), for some j € N. Then7

IR (t)(2)]le < Clledle, o€ JT(1)

jeN
since |R%(t)|| < C for a.e. t € T™. Since
t)=J A
jeN

it follows that R, () can uniquely be extended to R,(t) : J.(t) — (2 with |R.()|| < C
Now, (6.4.6) holds. Indeed, choose f € V, and a sequence (f,),en, f, € V¥, so that

EI—E fo=fin H" 1131 %f,,(t): lim Z.f(t) and
lim (7.L)f,(t) = lim (fL )f( )

V—r—+00

for a.e. t € T". Then, by (6.4.7) and the previous construction, it follows that
(T L) fu(t) = R.(t)(F, f,(t)) forae. teT".

Letting v — +o0 gives (6.4.6).

(2) Assume that R, is a measurable range operator on .J, so that

esssup || R, (t)]] = C' < +o0.
teTn

Then, R.(t)(Z, f(t)) is measurable for a.e. t € T", f € V,, and

IR Z )5 Z/T IR (t)(F f(£))]I7 dt<eStSéSE}}P||Rr(1ﬁ)||2/T 1.7.f (1)1 72 dt
= C*|| 7 fl5er = C* 3, f E Vi (6.4.9)
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Define L, : V, — H" by L.f = 97 'R.(J,f). Then, L, is linear and satisfies (6.4.6); by
(6.4.9), || Ly fllar < C|| f||gr- Moreover, L, is shift-preserving, since

(ZLI)F(t) = Ro(O)(TT,f () = Ro()(M_o T (1)) = M_oR, ()T ()
= M_ T ) = (ZTLF(E), q€Zn

Finally, the one-to-one correspondence between R, and L, follows from (6.4.6). [

Other properties between the shift-preserving operator and the range operator follow from
the basic connection (Theorem 6.4.2).

Theorem 6.4.3 ([7]). Assume that V, C H" is a SI space and R, is the corresponding
range operator on J,.. Then,

IR (t) ()]l = Cllellez, o € Jo(t), for a.e. t € T" (6.4.10)

if and only if
1Lyl 2 Cllf ey f €V (6.4.11)

where C' is some positive constant.

Proof. Let (6.4.10) hold. Then,

1LV = WFL S = [ WROZ 5Ot > [ Il a
= | Zf 1 = Sl FEVi,

by (6.4.6). Hence, (6.4.11) holds.
Now, let (6.4.11) hold and let {a',a?,...} be a dense subset of £2. Then, for a.e. t € T",

||Rr<t><PJT<t><a’f>>||eg. > C|Py(@)lle, keN. (6.4.12)

Indeed, let (6.4.12) not be valid. Then, there are a measurable set ) C T" with m(Q) # 0,
ko € N and € > 0 so that

IR, (t)(Pr, 0 (a™)) ]l < (C = €)|| Priey (@) ||z for t € Q.

Choose f € V; so that J,f(t) = 1o(t) Py, (o). Then,

Lo fllerr = 1(Ze L) 112 =/ I(FLe) ()72 dt = . 1R, () (. f (1)) |7 dt

C e [ I1Puofa)ldt = (€ = o [ 17501yt = (€ P11
— (€= <P I
which contradicts (6.4.11). Hence, (6.4.10) holds. O

Corollary 6.4.2 ([7]). Let R, be the corresponding range operator for a shift-preserving
operator L, : V., — H". Then, R,(t) is an isometry for a.e. t € T™ if and only if L, is an
1sometry.
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Proof. Since

|RATe ) er = (Te L) flloer = | Lo fll e < C fllar = CI T2 fllser,  fEVr,
the assertion follows. O

Theorem 6.4.4 ([7]). Assume that V, C H" is a SI space, J,. is the associated range
function and R, is the corresponding range operator for a shift-preserving operator L, :
V., —=V,.

(1) The adjoint operator L% : V. — V.. of L, is shift-preserving. Moreover, the corre-
sponding range operator is given by R:(t) = (R.(t))* for a.e. t € T™.

(2) Let A,B € R so that A < B. The operator R,(t) is self-adjoint and o(R,.(t)) C
[A, B] for a.e. t € T" if and only if L, is a self-adjoint operator and o(L,) C [A, B].

(3) The operator R,(t) is a unitary operator for a.e. t € T™ if and only if L, is a unitary
operator.

Proof. (1) It is easily seen that R is a measurable range operator and uniformly bounded
on J,. According to Theorem 6.4.2, there is a shift-preserving operator L? : V,, — H" so
that (Z.L7)f(t) = Ry (t)(Z,f (1)), [ € Vi Then, for f,p € V,,

(Lofs )i = (TL), Tog) e = / (TL) (), Tro(t))a dt

n

X (0). Zeo(Ohe e = [ (T B O(Tolt))e e

/ (T (), (T L)) At = (Tof, (T e = (2 LP)

Tn

o *
Hence, Ly = L.

(2) Using the part (1), it follows that R’ (t) = R.(t) for a.e. t € T™ if and only if L} = L,..
Suppose that o(L,) C [A, B], i.e

Al < [ (RS0, ZI Ot < BIfl, SV (6413)

since

(Lot Pt = (Tl fo Tof e = / (R()(Ff (), Tof ()t

n

Now, by similar arguments as in the proof of Theorem 6.4.3, the assertion follows. There-
fore, let {a',a?,...} be a dense subset of £2. Then, for a.e. t € T" and every k € N,

AHPJT(t)(Oék)H?g < AR (O)(Py,(0")), Pr.w(@")ez < Bl Py, (0")lI7- (6.4.14)

Indeed, suppose (6.4.14) were false. Then, there are a measurable set 9 C T" with
m(Q) # 0, ko € N and € > 0 so that at least one of the following two inequalities holds:

(Re(t)(Pry(a™)), Pryy (™)) 2 > (B + €)[| Py (@) ||z for t € Q,
(R (t)(Pr0(a™)), Pr (@) < (A= e)l|Pry(a®)]le fort e Q.

Taking f € V, so that Z,f(t) = 1¢(t)Py,)(a*) contradicts (6.4.13). Hence, (6.4.14)
holds.
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For the opposite implication, let o(R,(t)) C [A, B] for a.e. t € T, i.e
AN f Ol < (Re(O(Tf (1), T f (1)) o < BT f (1)l for ace. t € T, f € V.
Integrating over T" gives (6.4.13).
(3) By (2), the operator R,(t) is unitary for a.e. t € T", i.e
o(R-(t)R:(t)) = o(R:(t)R.(t)) = {1} fora.e. teT"
if and only if o(L,L}) = o(L}L,) = {1}, i.e. L, is a unitary operator. O

Using the shift-preserving operator L,., properties of the dimension function are obtained
and they are given in the following propositions.

Proposition 6.4.1 ([7]). Assume that V., C H" is a SI space, L, : V, — H" is a shift-
preserving operator and let V> = L,(V,). Then, dimy.(t) < dimy, (t) for a.e. t € T".

Proof. By Theorem 6.3.1, V,, = S,(%. ). Using the theorems 6.1.1 and 6.4.2, the range
function J2 of V,° = S, ({L,.f : f € o, ,}) satisfies

() =Span { Zf2(0) : f° € {Lof  f € o}y = Spam {(FL)F(1) < f € o)
=span {R,(t)(Ff(t)): f € F1} = R.()(J,(t)) for a.e. t € T"
Hence, dim J2(t) < dim J,.(t) for a.e. t € T™. O
Proposition 6.4.2 ([7]). Assume that V,,V.>° C H" are SI spaces. Then,

dimy, (t) = dimy.(t) for a.e.t €T

if and only if there is a shift-preserving operator L, : V., — V.° which is an isomorphism
(or isometry).

Proof. Let L, : V., — V° be a shift-preserving isomorphism. Applying Proposition 6.4.1
to L, : V., = V2 and L' : V.° — V. gives dimy, (t) = dimy.(¢) for a.e. t € T™

On the contrary, let V., V,° C H" be SI spaces so that dimy, (¢) = dimy.(t) for a.e. t € T".
According to Theorem 6.3.1,

‘1 226})‘5;<jk)7 ‘ﬁ?:: €$9‘5;<f£)7
keN keN

where fk and f; are tight frame generators of S,.(fx) and S,.(f3), respectively, and og, 5,y =

os,(se), k € N. Define operators L,y : Sy(fi) = Sy(f2) by Low(Tyfr) = Tofs, k € N.

Then for every sequence (ag),ezn € (2 with a finite number of non-zero elements, follows
Z aquqf?rfk

2
E OéqT fk = /
qEL™ qEL™ AT
/ § : Oéq —27i(t,q)

2

dt
2

> agM_ T filt)

qeEZ™

\9fk( iz dt

HT™

qeEZL™
- [ S v [iz sz a

qeZ™
= | 2 o :’rk(ZaqTfk) ,
qeZL™ Hr qeZL™ Hr
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since dimy, (t) = dimye(t) for a.e. t € T" and thus |7 fu(t)||e = |7 f2(1)]7 for a.e.
t € T" (see Theorem 6.3.1). Therefore, L, is a shift-preserving isometry. Set L, =
@D.cn Lrk- Then, the operator L, has the desired properties. O

6.5 The frame operator and dual frame

In this section, a frame operator F,, : S,(<.;) — S,(<. ;) which is shift-preserving is
defined, because such an operator has the range operator by Theorem 6.4.2 (1). Moreover,
it will be shown that this range operator is equal to the restriction of the corresponding
dual Gramian to J,.

In order to define the operator F,,, it is necessary to first introduce the operator K, and
its adjoint operator K.

Definition 6.5.1 ([7]). Let E.(.;) = {T,fr : fx € Sy, k € I, q € Z"} be a Bessel
family of S,(<7.1). The operator K, : S,(,.1) — (2(Z™ x I) is defined by

(f, quk>m)
K. f= 121" , S, (. 1).
d ( Nr(q + /f) (q,k)€ZnxI fe ( J>

Note, the condition that E, (47, ;) is a Bessel family of S, (%7, ) ensures that the operator
K, is well defined (see the conclusions given before Definition 6.2.1).

Lemma 6.5.1 ([7]). The adjoint operator K} : (2(Z" x I) — S,(,.1) of K, is given by

Kra= Y agT,fem(q+Fk),

(q,k)ezrxI

where a = (i) (g reznxi € L2(Z" x I) and fi, € <1, k € 1.
Proof. Let f € S.(.;) and o € (2(Z" x I). Then,
<K:047f>m = <04, Krf>e,%(2nx1) = Z aq,k<f> quk>mﬂr(q + k)
(q.k)eZn I

- 2 %,k<qukaf>Her(q+k)=< > @q,kqukMr(Q+/f)7f>Hr

(¢,k)€ZP X1 (g,k)€Z X T
Hence, the assertion holds. O
Definition 6.5.2 ([7]). The operator F,, : S,(<t.1) — S,(, 1) is defined by F,, = K}K,.
Note that, E, (7. ;) is a frame with frame bounds A and B if and only if
A1 < (Forf, e < Bl [ for every f € S.(at1)
if and only if o(F,,) C [A, B], since
2

<F0,7"f7 f>HT = <Krf7 KTf)@%(Z”XI) = ||Krf||§Z(Z”><I) = Z ‘<f7 Tka>HT

(q,k)eZr <1

Thus, it is not difficult to check that the following statement holds.
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Theorem 6.5.1 ([7]). The operator F,, : S.(<.1) = S, (<. 1) is a frame operator and
Foof = Y (T Tofe,  f€S(h),
(q,k)eZrx1

with the unconditional convergence in H'.

Theorem 6.5.2 ([7]). Assume that J, is a range function of V, = S.(,.1) and E,. (<, 1)
is a Bessel family of V.. Then, the operator Iy, is shift-preserving with the range operator

R.(t) = Gr(t) T,
where G:(t) is the dual Gramian of { T, fi(t) : fr € 1, k € I} for a.e. t € T™.
Proof. Since for every p € Z"

Fo,erf = Z <Tpf7 quk>HTquk - Z <fa Tq—pfk>HTquk

(q,k)eZ™xI (q,k)EZ XTI
= Z (., Tyfr)r Tyup Sy f € Se(rg),
(q,k)ezZ™xI

it follows that F,,T, = T,F,,, i.e. F,, is a shift-preserving operator (obviously F,, is
bounded and linear). Thus, by Theorem 6.4.2,

||Krf||?% = <Krf7 Krf>€%(Z"><]) - <Fo,rf7 f)HT = <(<77.°Fo,r)f7 %f)j?”r
= | ARO(Z10), 7 W)t f € 5i(n) (65.1)

where R, is the range operator for F, .. Using Lemma 6.2.1 (1),

(<fa quk‘)HT )
1@+ k) /) g reznxa
2

1K fll7 =

= > [ Tfdu

(q,k)EZn XTI

_ Z/n (Zo1(1), T (D),

kel

N /n Z <<%f(t)’ ‘%fk(t)>€7%<‘%f(t)a %fk(t)>eg dt

kel

— [ (TS50 2) crs (IO Tofult))r) o) o
— [ (D: 750, DL )

— [ (DDif0), 5 (0), (6.5.2)

2
dt

:/n (GrO)Tf (1), Tof () dt, [ € Si(yr). (6.5.3)

Now, combining (6.5.1) and (6.5.2) yields
Hence, R,(t) = Gx(t) [,.(y= R, (t) for a.e. t € T". O
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Finally, for a frame with given frame bounds A and B a dual frame is determined with
frame bounds B~! and A~L.

Theorem 6.5.3 ([7]). Let E. (<, 1) be a frame of V, = S,(<%. 1) with frame bounds A, B
and let B,p = {fr : fi = F,} frs fx € 1, k € I}. Then, E.(%,) is the dual frame of
E. (1) with frame bounds B~', A~*, and

Tifi(t) = R7W)( T f(t))  for ae.t €T, k € 1. (6.5.4)

Proof. Using Theorem 6.5.1, for every f € V,,

SO WEEMu e = Y E T fu|

(g.k)€Z™x1 (q,k)€ZnxT
= Z <Fo_,r1f7 quk>HT<Fo_7r1fa quk>HT

(g,k)ezZnxI
S UE T u Tofi B ) e

(g, k)EZ"XI

< (For £ Ty fi)ur Ty fus >H
(g,k)eZnx I

= (For( F ) e

= (F,.'f, f>m

Theorem 5.2.1 (3) gives

B M fllar < Y | F Tafe)ar

(q,k)EZn XTI

= (F D <A e (6.5.5)

Therefore, {Fo}qufk cfx € Sy, q €L, k € I} is a dual frame for E, (<7 ;) with frame
bounds B~', A~!. Further, for every f°=F,,.f € H",

AT =F,\T,F, . f=F,'F,,T,f=T,f=T,F,'f°, q€Z",

since the operator F,, is shift-preserving, by Theorem 6.5.2. Hence, F,! is also a shift-
preserving operator. Now, by (6.5.5), it follows that E,.(%, ) is a dual frame for E, (<, 1)
with frame bounds B!, A~!, and hold

f= > TfwTfe= >, (LTuf)wTfi, feV,

(q.k)eZmx1 (g,k)€Z™ <1

with the unconditional convergence in H".
Finally, (6.5.4) follows from (6.4.6) and Theorem 6.5.2. O

Remark 6.5.1. Let E,. (4, 1) be a Riesz family for V, = S, (<7, 1) with frame bounds A, B.
Then, the dual E,.(%,) is also a Riesz family with bounds B~', A~'. Moreover,

<quk7Tpf;>HT = 5q,p6k,j7 q,p € Zn7 ka] € [>

where 0y, ; 1s Kronecker’s delta function.
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6.6 The structure theorem and connection with an-
other approach

Note that V, is a separable Hilbert space, since V, is a closed subspace of H", r € R. The
space L2, = L2 (R") of L*-periodic functions is defined by

L2, = {f* O =Y age D (ag) e € 52}.

qeEZL™

Now, using the Fourier transform, a characterization of elements of V,. is obtained.

Theorem 6.6.1 (The structure theorem, [6]). Let V, = S,(<.1), E.(,.1) be a frame
of V. and let E, (A1) be its dual frame, where B,1 = {f: fi = F(,_’Tlfk, fr€ Ay, kel}.
Then, the Fourier transform of V., i.e. F|[V,] is the set of the Fourier transforms of
elements from 9. so that

FIf1 =Y FlhfF

kel

where F(fi] € L2, k € I, and f}; € L3, have the expansions
Ji = Z Qg k ~2mita) ) (Oéq,k)(q,k)eznxf S fQ(Zn x I,
qeEZL™
with
o= [ FUa) 07 FIT @) o, (a.h) €2 x T (66.1)
Proof. By Theorem 6.5.3, the existence of a dual frame is insured. Thus, let E, (< )

and E,(%, ) be a frame and its dual frame of V; = S, (. [), respectively. Then, using
Lemma 5.3.1, it follows that

=N (AT T = DS LTl e Tufi = > aguTyfi

kel qez™ kel qez™ kel geZ™

for every f € V,., where

0= U Tuf) e = [ Fa) 20 FRT @) da
for all (¢, k) € Z™ x 1. Moreover, by (5.2.1),

Al <0 o < BIfI3 fEV

kel qezn

since E, (%, ) is a frame. Therefore, (agx)greznxr € (2(Z" x I). O

In the next assertions, different approaches to SI spaces are connected. First, the SI
space Vo = V is related to the SI space from [15] (see (1.0.2) for » = 0) by the following
statement.

Theorem 6.6.2 ([6]). Let V = S(,,), where oy, = {fr: k=1,...,m} C L*>N.ZL>°. If
¥, is closed in L?, then ¥, = V.
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Proof. According to Theorem 1.0.5, ¥ is closed in L? if and only if E(47,) is a frame of
#y. Moreover, by the definition, V' = S(47,) is closed in L?. Therefore, the same frame
determines %, and V. Thus, %, = V. m

Shift-invariant spaces V., r > 0, are connected to weighted SI spaces from [64], i.e. the
spaces

Y = {f =)0 agrTufe (Qgp)gezn € 6 fr € L¥NLL k=1,... ,m}, (6.6.2)

k=1 qezZ™

by imposing additional conditions for generators.
Theorem 6.6.3 ([6]). Let r > 0 and V, = S,(%,.,,), where o,,, = {fx € H" : fi, €
LPNZ>* k=1,...,m}.

(1) If ¥, and F|V;] are closed in L?, then ¥, C H" and ¥, =V,, i.e. every f € V, has

the expansion as in (6.6.2).

(2) If r > 3 and ¥, is closed in L2, then F[¥;] is closed in L? and both assertions in
(1) hold.

Proof. (1) On the one hand, by Theorem 1.0.6, ¥ is closed in L? if and only if E, (4, ,,) is a
frame of #,.. On the other hand, by Lemma 3.5.2, Z#[H"] = L? and thus Z ![Z¥,] = ¥,
is a closed subspace of H”, because Z[¥;] is closed in L? and .Z is an isomorphism
(Theorem 3.4.2). Therefore, since V, = S,(4.,,) is a closed subspace of H", it implies
that ¥, = V.. Hence, f € V, has the expansion as in (6.6.2).

(2) If f e, then

Let

In order to prove that fe L? it is enough to prove

~

IO v p2(t)dt =0, N — +oo.

Rn
Since
NN = D Fu@e(t) D agr, o700 Y et
k1,ko=1 lg|>N la|>N
= Z fh(t)sz(t)]khk’z,]\fv
k1, ka=1
and

Fia (&) Fro ()2(1) € L2,
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it is enough to prove

T ov] < sUP ‘ Z gy €20 Z Ty €700 | 50, N — +o0.

PR gl lal>N
Since (qgx)gezn € €2, k =1,...,m, using the Cauchy-Schwarz inequality, it follows that
|Ik1,k2,N’ < Z |aq,k1| Z |O‘q7k2|
lg|>N la|>N
= > lagmlm(@nr(@) Y lagrlm(a)p—r(a)
lg|>N lg|>N
<Y o Ped@) D #2(@) D lagrui(e) Y # (@) =0, N = +oo.
la|>N lg|>N lg|>N lg|>N
Therefore, the statement holds. ]

Regarding duality, the following statement holds.

Theorem 6.6.4 ([6]). Let r > 0 and V, = S, (%), where o, = {fx € H" : fi €
L2NZL>®, k=1,...,m}. If the conditions of assertion (1) or (2) in Theorem 6.6.3 hold,
then

(1) ¥/ =¥_,., where ¥V_, is the space of series of the form

F=000 0 BurTufer DD 1Bl (q) < 400,
k=1 qeZn k=1 qezn
with the dual pairing
5 D =D Bakars  f €W,
k=1 qezZ™
2) v,=V_,.
Proof. Obviously, the statement (1) holds. Since elements of the form

> D BusTuf
k=1 qeZn

are dense in the spaces ¥, and V_,, for » > 0, it implies that the statement (2)
holds. O]

For the equality between the spaces of intersections of the observed spaces, it is necessary
to consider generators from the Schwartz space ..

Theorem 6.6.5 ([6]). Let fr € ./, k=1,...,m. Then,

7%=V

r=0 r=0

and its elements can be represented in the form (6.6.2) with

sup |ogillg]” < +oo  forallr >0, k=1,...,m.
qeEL™
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A direct consequence of the theorems 6.6.3 and 6.6.4 is the following assertion.

Corollary 6.6.1 ([6]). Let fr, € ./, k=1,...,m. Then:
0 )
9{“%} :{Zﬁwk:wkeﬁ, kzl,...,m},

(2> VZ = /7/*7'7 UT}O ‘/;‘/ = Ur}O /7/*7" and

ﬁ{U"//T} :{zm:f;vk:vkegz', kzl,...,m}.
k=1

r<0
6.7 Spectral analysis of the range operator

This section is devoted to the range operator. Note, in the continuation with 1, i.e. 1(#),
will be denoted a unit mapping or a unit matrix (it will be clear from the context whether
it is a matrix or a mapping).

Theorem 6.7.1 ([4]). Let = C R™ be a measurable set. If [A()|mxm s a matriz of
measurable functions defined on =, then there are m measurable functions A\ : 2 — C,
k=1,...,m, so that \i(t),..., \n(t) are eigenvalues of matriz [A(t)]mxm for a.e. t € E.

Theorem 6.7.2 ([7]). Let = C T™ be a measurable set. Assume that V, C H" is a SI
space with the range function J,, and R, : J. — J. is the corresponding range operator
for a shift-preserving operator L, : V., — V,.. If

dimy, (t) =m < +oo  for a.e.t € Z,

2

then there are m* measurable bounded functions (R’,f’j)};'fj:l defined on = so that

RpYt) Rp2(t) - Rpy™()
R.(t) = Rfl(t) RfZ(t) Rfm(t) forae tez.
ROV RPA - BPOQ)
Furthermore, there are m measurable functions A\, : = = C, k = 1,...,m, such that

Ara(t), s Ao (t) are eigenvalues for R,.(t) for a.e. t € =, counted with multiplicity.

Proof. Choose the sequence of sets (A, )men, and fr, € H", k € N, from Proposition 6.3.1.
Since the set {7, f1(t),..., 7 fm(t)} is an orthonormal basis of J.(t) for a.e. t € A,,, it
follows that the range operator R, (t) has the matrix representation,

REI(t) = (R, (t) 7, f;(1), Tofi(t)) forae. t e Ay,

Obviously, the elements R¥J(t), k,j = 1,...,m, for a.e. t € A,,, are measurable functions.
Moreover, by Theorem 6.4.2, holds |RF(t)| < || L,|| for a.e. t € A, and all k,j = 1,...,m,
because L, is bounded. Since dimy, (t) = m for a.e. t € =, it implies that = C A,
(Proposition 6.3.1). Therefore, the first part of the statement holds.
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Further, let {ey,..., ey} be the canonical basis of C™. Define a mapping p,(t) : J,.(t) —
C™ by pT(t)(,%fk(t)) = ¢, for ae. t € Ay, k= 1,...,m. Thus, the (unique) relation
between the bases is established for a.e. t € A4,,. Let A\, : 2 — C be a measurable function.
Then,

R.(t) = pr(t)_l[Rij(t)]mxmpr(ﬂ
and ker (R, (t) — \(t)1(t)) = ker (p,(£) 7 ([REI ()] mxm — Ar(£)1(2))pr (1)), for ace. t € E.
Hence, by Theorem 6.7.1, the statement follows. O

In the continuation, fR,, denotes the set of eigenvalues of the bounded measurable range
operator R,.

Definition 6.7.1 ([7]). Let V, C H" be a FSI space. The smallest m € N so that
V. =S.(f1,..., fm) is called the length of V, and it is denoted by D(V,.).

Note, the equivalent definition is D(V,) = esssup,cp» dimy, (2).

Theorem 6.7.3 ([7]). Assume that V, C H" is a SI space with the range function J,,
and R, : J. — J, is the corresponding bounded measurable range operator. Then, there
are functions A\, € L>*(T"), k € N, so that

(1) A\i(t) # N j(t), k# 4, for a.e. t € T", and
(2) if Apa = {t € A, @ card(R,(t)) = d}, where (Apm)men, are sets from Proposition
6.3.1, then Ry, (t) = { A\ 1(t),..., N\a(t)} for a.e. t € Appa, d < m.

Proof. First, by Proposition 6.3.1, it follows that AyNA; =0, k # j, and U,,cpy Am = 0ov,.-
Using Theorem 6.7.2, it follows that for every m € N there are m measurable functions
Arm A = C, k=1,...,m, such that A}, (¢),..., A" (t) are eigenvalues for R,(t) for

r o rm

a.e. t € A,,, counted with multiplicity. Fix m € N and define
Apa = {t € Ay, s card{\,,(t),..., A" ()} =d}, d<m.

These sets are measurable, disjoint and |J!! de1 Ama = Ap. Now, there are measurable
functions \%! A4 A g — Cso that AX&% k= 1,... d, are eigenvalues for R,.(t)

r,m? O r,m r,m)

for a.e. t € Apa, and XK (t) £ AH (1), k # 7, for ae. t € Amd Since R, is bounded, it
gives [AOF (1) < C, k <d < m, for ae. t € Ay q. Define A, : T* — C by

by (t) _ )\’Id“:’rkn(t)7 te Am,d, E<Ld<m,
PR C+ Ek, otherwise.

Then, A\, x(t) # A\ (t), k # j, for a.e. t € T™, and A, € L>(T"), k € N. Moreover, A, j(?)
is the eigenvalue for R, (t) for a.e. t € A,, 4, since for a.e. t € A, 4,

ker (R, (t) — Arge()1(2)) = ker (R.(t) = ALh (0)1()), k< d < m.
Otherwise ker (R,.(t) — A (¢)1(t)) = {0}, because A, ;(t) = C + k is not the eigenvalue
for R,.(t). O
The following remark will be used in proofs of several theorems.

Remark 6.7.1. (1) Let V., C H" be a FSI space with the range function J.. If m >
D(V,), then m(A;,) = 0. Thus, define (for d € N)

+oo
By = U Apa and k=max{d e N:m(B,;) # 0}. (6.7.1)

m=d
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(2) Define the sequence of sets Cy = ;;OZ By, k € N. Then,
Cy ={t € oy, : R,(t) has at least k different eigenvalues}, k € N.
By the proof of Theorem 6.7.3, it is clear that
Co= 1t €T ker(Bu(t) — Ap(t)1(1) # {0}), keEN,

and m(Cy) =0 for k > k.

6.8 s-Diagonalization for shift-preserving operators

The term s-diagonalization first was introduced as the definition by A. Aguilera et al. in
[4]. In this section, the definition of s-diagonalization is adapted to H" spaces. Then, it is
proved that if the shift-preserving operator L, is normal, then it is also s-diagonalizable.
Moreover, if L, is s-diagonalizable, then it can be represented via a finite sum of products
of eigenvalues and corresponding orthogonal projections. Also, the s-diagonalization of
the shift-preserving operator L, and the diagonalization of the range operator R, are
connected.

Definition 6.8.1 ([7]). The operator M, : 7 — A" defined by

where a : T" — C is a measurable function and (1 — #A)r/zf =g € L?, is called the
multiplication operator.

Lemma 6.8.1 ([7]). The operator M, is continuous if and only if a € L*°(T").
Proof. Obviously, the necessary condition holds. Let f € H" and a € L*(T™). Then,

i.e. M, is a continuous operator. Hence, the assertion holds. O

Definition 6.8.2 ([7]). The operators & : T" — C and A, : H" — H" are defined by

-~ —2mi(q, _
a = E g e i) Ao = E a1,

qEL™ qeZL™

2

dt

4

IMoZf 2 = [ IMLZ (0] dt = /

T

n

< NallZoe oy 172 £ 15

where o = () gezn € (2. A sequence o = (ay)qezn € (2 is said to be a sequence of bounded
spectrum if @ € L>(T").

Definition 6.8.3 ([7]). An operator A, ., where o = (a)gezn € €% is a sequence of
bounded spectrum, is said to be an s-eigenvalue of operator L, if

V;",oz = {f € H: er = Ar,af} 7£ {O}

The space V, ,, is called the s-eigenspace associated with A, .
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The term s-eigenvalues of operator L, generalizes its eigenvalues as shown in the following
example.

Example 6.8.1. Let A\, € C be an eigenvalue for L,, i.e. ker(L, — X\, 1) # {0}. Then,
taking the sequence a = A\, X,, Ao i an s-eigenvalue of L,, where x,(q) = 0o 4, ¢ € Z".

The next lemma is significant, because it shows when the operator A, , is well defined,
bounded, and moreover that it can be represented as a composition of operators. That
composition is used to determine the eigenvalue of the range operator R,., which is im-
portant for further results.

Lemma 6.8.2 ([7]). If a = (o) gezn € (2, then the linear operator
Ava = T Ma T, H' — H'

is a bounded operator if and only if a is a sequence of bounded spectrum.

Proof. Let f € H" and (1 — ﬁA)T/Qf = g € L? Then, using Lemma 6.1.2, it follows
that

x_lMaﬁfQ) _ (?T—l (Of(t)g(t +p)> _ Z aqz—l e—2m‘<t,q> (g(t + p))
pEL™ PEL™

11 (p) = 11 (p)
= Z a7 e b Zf(t) = Z a Ty f(t) = Ao f(1),
qEL™ qeEL™

ie. Ao = 77 'MzJ,. Linearity follows directly from the definition of A, ,. Since

2

_ a(t)gt+p
12, M7 e = el = [ (D) g
n () pezn 1l ez
< lallz 1.7 f % = llall? 113
S Loo(Tmy |l v J || er Loo(Tn) HTs
the statement follows. O]

The following lemmas are necessary for the proof of Theorem 6.8.1.

Lemma 6.8.3 ([7]). Let o be a sequence of bounded spectrum. Then, for every f € V, ,
R.(t)(Zf(t)) =a(t) T, f(t) for a.e.t €T

Proof. Let f € V,,. Using the equality (6.4.6), L, f = A, of and Lemma 6.8.2, it follows
that

R(t)(Zf (1) = T (Lo f)(t) = Tr(Araf) () = To( T Ma T f) (1) = a(t) T, (1),
for a.e. t € T™. Therefore, the statement holds. O
The following auxiliary statement is a direct consequence of Proposition 2.9 [22].

Lemma 6.8.4 ([7]). If V., C H" is a SI space, then there is f € V, so that

supp || 7 fllez = ov,.

The proof of the next statement is similar to the proof of Proposition 3.5 [4] and therefore
it is omitted.
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Lemma 6.8.5 ([7]). Assume that J, is a range function so that dim J,.(t) < 400 and the
range operator R.(t) : J,.(t) — J.(t) is measurable, for a.e. t € T™. Then, t — ker(R,(t)),
t € T, is a measurable range function.

Now, by the lemmas 6.8.3-6.8.5 and by Theorem 6.1.1, the next statement follows.

Theorem 6.8.1 ([7]). Let a € (? be a sequence of bounded spectrum. Assume that
V. C H" is a SI space with the range function J, so that for a.e. t € T", dim J,.(t) < +o0,
and R, : J. — J. is the corresponding range operator for a shift-preserving operator
L, :V, = V.. If A\, is an s-eigenvalue for L,, then for a.e. t € oy, , the eigenvulue for
R.(t) is A\ o(t) = a(t). Furthermore,

Jra(t) = ker (R.(t) — M\a(t)1(t))  for a.e.t € T"
is a measurable range function of V, 4.

The following proposition is stated in the paper [7] as a remark without proof. Therefore,
now the proof is performed for the first time in detail.

Proposition 6.8.1 ([7]). Let o, 8 € £2, a # B3, be sequences of bounded spectrum. Assume
that V. C H" is a SI space, L, : V, =V, is a shift-preserving operator and A, ., A, 5 are
s-eigenvalues for L,. Then:

(1) Vi is a SI subspace of V..,
(2) L\Via € Via,
(3) Via NV, ={0} if and only if a(t) # B(t) a.e. in oy, , Noy,,.

Proof. The assertions (1) and (2) simply follow from definitions. For (3), if oy, ,Novy, , = 0,
then the equivalence holds. Therefore, assume that oy, , N oV, 5 # (. Let V, ,NV,. 5 = {0}.
Then, by Proposition 6.1.1(3), it follows that Jy, ,(t) N Jy, ,(t) = Jv, .v, ,(t) = {0}, i.e.

ker (R, (t) — Ao (t)1(2)) Nker (R, (t) — A 5(£)1(¢)) = {0} for a.e. t € T".

Assume that there is a measurable set A C oy, , Noy, , so that m(A) > 0 and a(t) = B (t)
for a.e. t € A. Then, ker (R,(t) — A\o(t)1(t)) = ker (R.(t) — A\ 5(t)1(¢)) = {0} for a.e.
t € A, a contradiction. So, a(t) # B(t) a.e. in oy, , Noy, ,.

For the opposite implication, let f € V, , NV, 5. Then,

@—B)(t)Z.f(t) = {0} for ac. teT",
because L,f = A.of = A.pf. Since a(t) # B(t) ae. in ov,, Noy,,, it implies that
T, [(t) = {0} for a.e. t € oy, ,Novy, ,. Hence, f = 0, since ov, v, , € ov,, Nov, ;. O

In the rest of this section, a SI space V, C H" is a FSI space with the range function
J. and R, : J. — J, is the corresponding range operator for a shift-preserving operator
L,:V,—=V,.

The definition of s-diagonalization adapted to H" spaces is given in the next definition.

Definition 6.8.4 ([7]). An operator L, is said to be s-diagonalizable if there is ¢ € N
so that A, ox, k =1,...,c, are s-eigenvalues for L, and V, =V, (1 @V, 02 @ -+ © V. e,
where @ denotes a direct sum and o, k = 1,...,c, are sequences of bounded spectrum.
(Vo, Ly, ol ... af) is said to be an s-diagonalization of L,.
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Theorem 6.8.2 ([7]). If L, is s-diagonalizable, then R.(t) is diagonalizable for a.e.
te ay,.

Proof. Let (V,,L,,a',...,a%) be an s-diagonalization for L,. Using Theorem 6.8.1, it
follows that A, ak( ( ) is an eigenvalue of R,(t) for a.e. t € oy ,, and J, k() =

) =
ker (R, (t) — a’“ )1(t)) is eigenspace for R,(t) for a.e. t € T", k =1,...,c. It is enough
to show that J,.(¢ ( )= Jrat(t) ® -+ @ Jpae(t) for ae. t € T

Obviously, J,a1(t) + -+ + Jrae(t) € Jp(t) for ae. t € T, since V., C V, implies
Jror(t) C Jp(t) for ae. t € T", k= 1,...,c. On the other hand, let ¢ € V, = S,.(4,,).
Then, there exist ¢, € Vi, & = 1,...,¢, such that ¢ = ¢; + -+ + ¢, and thus
Tro(t) = Trpr(t) + - + Trpe(t) for ae. t € T". Therefore, J,(t) = span{.Z,f(t) : f €
Sy}t C Jrar(t) + -+ Jrac(t) for ae. t € T". Since dimy, () < o0 for a.e. t € T", it
implies that

Jrat(t) + o+ Jrae(t) = Jpar(t) + -+ Jrae(t) forae. te T

Hence, J.(t) = Jra1(t) + -+ 4 Jrqe(t) for a.e. t € T". By Proposition 6.1.1(3), J.(t) =
Jrat(t) @ - @B Jyae(t) for a.e. t € T, ie. the sum is direct. O

Theorem 6.8.3 ([7]). Let k be given by (6.7.1). If the operator R,(t) is diagonalizable

for a.e. t € ovy,, then there are sequences (a®)f_, of bounded spectrum so that for a.e.

t €T, J.ax(t) = ker (Rr(t) — Zv;(t)l(t)), k=1,...,k, are measurable range functions
and

(1) J(t) = Jrar(t) ® -+ & Jpax(t), where @ denotes a direct sum;

(2) the sets Cy = {t € ov, : Joa(t) # {0}} satisfy m(Cy) > 0 and Cpy1 C Cj,
k=1,...,k—1.

Proof. (1) Let D(V,) = m. There are measurable functions A, 1,..., A, € L=(T") so
that for a.e. t € T",

@ ker (R’r(t) - )\r,k<t)1(t)) = Jr(t)a

by Theorem 6.7.3 and Remark 6.7.1. Indeed, if ¢ € A,, 4, then (see the proof of Theorem
6.7.3)

@ ker (R @ ker (R, (t) — M5 (0)1(t) & €D {0} = J.(b),

k=d+1
since for a.e. t € T", R,(t) is diagonalizable and {A} () : k = 1,...,d} is the set of
eigenvalues for R,.(t) on A,, 4. On the other hand, if a.e. t ¢ oy, then J.(t) = {0} and
ker (R (t) — Ai(t)1(t)) = {0}, k=1,...,k
Finally, since A, € L®(T"), it follows that there is a sequence o = (a¥),ezn € £
of bounded spectrum such that A, (t) = o®(t) and J, .« (t) = ker (R,.(t) — o*(t)1(t)) is
measurable for a.e. t € T", k=1,..., k.

(2) By Remark 6.7.1 (2), the statement follows. O

In the following theorem, which represents a generalization of the theorem known as
the spectral theorem for shift-preserving operators, the conditions under which the shift-
preserving operator is s-diagonalizable are given.
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Theorem 6.8.4 ([7]). If L, is a normal operator, then L, is s-diagonalizable and

c
L, = E A’I“,akPV,,akﬂ

k=1

where (V,., L., at, ... a) is an s-diagonalization of L, and Py Vi Ve, k=1, ¢
are the orthogonal projections. Y

Proof. Since L, is a normal operator and V,. is a FSI space, using Theorem 6.4.4, it follows
that the range operator R, (t) is normal for a.e. t € T". Therefore, R,.(t) is diagonalizable
for a.e. t € T™, and thus its eigenspaces are orthogonal.

Let x be given by (6.7.1). Then, using Theorem 6.8.3, J,(t) = J,41(t) ® -+ B Jpax(t)
for a.e. t € T", where J, v, k = 1,..., K, are measurable range functions. Therefore, by
Theorem 6.8.1, V, v = {f € H" : L,f = A f} # {0}, k = 1,...,k, are SI spaces.
Since J, o6 () LT 0i(t), B # j, k,7 =1,...,k, for a.e. t € T", it gives V, ox LV, 05, k # 7,
k,j = 1,...,k. Finally, by Proposition 6.1.1(2), V, = V, ;1 @ --- @ V, o= and thus the
operator L, is s-diagonalizable.

Moreover, if (V,, L., o', ..., a) is an s-diagonalization of L,, then the s-eigenspaces V;, ,x,
k=1,...,c, are orthogonal and V, =V, ;1 @ --- @V, 4c, because the eigenspaces of R,.(t)
are orthogonal for a.e. t € T". Hence, the assertion holds. ]

Example 6.8.2. Let V, = S.(%,.,,) and E.(,,,) be a Bessel family for V.. Then, by
Theorem 6.5.2, the associated frame operator for E,. (<, ,,) is shift-preserving. However,
since it is self-adjoint, by Theorem 6.8.4, it follows that it is s-diagonalizable.

Theorem 6.8.5 ([7]). Let L, : V, — V,. be a normal operator. Then,
(1) the operators L, and (its adjoint) L} are s-diagonalizable;

(2) zf A, is an s-eigenvalue for L., then (its adjoint) A, is an s-eigenvalue for Ly and
Vie=A{f€H : L;f = A}, f}. Furthermore, A; , = Ana, where a = (Oéq>q€Zn € (?
and oy =a—,, q € Z";

(3) if (Vo, L. at, ..., a%) is an s-diagonalization for L,, then (V, Li,&f, ...,a%) is an
s-diagonalization for L.

Proof. (1) Since L, is a normal operator, its adjoint operator L* is also normal. Therefore,
by Theorem 6.8.4, the operators L, and L) are s-diagonalizable.

(2) Since
a(t) _ 27rz t,q) Z — —27rz tq

qeEL™ qEL™

set ay = a_y, ¢ € Z". Obviously, & = (a)sezn € (2. Let f1, fo € V,. Then,

<Ar,af17 f2>H* = <f17 Ar,&f2>HT7
ie. Ay, = A,5. Furthermore,
ker(L; — A, 5) = ker((L, — Ay o)) = ker(L, — Ay) = Vio # {0},

because L, — A, is a normal operator. Hence, the assertion holds.
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(3) Assume that (V,, L,, o, ..., «a°) is an s-diagonalization for L,. Then, by (2),
ker(Ly — A =)=V, k=1,...,c

Thus, V. = V.01 @ - -- @ V,. 4 is the decomposition on s-eigenspaces of L. O

6.9 Dynamical sampling

In this section, assume that V. = S.(f1,...,fm) C H" is a FSI space with the range
function J, and R, : J, — J, is the corresponding range operator for a shift-preserving
operator L, : V., — V., R} and L} are corresponding adjoint operators, respectively,

={1,2,...om—1}, J ={0,1,...,s}, and V3 = {f € H" : L'f = N 3f}, ie
V,.5 = ker(L: — A, ), where 3 € £2 is a sequence of bounded spectrum so that A, s is an
s-eigenvalue for L.

The next theorem is Theorem 3.2 from [5] adapted to observed spaces.
Theorem 6.9.1 ([7]). Assume that B(t) is an eigenvalue for R*(t) for a.e. t € ov, 5, and
let J,.5(t) = ker (R:(t) — B()1(t)). If

{(B ()" (Frps()) 1 05 € Viy j €], k € B}

is a frame for J.(t) with frame bounds A, B > 0 for a.e. t € o, ,, then
{Ps, .0 (Trp;(t) 1 pj € Vi, j € J}

is a frame for J,.z(t) with frame bounds C(t), C(t where C(t) = Y, \E(t)|2k, for a.e.

te O-Vr,['}'

Proof. For every ¢ € V, 3,

PIPMEONCAGINENCH MDD BIEH0) ) 72i(0) g

kekE jeJ keE jeJ
=YY KB (T 1), Zops () |
keE jeJ
_Z|ﬁ ’2k2| 990 PJﬁ ygpj >52"
keE jeJ
Therefore, the statement follows. m

Theorem 6.9.2 ([7]). If the set {Lkp; : p; € V., j € J, k € E} is a frame generator for
V.. with frame bounds A, B > 0, then the set

{PVT,B%‘ - @5 € ‘/7‘7 .] € ‘]}

is a frame generator for V, g with frame bounds A) > 1| L.||** and B.

Proof. Let the set {L¥, : ¢; € V., j € J, k € E} be a frame generator for V, with frame
bounds A, B > 0. Then, for a.e. t € T",

(7 (L5e) () 5 € Vi J € I, k€ B} = (R (Tgs(t) 5 € Vi j € J, k€ E}
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is a frame for J,.(t) with the frame bounds A, B > 0, by Theorem 6.2.1 (1) and the equality
(6.4.6). Further, let A, 53 be an s-eigenvalue for L?. Then, by the theorems 6.4.4 and 6.8.1,

B(t) is an eigenvalue for R;(t) for a.e. t € oy, ,. Now, by Theorem 6.9.1,
(P, ) (Zpi(t) s 05 €V2, j €T}

is a frame of J, 4(t) with frame bounds A/ Y7 ' |B()[2F and B/ 7t B()[2* for ae.
t € oy, ,. Finally, since

m—1 m—1
L<C) =D B0 <RI <7 L™,
k=0 k=0

the assertion follows, by Lemma 6.1.4 (see Remark 6.1.1) and Theorem 6.2.1 (1). O
The following statement is Theorem 3.5 from [5] adapted to observed spaces and operators.

Theorem 6.9.3 ([5]). Let o', ..., a° be sequences of bounded spectrum and R, be a normal
range operator such that

R, (t) = Z&(t)PJTal(t) for a.e. t € T".
=1
If for everyl=1,...,c and for a.e. t € T",
{Pr (T f5(t) : f;€Ve, j €T}
is a frame for J, ,(t) with frame bounds Ay, By, > 0, then for a.e. t € oy,,
{(R(O)(Tf; () : [ € Vi, j €, k € E}

is a frame for J.(t) with frame bounds

(S () im@E) e B( ZHR )

1=0
o T _ o
where y(t) min _11_[ lal(t) — aP(t)] > 0 and A = lrilll?cAl, = mnin B,.
p=1,p#l
Under additional assumptions the equivalence in Theorem 6.9.2 holds.

Definition 6.9.1 ([5], [7]). A shift-preserving operator L, is said to have the spectral
property if for a.e. t € oy, there is C > 0 so that |\, — \.| = C for all X, # A\, where
A, )\/T S %)\T(t).

Finally, the problem of dynamical sampling for shift-preserving operators L, on V, =
Sy(f1,.--, fm) C H" is solved by the following theorem.

Theorem 6.9.4 ([7]). Let a shift-preserving operator L, be a normal operator which has
the spectral property. Then, the set

{LEpj:p; €V, jeJ, ke E}

15 a frame generator of V,. if and only if

{Py, 050, € Ve, j€J}

is a frame generator of V,. 3 with the same frame bounds for every s-eigenvalue A, g of L.

91



Proof. The necessary condition is proved by Theorem 6.9.2. Therefore, only the implica-
tion in the other direction should be shown.

Let L, be a normal operator which has the spectral property. Then, by Theorem 6.8.5,
L* is an s-diagonalizable operator. Therefore, one can construct an s-diagonalization
(V., L, B, ..., B%) of L so that OV, e C OV, forl=1,...,k—1, and for a.e. t € T™,

Bi(t) — BP@®)| > C >0, l#p, Lp=1,... .k (6.9.1)

since L, has the spectral property (see Theorem 6.8.3 and Proposition 6.8.1(3)), where x
is given by (6.7.1).

Assume that {Py, PLZ TS V., j € J} is a frame generator of V, g, [ = 1,..., K, with
frame bounds A, B > (. For a.e. t € T", by Theorem 6.2.1,

{Z.(Pv,_05)t) :; €Ve, jET}

is a frame of J, 4 (t), [ = 1,..., K, with the same frame bounds. By Lemma 6.1.4 (see
Remark 6.1.1), for a.e. t € T,

{PJr,ﬁl(t)<<%Spj(t)) L Q; c ‘/r, j c J}

is a frame of J,(t), I = 1,...,k, with the same frame bounds. Set A; = ov. ﬂz\UVr e

l=1,....,k—1,and A, = oy, .. Then, (T"\oy,) UU_, 4 =T

Fix [ € {1,.. .,/i}N. Then, {PJTVBl(t)(Q%goj(t)) cp; €V, j € J}is a frame of J,. gz for a.e.
te A, l=1,...,1. By Theorem 6.9.3,

{(R, ()" (Topi(t) 5 € Vi, j €T, | € E}

is a frame of J,.(t) with frame bounds

(5 Z( )2!\3 o) and B<lmZ:HRr )

where v(t) = min_ H 1BL(t) — BP(t) ]2, for ae. t € Ay

1<I<TI=1,1p

Without loss of generality, one can assume that C' < 1 in (6.9.1). Then, for a.e. t € Ay,
C* < C* < (t) and

kOO (k=12 ! K ST !
- 21 < 21
e () ) <a(ax () )HR o)

( Z IR0 ) < (mguL ).

Note that, these frame bounds are the same for all sets As, | = 1,...,k. Thus,

{(R ()" (T0i(1)) s s € Vi j € J. k € B}
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is a frame of J,.(t) for a.e. t € T". Therefore, {LFp, : ¢; € V,, j € J, k € E} is a frame
generator of V,. with the frame bounds

rk—1 2 —1 m—1

K k—1

A= (77 ) 1) (kX m),
1=0 k=0

by (6.4.6) and Theorem 6.2.1. Hence, the statement holds. O

6.10 Products in shift-invariant spaces

In this and the last section, results of the paper [8] will be presented. The first result is
a consequence of Theorem 4.6.1.

Proposition 6.10.1 ([8]). Let

¥1 = Z ag1Tyfi  and @y = Z g 2Ty fo,

qEL™ qEL™

with (og1)gezn € Gl, (g2)qezn € 632, fi€e H*, fo € H2 N F 1 (LOO) and ri + 1y > 0.
Then,

© =1 %P2 € Vo(f1* f2),

where r < min{ry, ro}, i.e.

¥ = Z O‘qTq(fl * f2)7 (aq)qEZ” € 672” Qg = Z Qg—p,10p2, q € z".

qeEL™ pEL™
Proof. First, using the theorems 3.2.3(2), 3.4.3 (3) and 4.6.1, it follows that

9/5: m2 = a@ = Z aq,lM—qfl Z aq,ZM—qf2

qEL™ qeEL™
= }\.1]?2 Z Oéq’l e727ri<q,-> Z Oéq72 6727”'<q"> = .]/[\.1}\.2 Z Oéq 6727ri<q,->7 (6101)
qeL™ qEL™ qeZn

where (a)gezn € €2, ag = 3 cpn Qg p1Qpa, ¢ € Z". Further,

s 1) Fa(D) P (1) At < | foll 7 : 1@ Pl () dt = || foll 7L f1
< el fill < +oo,

since ry > r. Thus, ﬁfg € L? ie. fix f, € H", by Lemma 3.5.2 and Theorem 3.2.3 (2).
Applying the inverse Fourier transform to (6.10.1), it implies that

p(@) = (p1 % @2)(x) = (fr  fo) (@) ¥ Y agdy(@) = D agTy(fi* fo)(z), = €R",

qEL™ qeEZL™

by the theorems 3.2.3 (2), 3.4.3 (3) and by Example 3.4.2. Hence, the statement holds. O
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In order to introduce the property of compatible coefficient estimates, the following condi-
tions are requlred Let (ag 1)q€Zn (aho)gezn, k=1,... 51,1 =1,... 55, and A}, A}, C Z",
AN (=AY =0, k=1,...,8, 1 =1,..., 8, be such that for every k = 1,...,s; and
every [ =1,..., 59,

D loh Ppicoa (q) < 400, D Jab Pua, (g) < 400, (6.10.2)
qeNk qEZM\A¥
Z |O‘é,2|2ﬂ—2a2 (Q) < +00, Z |O‘£1,2|2:U’2b2(q> < oo, (6103)
qeA), qEZ\AL

for some by > as > 0, by > a; > 0. Moreover, let forall k =1,...,5,l=1,...,5 and

every q € Z" there are C' > 0 and a > 1 so that
Whg) =card{p e Z" : q—pe AL A pe A} < Clq|n (6.10.4)

New terminology, such as compatible sequences and compatible coefficient estimates are
given in the following definition.

Definition 6.10.1 ([8]). (1) Functions vi,v, € &' are said to have compatible coeffi-
cient estimates if for their sequences of coefficients (6.10.2)—(6.10.4) hold.

(2) Functions f1,fo € 2" in a neighborhood of o € R™ have compatible coefficient

estimates if for some ¢ € D(T7, o), (6f1)pe and (¢ f2)pe have Fourier expansions
such that (6.10.2)~(6.10.4) hold.

(3) Sequences (ki )gezn and (ol y)gezn, k = 1,....81, I = 1,...,8,, are said to be
compatible sequences if (6.10.2)—(6.10.4) hold.

A new result for the product of periodic distributions (i.e. elements of the space ') is
given in the following assertion, which is very significant for the following results.

Theorem 6.10.1 ([8]). Let vy, v € &', i.e

2 § Oé —2mi(q,") 2 § —2mi(q,")
=1 qez»

k=1 qeZn

where Y cpn |05 1121127, (@) < 00 and Y- cpn |0 5|*1-27,(q) < +00, for some 7y, 75 >0
and all k = 1,...,85, 1 = 1,...,89. If v1 and vy have compatible coefficient estimates,
then there is a T € R so that vivy € P'".

Proof. First, it is not difficult to see that if
L,k n .
%" (q) = card{p € Z" : g —p € A} A pe Ay},

k,l I,k
then 7" (¢q) = 75" (q).

Let v, vy € &2’ have compatible coefficient estimates. Since the general case is just a
repetition of the following procedure, the indices k and [ can be omitted (i.e. let s; = 1
and sy = 1). Therefore,

(B B o (5 B

qEAN1  g€Z™M\ M\ q€A2  qeZ™\A2
2 2
= v{vy + VU5 + Vivy + Viv3. (6.10.5)
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Suppose that 27 > max {4@(&1 +as)+2a+n+1,2a +n+1,2a0+n+ 1}. It should be
shown that every term of the sum (6.10.5) is finite.

For the first term of the sum (6.10.5),

1,1 _ 11 ,—2mi{g,) 11 _ n
V]Vy = E a, e ,  where a = Qgp1Qp2, G EL",
qEZL™ q;giAl
2

using (6.10.4) and knowing that for a > 1, |q|* < ua(q) holds, it follows that

>l Pu ) < Y ( > |aq—p,1||ap,2|) 17 (q)

qEZL™ qEZL™ Q;gigl
2
=> ( > Jogmpaltta (0 = p)lewalig, (P)ttay (q = P)tta, (p)> 172(q)
qEL™ q—pEN
pEAy
2
< C Z ( Z |aq—p,1|:u—a1 (q - p)|ap,2 H—ay (p)> :u4a(a1+a2)+2a72‘r(Q)
qEL™ q—pEM]
PEAQ
<X (X tovtinato ) ( 3 toalicsnto i
qEL™ q—pEN] q—pEM]
pPEAg pEAg
<C Y ntag) < +o0,

qeEZL™
since for p € Ay and (¢ — p) € Ay,
pay (@ =) < ptay (@1 + gl 0+ [a]")) < Clizaay (@), Har (P) < Chinaas (0),
again using (6.10.4).
For the second term of the sum (6.10.5),

1,2 12 —2mi{q,") 12 _ "
ViUs = E a, e ,  where o = Qg—p10p2, qEZL",
qeZn g—pEN]
PEL™\Ag

it follows that

2 o Pt < D ( > |aq-p,1|u_a1<q—p>|ap,2|ub2<p>%) =0

qeEZL™ qEZ™ q—pEA]
pEZM\Agy
2
<> ( > Iaq—pvllu—al(q—p)|ap,zlﬂb2(p)) 1120, —2(q)
qEL™ q—pEM
PEZ™\Ag
D! (D SETSHRNIE) 1§ ol DETANE) PR
qeEL™ q—pEN q—pEN]
PELZM\Ag PEZM\Ag
< C Z ,U2a1727'(Q) < —|—OO,
qEL™

because fiq, (¢ = p) < Cha, (q)a, (p) and by = a1 = 0.
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Next, Peetre’s inequality (3.5.5) for t = p, x = ¢ and r = ap > 0 gives

fay (P) < Cliay (g — P)Has (q)-

Thus, the estimate for

_ 21 —271'1 q7 21 n
vivy = E a ,  Wwhere o = E Ogp1Qp2, qEZL",

qEL™ q—pEZ™\ A
pEAg

simply follows:

Zla§1|%2<q><2< > raqp,lmbxq—p>|ap,2ma;<p>%> 17(a)

qeL™ qeZ™ q—peezA"\Al Nln(q p
p 2
2 2 2 _9 Ngz(Q)
<CY | D0 lagpalui(a—p) > lopal’ug () 0
qEZL™ q—pEL™\Aq q—pEL™\Aq M4
PEA2 pEAg
<C Z fini1(q) < +00,
qez”
since by > ay = 0.
Finally, for
011)2 = Z 0422 —2milg , where 0422 = Z Qg_p1Qp2, qEZL",
qeEL™ q—pEZ™\Aq

PELM\Ag

hold

S le2Pu@ <> | D] Iaqp,1|ub1(q—p)\ap,zlu@(p)ubf(q—p)ub;(p>> 1-(q)

qEZ™ qE€ZA \ a—pEL™\Ay
PELZ™\Ag

<> 0 D Iaq—p,1|ﬂb1(q—p)|ap,2lub2(p>> pz(a)

qE€ZA \ a—pEL™\Ay
PEL™\Ag

< Z Z ’aq—p,l‘zﬂﬂn (C] - p)) ( Z |Oép,2‘2ﬂ252 (p)> M;Z(Q)

qEL" q—pELT™\Aq q—pE€Z™\ A
PEZLM\ Ay PEZM\Ag

<C Y (g) < 4o,

qeEL™
since by, by > 0.
Hence, there is a 7 € R so that viv, € P27, 0

The result of Theorem 6.10.1 can be applied to the product (convolution) of elements of
SI spaces.

Theorem 6.10.2 ([8]). Let o1 € V, (f,..., ') and w2 € V., (f5, ..., [32) such that
S1 $2
= Z Z O‘l;,quflka Y2 = Z Z 0551,2qu£7
k=1 geZn I=1 qezr
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where 11,19 > 0. [f( 1)gezn and (« qQ)QEZn k=1,...,81,1l=1,...,89, are compatible
sequences, then there zs anr € R so that for fF fLleVin ¥, k=1,....s,1=1,...,89,

<p1>1<902€Vr(ff*fé, k=1,..., s, lzl,...,SQ).

More precisely,
S1 82

P13k P2 = Z Z Z alg—p,laé,QTq(fik * fé)

k=1 1=1 qczn
q—p€EL™
Proof. The general case is just a repetition of the following procedure so the indices k and
[ can be omitted (i.e. let s; = 1 and sy = 1). Therefore, applying the Fourier transform
to 1 and 9 gives

-~ o~

Pi(t) = fil)ua(t),  P2(t) = falt)va(t), tER",

t) = Z Qg @ 2Dy (t) = Z (g p €20,

qEZ™ qEZL™

where

by Theorem 3.4.3 (3). Now, since v, and vy have compatible coefficient estimates, Theorem
6.10.1 gives a 7 € R so that coefficients o, = ZpEZ" Qg_p10p2, q € Z", satisfy

Z |O‘q|2ﬂ—QT(Q) < +00.

qeEL™
This implies
Pi(D)pa(t) = Z age Dt e RY,
qeL™
and thus
(1% p2)(x) = (f1* f2) (@ Z% Z% (fi* fo)(x), =eR",
qeEL™ qeEL™

by the theorems 3.2.3(2), 3.4.3(3) and by Example 3.4.2.

Set r = —7. Note that, under the conditions fi, fo € V,, N ¥, and r1, 75 > 0, the products
are well defined. Therefore, p; * o € V.(f1 * fa). O
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6.11 Shift-invariant spaces and wave fronts

Using the set of wave fronts, the elements of the spaces &2’ and V,. are described in the
following assertions.

Theorem 6.11.1 ([8]). Let I' C R™\ {0} be an open convex cone. If
v — Z a, e 2miey) < P Z |04q|2l/«2r(Q) < too,
qezn qernzn
then (xg,to) & WF,.(v) for every (zo,ty) € R" x I.

Pmof Let ¢ € 2(T}, 4) so that ¢ = 1 in T} _, where 0 < e < ¢. It is known that

b€ .7, by (2.3.7) and Theorem 3.3.1(3). Choose I';, C T and 'y CC Ty, i.e I'; N S™!
is a compact subset of I'y, NS™~'. Then, there is C' > 0 so that

tel A qeZ' A (®A\{OP\T,) = mlt—q) >Cmle.  (6.101)

by elementary geometry. Using Peetre’s inequality (3.5.5) (with z = ¢ and 2r instead of
), by Theorem 3.2.3 (2) and Example 3.4.2, it follows that

[ Go(o P te) e = / (6 %)) P (1)

(¢* ;aq )05) o (1)
/F1 ;aq T,0(t ‘ pio,(t) dt
s /r ( gz: |O‘q||Tq5(t)|5|Tq$(t)|5>2uzr(t) dt
L)
/ 5 (Z g "I T () e (8 >> at
<<, ( -l @0l q>> "
=C-1I,

using the fact that > ;. |Tq$(t)| < +00, t € R, since ¢ € .. Further,

' </Fl / Z )|a‘1|2M2T(Q)|Tq§/b\(t)|M2|T(t_Q) dt =1, + L.

qEZ™ Ny qEZ™\T'y

For I,

h= 3 loufle) [ 1O -0t <C 3 o) < +oo

quantO qEZnﬂFtO
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since [, |Tq$(t)\u2|T|(t —q)dt < 400, ¢ € Z", because (E € .. Next, note that v € &’
implies that Y- ;. [og|*1-2-(g) < +o00 for some 7 > 0. Using (6.11.1), it follows that

:u2(7+r) (Q)

<C, tely, qeZ"\Ty,.
H2(r4r) (t - Q) ’

Therefore,

Pa(r+r)(q) ~
I:/ a2uf‘rq—ﬂ7'7‘r t_q T(bt dt
2= . E |ovg|“p—or ( )M(T+T)<t_q> o) (T — Q)| Ty0 (1)

since [ pa(rrrtpr)) (t — q)|quzA5(t)| dt < +00, ¢ € Z", T > 0, because ¢ € .7.
Hence, the statement follows. ]
Corollary 6.11.1 ([8]). Let f € Z and ¢ € V,(f) such that

o= Z a,T,f  and Z vy piar (q) < 400

qEZL™ qeZ"NI’

for an open cone T C R"\ {0}. If X n |yl pi-2-(q) < 400 for some 7 > 0, then for
every (z,t) € R" x T, (x,t) ¢ WE.(p).

Proof. Obviously, 3 = fuy, where @y = > gezn Qg e~2me ) Applying Theorem 6.11.1,
it follows that for every (z,t) € R* x I, (z,t) ¢ WF,.(gpo). Finally, by Lemma 4.5.3 (1),
(0,0) ¢ WE(@). O

In order to determine the conditions for the existence of the product of elements from SI
spaces by the set of wave fronts, and the conditions for belonging of that product to some
SI space, it is necessary to first investigate the product of elements of the space &'

The following consideration of sets A; and As is especially interesting. Choose the cones
I’y and T'y so that proy (WFrl(fl)) cI'y, pro (WF7»2(f2)) C I'y, and set

Al :ZnﬂF1 and A2 :anFQ

Theorem 6.11.2 ([8]). Let vy,v3 € P’ (i.e. v € P’ vy € P'™), T,y C R™\ {0} be
cones such that T'y N (=Ty) = 0 and let the following conditions hold.

(1) There are C >0 and a > 1 so that

card{pe Z" : q—peTly N pelL} <Clq|*Y, qeZ"

(2) Let (wo,t0) € R* x (R"\ {0}) and let p € (T} 4), ¢ =1 in T}

s 0 < €< 0, be
such that

pr2(WFr1(¢U1)) cl'y and Pr2(WFr2<¢U2)) C Iy,
where vy = 19 and r9 = 1.

Then, v = (¢v1)pe(P2)pe ezists in P'. Furthermore, v € P'.
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Proof. Let

(1) pe E g1 € 2 and  (dva)pe E (rgp € 2T

qeEZL™ qEL™

Note, if z € supp ¢ and ¢t € (R"\ {0}) \ T'y, then (z,t) ¢ WF, (¢v1). The same holds for
@uy. Since vy € P'™ and vy € P, it follows that

Z g1 p2r, (q) < +o0  and Z g,

qeZ™NIy qeZ™NI'y

*p1-2r,(q) < +o0.

Now, using the same procedure as in the proof of Theorem 6.10.1, it is shown that
v = (1) pe(pv2)pe exists and v € ', O

Remark 6.11.1. Theorem 6.11.2 can be generalized to the case when there are several
cones TV, k=1,...,51 (connected with vi) and Ty, | = 1,..., sy (connected with vy) such
that Z"NT% k=1,...,8;, and Z"NTh, I = 1,..., 89, contain index sets for vi and vs,
which are compatible index sets.

Remark 6.11.2. In the case n =2 if T'y N (=T'2) = 0, then it follows that condition (1)
of Theorem 6.11.2 holds with a = 2 (hypothesis is that condition (1) also holds for n > 2
with a = n, but the structure of cones and their intersections are more complex in the
dimension n > 2, thus this is an open problem for now).

Indeed, suppose that cones are acute (if not, they can be divided into finite sets of cones).
Thus, let T'y and —T'y be acute and let Ty N (=Ty) = 0. By translation the cone —T'y for

vector Oﬁ, where O = (0,0) and Q = (q1,q2), there are several different positions of the
cone. Cones may not have an intersection, but the most interesting case is when they
intersect in four points (in that case, the intersection has the largest number of possible
integer points, that is, the surface of the intersection is the largest). Therefore (without
losing generality), let

Fl = {(l‘l,xQ) k’.’L’l T, 1 = O} and — FQ = {(.ﬁEl,.I'Q) liL’l T, T é 0},

where I > k > 0 (see Figure 3).

ry

=1,

Figure 3.
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Let the cone —T'y be in the position shown in Figure 4, after the translation for the vector
@. The points of intersection are denoted by Ai, Ay, A3, Ay. Fach point of intersection
can be written in the form

(cl1qr + oo, i + ota),  §=1,2,3,4.

T2
Q
P
Ay
Ay
ry
Az A3 1
04 T,

Figure 4.

Now, by calculating the obtained area of the intersection, it is concluded that it can be
estimated by C(q? +q3), i.e by Clq|* for some C' > 0. Hence, in the dimension n = 2, the
assumption Ty N (=T) = () implies the condition (1) of Theorem 6.11.2 with a = 2.

The immediate consequences of the theorems 6.10.2 and 6.11.2 are given in the following
assertions.

Corollary 6.11.2 ([8]). Let f, € H™, k =1,2, and let I'y,I'y C R™\ {0} be cones such
that T'1 N (=T'2) = 0. Suppose that the assumption (1) of Theorem 6.11.2 holds.

(1) Let zo € R™, 1,905 € 2" and ¢ € D(T% ) such that ¢ =1 in T} _, 0 < e < 0.
Suppose that
Flop] = h Z (g1 €2, Floos] = Fa Z (g p 0 20)

qEZ" qun

and for some 1,7 > 0 hold

Y laalProen(e) < +oo and Y agalpoan(q) < oo

qeZ™NI'y qeZ™Nl'y

Moreover, suppose that the condition (2) of Theorem 6.11.2 holds. Then, there is
an r € R such that

b= Y T and = Y ayaTif

qeL™ qEL™

are elements of V;(f1) and Vi (f2), respectively, and (¢p1) * (dp2) € Vi (f1 * f).
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(2) Let o, € V;, (fr), k =1,2, and let (xq,t9) € R* x (R"\{0}). For gy, = Frve suppose
that prg(WFTk(vk)) C Ty, where vp = 3 cpn gk e 2me) L = 1,2. Moreover,
suppose that hold

Z ’aq,1|2N*271 (Q> <400 and Z |04q,2|2ﬁ67272 <Q) < +00,

qeZmNI'y qeZ™Nl'y

where ry = 1 >0 and ro > 7 > 0. Then, there is an r € R such that

p=pr1xpr €Vi(fixfo) and @ =Y a T (f1% f).

qeEZ™
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