SCIENTIFIC WORK OF DUŠAN J. RADANOVIĆ:
COORDINATION CHEMISTRY OF HEXADENTATE EDTA-TYPE LIGANDS WITH METAL IONS

Miloš I. Djuran*1 and Dušanka D. Radanović2

1Faculty of Science, University of Kragujevac, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia and Montenegro
e-mail: djuran@knez.uis.kg.ac.yu

2Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia and Montenegro

(Received March 31, 2003)

ABSTRACT. This article is dedicated to the memory of Dušan J. Radanović, Professor of Inorganic Chemistry at the Faculty of Science, University of Kragujevac, who died in April 2002. The article consists of two parts. In the first part a brief review of Radanovic’s scientific work is presented. The second part is the list of all scientific papers published during his life. In this way we want to express our appreciation for his contribution to the development of coordination chemistry in Serbia as well as his contribution to the development of the Faculty of Science in Kragujevac.

1. Review of the scientific work of Dr. Dušan J. Radanović*

The first research of Dr. Dušan J. Radanović was concerned with synthesis and characterization of cobalt(III) complexes with different amino acids. The reactions of hexanitrocobaltate(III) with different amino acids (glycine, DL-alanine, D-alanine, L-alanine, β-alanine, L-aminobutyric acid, aminoisobutyric acid, L-norvaline, L-leucine, L-norleucine, and L-isoleucine) have been investigated. In these reactions different dinitrobis(aminoacids)cobaltate(III) complexes have been obtained and characterized.

*Dušan J. Radanović was born in Kotor Varoš (Bosnia and Herzegovina) in 1933 where he attended primary and secondary school (1948-1953). He studied chemistry at the Faculty of Science, University of Belgrade (1953-1962), where he received his M.S. degree (1968) and Ph.D. (1971) in inorganic chemistry. His first employment was as Assistant at the Faculty of Science in Belgrade (1963-1974). After spending two years (1972-1974) as a Research Fellow at the University of Pittsburgh in USA he was appointed as Assistant Professor (1974), Associate Professor (1982), and Full Professor (1985) at the Faculty of Science, University of Kragujevac. After retirement in 1998 Dr. Radanović was also very active. He used to come to the Department every day until he died in April 2002. His research interests were concerned with structural coordination chemistry and he published about 71 papers.
For characterization of cobalt(III) complexes with aminoacids electronic absorption, infrared and \(^1\)H NMR spectra have been applied. Most of these complexes were resolved into optical isomers and their circular dichroism spectra have been studied [1-9].

During the postdoc stay at the University of Pittsburgh Dr. Radnović began to study optical activity and stereochemistry of the transition metal complexes with aminopolycarboxylate edta-type (edta is ethylenediaminetetraacetate) and related ligands. His interest in this field was mainly focused on the two directions: i) synthesis and characterization of cobalt(III), chromium(III) and rhodium(III) complexes with edta-type ligands, and ii) determination of the influences of various structural changes of the ligand and geometry of the corresponding complexes on the optical activity of octahedral transition metal complexes.

Ethylenediamine-\(N,N'\)-diacetate-\(N,N'\)-di-3-propionate ligand (eddadp) has been used for synthesis of hexadentate Co(III), Cr(III) and Rh(III) complexes. This ligand in relation to the edta has two longer carboxylate chains and in reaction with metal(III) ions three geometrical isomers (trans\(\left(O_5\right)\), trans\(\left(O_5O_6\right)\) and trans\(\left(O_6\right)\)) which differ in the position of oxygen donors of five- and six-coordinted rings are possible. In reaction of this ligand with Co(III) two geometrical isomers (trans\(\left(O_5\right)\) and trans\(\left(O_5O_6\right)\)) of hexadentate \([\text{Co(e-ddadp)}]\) have been obtained and resolved [10]. Electronic absorption, circular dichroism (CD) and NMR spectra were used for characterization of these complexes. Circular dichroism spectra of trans\(\left(O_5\right)\) and trans\(\left(O_5O_6\right)\) isomers have been compared with those for edta-type complexes of known absolute configuration. On the basis of their CD spectra for both isomers of \([\text{Co(e-ddadp)}]\) the \(\Lambda\) absolute configuration have been assigned. The eddadp and \(S,S\)-edds ligands (\(S,S\)-edds is ethylenediamine-\(N,N'\)-disuccinate) have also been used for preparation of the corresponding hexadentate complexes with Cr(III) and Rh(III) ions. In reaction with Cr(III) only trans\(\left(O_5\right)\) isomer of hexadentate \([\text{Cr(e-ddadp)}]\) and \([\text{Cr}(S,S\text{-edds})]\) complexes have been obtained [11]. Infrared, electronic absorption, and CD spectra were used for characterizing the complexes. The (-)\(_D\)-isomer of the trans\(\left(O_5\right)\)-[Cr(e-ddadp)] complex, having a positive CD peak at the lowest energy in the first spin-allowed \(d-d\) absorption band region, is tentatively assigned the \(\Lambda\) configuration, by comparison of its CD spectrum to the corresponding trans\(\left(O_5\right)\)-[Co(e-ddadp)] and trans\(\left(O_5\right)\)-[Cr\((S,S\text{-edds})\)] complexes of known absolute configuration. The absolute configuration of (-)\(_D\)-Li[Cr(e-ddadp)].5H\(_2\)O was confirmed by X-ray analyses [12]. In the reaction of RhCl\(_3\) with edadp trans\(\left(O_5\right)\) and trans\(\left(O_5O_6\right)\) isomers of hexadentate \([\text{Rh(e-ddadp)}]\) have been obtained [13]. The reaction of Rh(III) with stereospecific \(S,S\)-edds ligand has also been studied and only trans\(\left(O_5\right)\) geometrical isomer of hexadentate \([\text{Rh}(S,S\text{-edds})]\) was characterized. IR, \(^1\)H NMR, \(^{13}\)C NMR and electronic absorption spectra have been used for characterization of \([\text{Rh(e-ddadp)}]\) and \([\text{Rh}(S,S\text{-edds})]\) complexes. The electronic absorption spectra have also been reported and \(\Lambda\) absolute configuration of \([\text{Rh(e-ddadp)}]\) complexes were assigned by comparison of their CD spectra with those for \((+)_D\)-trans\(\left(O_5\right)\)-[Rh\((S,S\text{-edds})\)] of known \(\Lambda\) absolute configuration [17]. The CD spectrum of trans\(\left(O_5\right)\)-[Rh\((S,S\text{-edds})\)] was also compared with corresponding for (-)\(_D\)-isomer of hexadentate \([\text{Rh}(1,3\text{-ppta})]\) complex (1,3-ppta is 1,3-propanediaminetetraacetate) and \(\Lambda\) absolute configuration of the \([\text{Rh}(1,3\text{-ppta})]\) complex was assigned [18]. The proposed \(\Lambda\)
absolute configurations for both (-)D-isomers of trans(O₃)Li[Rh(eddadp)5H₂O and [Rh(1,3-pda)]⁺ complexes were confirmed by X-ray analyses [21,25]. The hexadentate Rh(III) and Cr(III) complexes with edtp ligand (edtp is ethylenediaminetetra-3-propionate ion) have been prepared and resolved [26,30]. Infrared, electronic absorption and CD spectra were used for characterization of these complexes. The CD data in the region of d-d transition are discussed in comparison with those for similar edta-type Rh(III) and Cr(III) complexes of known configuration. For (+)D enantiomer of the hexadentate [Rh(edtp)]⁺ complex the Λ absolute configuration was assigned by comparison of its CD spectrum with those for Rh(III) edta-type complexes for which absolute configuration are known from X-ray crystallography [21]. The (+)₃₈₉⁻[Cr(edtp)]⁻ complex, having a positive (dominant) CD peak in the first spin-allowed d-d absorption band region, is tentatively assigned the ∆ configuration [25]. The obtained results have been summarized in a review article written by Radanovic [22]. In this review all papers published in this field until the end of 1982 have also been presented.

Some octahedral chromium(III) complexes of the [Cr(N)₂(O)₄]-type containing quadridentate ethylenediamine-N,N'-diacetate ligand (edda) with water, hydroxo, oxalato (ox) and malonato (mal) as the additional ligands have been investigated [14-16, 19,20,24]. The α-cis configurations of the complexes were assigned on the basis of their IR and electronic absorption spectra. These α-cis configurations were confirmed by X-ray analyses in the case of α-cis-di-μ-hydroxobis(ethylenediamine-N,N'-diacetato)dichromium(III) tetrahydrate, [Cr(edda)(OH)]₂·4H₂O [15]. In reactions between quadridentate trimethylenediamine-N,N'-diacetate (tmdda or 1,3-pdda) and ethylenediamine-N,N'-di-3-propionate (eddp) and chromium(III) ion the two novel hydroxo-dimer chromium(III) complexes were obtained [20]. The electronic absorption and IR spectra were used for characterization of these complexes. It was found that tmdda and eddp ligands prefer the uns-cis configuration, indicating that six-membered chelate rings have a profound effect on the distribution of geometrical isomers. The crystal structure of (-)₃₈₉⁻[Co(en)₂(C₂O₄)]⁻·uns-cis⁻(-)₃₄₆⁻[Cr(1,3-pdda)(mal)]H₂O showed that the six-membered diamine ring assumes the stable chair conformation, the equatorial glycinate ring is puckered, while the axial glycinate ring is in the "envelope" conformation. The ΔΔΔΛ absolute configuration of this chromium(III) complex ion was found [32].

Particularly, Radanovic and his coworkers were interested in the study of coordination chemistry of metal(III) ions with pentadentate eda₃a-type ligands (ed₃a is ethylenediamine-N,N,N'-triacetate ion). Several octahedral cobalt(III) complexes of cis-eq geometry containing pentadentate ed₃a and monodentate CN⁻ ligands, Kcis-eq-[Co(ed₃a)CN] and Kcis-eq-[Co(med₃a)CN] (med₃a is N-methylethylenediamine-N,N,N'-triacetate ion) and Ktrans-eq-[Co(ed₃a)CN] have been prepared and characterized [27]. ¹H NMR and ¹³C NMR spectra of these complexes have been compared with those for [Co(ed₃a)(H₂O)] and [Co(ed₃a)((NO₂)]⁻ complexes with the same cis-eq geometry. The X-ray crystal structure of the racemic form of NH₄[Co(ed₃a)(CN)₂H₂O·0.5CH₃OH has been determined and discussed [29].

In continuation of the previous investigation of the transition metal complexes with hexadentate edta-type ligands, new ed₃ap (ethylenediamine-N-acetate-N,N,N'-tri-3-propionate), ed₃ap (ethylenediamine-N,N,N'-triacetate-N'-3-propionate), u-eddadp
(ethylenediamine-N,N-diace-tate-N’,N’-di-3-propionate) and 1,3-pddadp ligands (1,3-propanediamine-N,N’-diaceta-te-N,N’-di-3-propionate) have been synthesized [31-33]. These ligands have mixed five- and six-membered chains and in coordination with metal ion different geometrical isomers are possible to obtain. In the reaction of cobalt(III) with eda3p ligand, from two theoretically possible geometrical isomers (trans(O₆) and trans(O₅O₆)), only trans(O₅O₆) isomer of hexadentate [Co(eda3p)]⁺ complex has been prepared. § H NMR, electronic absorption and CD spectra were used to characterize this complex. The (+)trans(O₅O₆)-[Co(eda3p)]⁺ complex with positive CD peak at lowest energy in the first spin-allowed d-d absorption band region is tentatively assigned the Λ absolute configuration. Study of the reaction of Co(III) with 1,3-pddadp ligand showed that formation of geometrical isomers having the six-membered glycinate rings in axial position of the octahedral plane was dominant. In this reaction only two trans(O₆) and trans(O₅O₆) isomers have been characterized. For characterization of these complexes ¹H NMR, ¹³C NMR and electronic absorption spectra have been successfully applied [31].

The crystal structures of the octahedral Co(III) and Cr(III) complexes with hexadentate ligand ethylenediamine-N,N,N’,N’-tetra-3-propionate (edtp) have been reported [34]. On the basis of X-ray data the Δ configuration was established for the isomorphic (+)₅₈₉-Li[Co(edtp)]·3H₂O and (+)₅₈₉-Li[Cr(edtp)]·3H₂O enantiomers. The electronic absorption and CD spectra of these complexes were presented and compared with those of other edta-type Co(III) or Cr(III) complexes [34].

The unsymmetrical edta-type ligands: ethylenediamine-N-acetate-N,N’-tri-3-propionate (ed3ap), ethylenediamine-N,N,N’-triacetate-N’-3-propionate (ed3ap), ethylenediamine-N,N-diacetate-N’,N’-di-3-propionate (u-eddadp) and 1,3-propanediamine-N,N,N’-triacetate-N’-3-propionate (1,3-pd3ap) have been used for preparation of hexadentate Cr(III) [35, 64] and Co(III) [41, 44] complexes. These ligands have mixed carboxylate chains and in coordination with metal ions different geometrical isomers are possible to obtain, except for u-eddadp, vide supra. In the synthetic reaction of CrCl₃ with ligand eda3p only one trans(O₅O₆) geometrical isomer of two possible (trans(O₅O₆) and trans(O₅O₆)) has been obtained and resolved into optical isomers [35]. Infrared (IR), electronic absorption and circular dichroism (CD) spectra were used for characterization of the complex. CD data in the region of the d-d transitions have been discussed in comparison with those of other edta-type Cr(III) complexes of known configuration. The (-)₅₈₉-isomer of the trans(O₅O₆)·[Cr(eda3p)]⁺, having a positive CD peak at lowest energy in the first spin-allowed d-d absorption band region, is tentatively assigned the Δ configuration.

Ethylenediamine-N,N,N’,N’-triacetate-N’-3-propionate (ed3ap) on hexadentate coordination can form two possible geometrical isomers: trans(O₃) and trans(O₂O₆). The only one dominant trans(O₃) isomer has been established in [M(ed3ap)]⁺ (M = Co(III) [41, 61] and Cr(III) [64, 65]) complexes. Cobalt(III) complexes with the unsymmetrical hexadentate ligands, ed3ap and u-eddadp, have been prepared, chromatographically separated and resolved [41]. The ¹H NMR, electronic absorption and circular dichroism (CD) spectra were used to characterize the complexes. Only one trans(O₃) geometrical isomer of [Co(ed3ap)]⁺ complex was isolated. The enantiomers: (-)₅₄₆-trans(O₃)-[Co(ed3ap)]⁺ and (+)₅₄₆-[Co(u-eddadp)]⁺ with a positive CD peak at lowest energy in the first spin-allowed absorption band region are
tentatively assigned the absolute configuration. The absolute configuration of \((-\text{trans}(O_5))-\text{[Co(ed3ap)]}\) was confirmed by X-ray crystallography [61].

Chromium(III) complexes with ed3ap and \(u\)-eddadp ligands also have been prepared, chromatographically separated and characterized [64]. IR, deuteron NMR \((^2\text{H NMR})\), magnetic circular dichroism (MCD) and electronic absorption spectra were used to characterize the complexes. Only one \(\text{trans}(O_5\text{-[Cr(ed3ap)]})\) complex was isolated. The structures of both \(\text{trans}(O_5\text{-[Cr(ed3ap)]})\) and \(\text{[Cr}(u\text{-eddadp})]\) complexes have been determined by X-ray crystallography [65]. The \(\text{trans}(O_5\text{-[Cr(ed3ap)]})\) complex have been resolved and its CD spectrum was compared with those for similar edta-type Cr(III) complexes. The \((-\text{trans}(O_5\text{-[Cr(ed3ap)]})\), with a positive CD peak at the lowest energy in the first spin-allowed \(d-d\) absorption band region, is assigned the \(\Lambda\) configuration. The absolute configuration of this complex was also confirmed by X-ray analysis.

Ligand 1,3-propanediamine-\(N,N,N^\prime\)-triacetate-\(N^\prime\)-3-propionate (1,3-pd3ap) differs from ed3ap only in the length of diamine chain, thus theoretically possible geometrical isomers that these ligands may form on hexadentate coordination are the same. The only one geometrical isomer (\(\text{trans}(O_5O_6)\)) of the hexadentate Co(III) complex with 1,3-pd3ap has been prepared and resolved [44]. The NMR, electronic absorption and circular dichroism (CD) spectra were used to characterize the complex. The \((-\text{trans}(O_5O_6))-\text{[Co(1,3-pd3ap)]}\), with a positive CD peak at lowest energy in the first spin-allowed \(d-d\) absorption band region is tentatively assigned the \(\Lambda\) absolute configuration.

The symmetrical ligand 1,3-propanediamine-\(N,N^\prime\)-diacetate-\(N,N^\prime\)-di-3-propionate (1,3-pddadp) has been used for preparation of hexadentate Co(III) [40] and Rh(III) [42] complexes. Possible geometrical isomers that may be obtained in the synthetic reactions of 1,3-pddadp with metal ions are the same as those for eddadp ligand \(\text{vide supra}\). In reaction of this ligand with Co(III) ion two geometrical isomers (\(\text{trans}(O_5O_6)\) and \(\text{trans}(O_6)\)) of hexadentate \([\text{Co}(1,3\text{-pddadp})]\) complex have been obtained and resolved [40]. Electronic absorption, circular dichroism (CD) and NMR spectra were used for characterization of these complexes. The \((+\text{trans}(O_5O_6))-\text{[Co(1,3-pddadp)]}\) and \((+\text{trans}(O_6))-\text{[Co(1,3-pddadp)]}\) enantiomers with a positive CD peak at lowest energy in the first spin-allowed \(d-d\) absorption band region are tentatively assigned the \(\Lambda\) absolute configuration.

The \(\text{trans}(O_5)\) geometry of \([\text{Co}(1,3\text{-pddadp})]\) also have been established in the crystal structure of racemate \(K\text{trans}(O_5)-[\text{Co}(1,3\text{-pddadp})]-3\text{H}_2\text{O}\) [50] as well as in the crystal structures of optically pure compounds: \(K_{1/2}(\text{H}_3\text{O}_2)_{1/2}\{(-\text{d-trans}(O_6))-\text{[Co}(1,3\text{-pddadp})]\}\cdot2\text{H}_2\text{O}\) [63] and \(\text{Li}\{(+\text{D-trans}(O_6))-\text{[Co}(1,3\text{-pddadp})]\}\cdot7\text{H}_2\text{O}\) [63]. The crystallographic studies of cobalt(III) amine carboxylates were of particular interest in connection with the mystery of hydronium ions of different kinds [63]. It has been established that minor variations in composition and/or stereochemistry of the cobalt amine carboxylates are sufficient to influence the crystallization of hydronium ion or mixed potassium-hydronium salts as evidenced in crystal structure of \(K_{1/2}(\text{H}_3\text{O}_2)_{1/2}\{(-\text{D-trans}(O_6))-\text{[Co}(1,3\text{-pddadp})]\}\cdot2\text{H}_2\text{O}\).

In the reaction of RhCl\(_3\) with 1,3-pddadp ligand two geometrical isomers (\(\text{trans}(O_5)\) and \(\text{trans}(O_5O_6)\)) of hexadentate \([\text{Rh}(1,3\text{-pddadp})]\) complex have been prepared, resolved into the optical isomers and characterized [42, 70]. Electronic
absorption, circular dichroism (CD) and NMR spectra were used for characterization of these complexes. For both geometrical isomers X-ray data were reported [70]. The electronic absorption and CD spectra were compared with those for similar edta-type Rh(III) complexes. The optical isomers of the [Rh(1,3-pddadp)]$^-$ complex ((-)$_{589}^{\text{trans}}$(O$_5^-$O$_6^-$) and (+)$_{589}^{\text{trans}}$(O$_5^-$O$_6^-$)) exhibited similar CD splitting and sign patterns in the region of the lower energy absorption band (a lowest energy positive CD peak followed by a negative one). Both optical isomers were assigned the Λ absolute configuration. The assignment was confirmed by X-ray analysis in the case of Λ- (+)$_{589}^{\text{trans}}$(O$_5^-$O$_6^-$)-[Rh(1,3-pddadp)]$^-$. Earlier reported [Rh(1,3-pdta)]$^-$ [18, 21] and [Rh(edtp)]$^-$ [26] complexes exhibiting opposite alternating CD sign pattern have also been assigned the Λ configuration.

The results obtained in studies of stereochemistry and optical activity of edta-type complexes of Co(III), Cr(III) and Rh(III) until 1993 have been summarized in the review article [43]. In the last decade, his research was extended on stereochemistry of nickel(II) and copper(II) complexes with edta-type and related ligands. The X-ray data reported for these complexes formed the firm basis for the stereochemical study.

The hexadentate ligands: 1,3-pddadp, 1,3-pdta, edtp and ed3ap have been used for preparation of the corresponding copper(II) complexes [54,56,57,66,67,69]. In the synthetic reactions of Cu(II) ion with 1,3-pddadp ligand only one favored $\text{trans}(O_6)$ isomer was obtained [54,56]. Two tetragonally elongated octahedral complexes: $\text{trans}(O_6)$-[Cu(H$_2$1,3-pddadp)]\cdot1.5H$_2$O and $\text{trans}(O_6)$-Na$_2$[Cu(1,3-pddadp)]\cdotNaNO$_3$·2H$_2$O have been prepared and characterized. IR and electronic absorption spectra were used for characterizing the complexes and the X-ray data have been reported for both 1,3-pddadp complexes of Cu(II). The study of reaction of Cu(II) ion with unsymmetrical ed3ap ligand showed that formation of the geometrical isomer having the five-membered glycinate rings in axial positions of the octahedral plane was favored [67]. In this reaction only one $\text{trans}(O_5)$ geometrical isomer of [Cu(ed3ap)]$^{2-}$ complex was obtained and characterized by IR and electronic absorption spectroscopy. The extent of axial elongation in $\text{trans}(O_5)$-[Cu(ed3ap)]$^{2-}$ as well as in [Cu(1,3-pdta)]$^{2-}$ [66] complex was found to be restricted by axially coordinated five-membered glycinate rings. The X-ray analyses for both complexes have been reported and the stereochemistry of tetragonal octahedral Cu(II)-edta-type complexes has been discussed in relation to the structure of ligand and geometry of the complex.

In reaction of CuCl$_2$ with hexadentate ligand ethylenediamine-N,N',N'-tetra-3-propionate (edtp) capable of forming only six-membered carboxylato rings square-based pyramidal complex was obtained [57,69]. IR and electronic absorption spectra were used to characterize the complex. A square-based pyramidal geometry was established by X-ray crystallography for Mg[Cu(edtp)]\cdot10H$_2$O and structural parameters describing distortion of five-coordinate [Cu(edtp)]$^{2-}$ complex ion were compared with those for similar copper(II) complexes with edta-type and related ligands. However, for Rh(III) Co(III) and Cr(III) complexes with the same edtp ligand, octahedral geometry was established, vide supra.

The quadridentate edda-type ligands forming six-membered rings: 1,3-propanediamine-N,N'-diacacetate (1,3-pdda) and ethylenediamine-N,N'-di-3-propionate (eddp) have also been used for syntheses of Ni(II) and Cu(II) complexes. Two
paramagnetic octahedral nickel(II) complexes: \([\text{Ni}(1,3-\text{pdda})(\text{H}_2\text{O})_2]\) and \([\text{Ni}(\text{eddpt})(\text{H}_2\text{O})_2] \cdot \text{H}_2\text{O}\) have been prepared and characterized by IR and electronic absorption spectroscopy [48]. For both complexes uns-\textit{cis} geometry was proposed and in the case of \([\text{Ni}(1,3-\text{pdda})(\text{H}_2\text{O})_2]\) it was confirmed by X-ray analysis. With the same quadridentate 1,3-pdda and eddp ligands two square-based pyramidal copper(II) complexes have been prepared and characterized by IR and electronic absorption spectroscopy [58]. Crystallographic data were reported for both \([\text{Cu}(1,3-\text{pdda})(\text{H}_2\text{O})]\) and \([\text{Cu}(\text{eddpt})(\text{H}_2\text{O})]\cdot 3.5\text{H}_2\text{O}\) complexes and compared with those of similar five-coordinate copper(II) complexes.

In the synthetic reactions of Ni(II) ion with hexadentate eddadp and edtp ligands two paramagnetic octahedral complexes ([Ni(eddadp)]^{2-} and [Ni(edtp)]^{2-}) have been prepared and characterized [60]. The IR and electronic absorption spectra were used for characterizing the complexes. Due to the less strain in axial glycinate rings, only one (\textit{trans}(O_5)) of three geometrical isomers of the [Ni(eddadp)]^{2-} complex have been isolated. This dominant geometry has been established by X-ray analysis. Hexadentate 1,3-pddadp ligand also has been used for the preparation of Ni(II) complexes. This ligand differs from eddadp only in the length of diamine chain and in reaction with Ni(II) ion two geometrical isomers (\textit{trans}(O_5) and \textit{trans}(O_5O_6)) of hexadentate [Ni(1,3-pddadp)]^{2-} complex have been obtained and characterized [71]. Infrared and electronic absorption spectra were used for characterization of these complexes. The \textit{trans}(O_5) geometry of octahedral [Ni(1,3-pddadp)]^{3-} complex was confirmed by X-ray analysis.

In the simple synthetic reactions of M(II) sulfates (M(II) = Cu, Ni, Co) with Ba[Ba(1,3-pdta)]·2H_2O the isomorphic series \([\text{M}^{\text{III}}(\text{H}_2\text{O})_6]\text{[M}^{\text{II}}(1,3-\text{pdta})] \cdot 2\text{H}_2\text{O}\) was obtained [66, 68, 72]. IR and electronic absorption spectra were used to characterize these complexes. The crystallographic data of \([\text{M}^{\text{III}}(\text{H}_2\text{O})_6]\text{[M}^{\text{II}}(1,3-\text{pdta})] \cdot 2\text{H}_2\text{O}\) (M(II) = Mg and M(II) = Cu [66]; M'(II) = Mg and M(II) = Ni [68]; and M'(II) = Mg or Co and M(II) = Co) complexes have been reported and compared with those for similar edta-type complexes.
2. Scientific papers of Dušan J. Radanović

[1] M. B. Ćelap, T. J. Janić and D. J. Radanović
 Semiquantitative determination of small amounts of mercury, palladium, lead, copper, cadmium, uranium, iron and zinc by precipitation chromatography on paper

 Study of the reactions of hexanitrocobaltates(III) with amino acids. II. Determination of the configuration of dinitrobis(glycinato)cobaltate(III) ions

 Study of the reactions of hexanitrocobaltate(III) with amino acids. III Syntheses of dinitrodiglycinatocobaltate(III) from complex cobaltic compounds of the diamine, triamine, tetraamine, pentaamine and hexaamine types

 Study of the reactions of hexanitrocobaltate(III) with amino acids. III. Preparation of potassium dinitrodiglycinatocobaltate(III) from complex cobaltic compounds of the diamine, triamine, tetraamine, pentaamine and hexaamine types

 Salts of dinitrodiglycinatocobaltate(III)

 Study of the reactions of hexanitrocobaltate(III) with amino acids. IV. The reactions with DL-alanine, D-alanine, L-alanine, and β-alanine

 Study of the reactions of hexanitrocobaltate(III) with amino acids. V. Absolute configuration and geometrical isomerism of dinitrobis(aminoacidato)cobaltate(III) ions

 Study of the reactions of hexanitrocobaltate(III) with amino acids. VI. Synthesis and geometrical isomerism of dinitrobis(aminoacidato)cobaltate(III) complexes with higher monocarboxylic amino acids

 Study of the reactions of hexanitrocobaltate(III) with amino acids. VII. Geometrical isomerism and absolute configuration of dinitrobis(aminoacidato)cobaltate(III) ions

 Circular dichroism of a second geometrical isomer of ethylenediamine-\(N,N'-\)diacetato-\(N,N''\)-di-3-propionatocobaltate(III) ion
Circular dichroism of chromium(III) sexadentate edta-type complexes. Part I. (S,S)-Ethylenediamine-N,N'-diaceto-N,N'-di-3-propionato-chromate(III) ions

Structure and absolute configuration of the (-)D isomer of lithium ethylenediamine-N,N'-diaceto-N,N'-di-3-propionatochromate(III) pentahydrate, (-)D-Li[Cr(eddda)]5H2O

Identification and characterization of some rhodium(III) complexes Containing eddda and 1,3-pdta ligands

The α-cis configuration of chelated ethylenediamine-N,N'-diacetate in [Cr(N)2(O)4] type complexes

The crystal structure of α-cis-δ-hydroxobis(ethylenediamine-N,N'-diacetato)dichromium(III) tetrahydrate, [Cr(edda)(OH)]2·4H2O

[16] D. S. Veselinović, D. J. Radanović and S. A. Grujić
Chromium(III) and ethylenediamine-N,N'-diacetic acid complexes

Circular dichroism and electronic absorption of rhodium(III) edta-type complexes: Ethylenediamine-N,N'-diaceto-N,N'-di-3-propionatorhodate(III) and (S,S)-ethylenediamine-N,N'-disuccinato-rhodate(III) ions

Circular dichroism of 1,3-propanediaminetetraacetorhodate(III) ion

Investigation of the complex of Cr(III) and trimethylenediamine-N,N'-diacetic acid

Preparation and characterization of uns-cis-δ-hydroxobis(diamine-N,N'-dicarboxylato)dichromium(III) complexes

Crystal structures of Na[M(1,3-PDTA)].3H2O (M = Cr, Rh; 1,3-PDTA = 1,3-propanediaminetetraacetate), and the absolute configuration of the (-)D-isomer of the Rh complex

[22] D. J. Radanović
Optical activity of cobalt(III), chromium(III) and rhodium(III) complexes with aminopolycarboxylate edta-type and related ligands
Chemical characteristics of the waters of Šumadija and Pomoravlje. II. Morava, Lugomir and Belica,

Preparation and characterization of some uns-cis-ethylenediamine-N,N’-di-3-propionato cobalt(III) complexes

Correlation between structure and circular dichroism. Structure and absolute configuration of the (-)546-cis-eq-[Co(ed3a)CN]2H2O and K-(-)546-cis-eq-[Co(hed3a)CN]1.5H2O

Circular dichroism of (ethylenediaminetetrapropionato)rhodate(III) ion

Ligand substituent contributions to the rotational strengths in cyan(ethylenediamine-N,N’-triacetato)cobaltate(III) type complexes. Crystal +structures of Rb-(-)546-cis-eq-[Co(ed3a)CN]2H2O and K-(-)546-cis-eq-[Co(hed3a)CN]1.5H2O

Synthesis and characterization of hexadentate cobalt(III) complexes with novel edta-type ligands. 1. Circular dichroism of a cobalt(III) complex of ethylenediamine-N-acetic-N,N’,N’-tri-3-propionic acid

Proton and carbon-13 NMR studies of cis-eq- and trans-eq-ethylenediamine-N,N’,N’-triacetatocobalt(III) and cis-eq-N- methyl ethylenediamine-N,N’,N’-triacetatocobaltate(III). Crystal structure of NH4 cis-eq-[Co(ed3a)CN]

Circular dichroism of chromium(III) hexadentate edta-type complexes. Part II. Ethylenediaminetetra-3-propionatocobaltate(III) ion

Cobalt(III) complexes of 1,3-propanediamine-N,N’-diacetic-N,N’-di-3-propionic acid and 1,3-succinimide-N-3-propionic-N,N’,N’-triacetic acid

Diamine-N,N’-diacetoacetohexahydrate(III) complexes with oxalate and malonate anions. Crystal structure of (-)546-[Co(en)2(C2O4)](-)546-[Cr(1,3-pdda)(mal)] H2 O
[33] G. Vučković, N. Juranić, D. J. Radanović and M. B. Ćelap
Effect of the central ion of octahedral transition metal complexes on their
thin-layer chromatographic Rf values

[34] M. Parvez, C. Maricondi, D. J. Radanović, M. I. Djuran and B. E. Douglas
Crystal structures and absolute configurations of (+)_{389}-Li[Co(edtp)].3H_{2}O
and (+)_{389}-Li[Cr(edtp)].3H_{2}O complexes of ethylenediamine-N,N,N',N'-
tetra-3-propionate ion and correlations with circular dichroism spectra

Circular dichroism of chromium(III) hexadentate edta-type complexes. Part
III. Ethylenediamine-N-acetato-N,N'-triacetic-N',N'-tri-3-propionatechromate(III) ion

[36] P. Djurdjević, D. J. Radanović, M. Cvijović and D. Veselinović
Potentiometric determination of the protonation constants of 1,3-
propanediamine-N,N'-diazetic-N,N'-di-3-propionate

[37] T. Yasui, T. Ama, G. B. Kauffman, D. J. Radanović and M. I. Djuran
Resolution of the dodecaamminehexa-µ-hidrxo-tetracobalt(III) ion

[38] P. Djurdjević, D. J. Radanović, M. Cvijović, M. Dimitrijević and D. Veselinović
Studies on the complex formation equilibria in copper(II) and nickel(II)-
1,3-propanediamine-N,N'-diazetic-N,N'-di-3-propionate solutions

Complex of cobalt(II) and cobalt(III) with 1,3-propanediamine-N,N'
-diazetic-N,N'-di-3-propionate ligand

[40] D. J. Radanović, S. R. Trifunović, M. S. Cvijović, C. Maricondi and B. E. Douglas
Synthesis and characterization of hexadentate cobalt(III) complexes with
novel edta-type ligands Part 2. Circular dichroism of the trans(O_{5}O_{6}) and
trans(O_{5}) isomers of a cobalt(III) complex of 1,3-propanediamine-N,N'
diazetic-N,N'-di-3-propionic acid

Synthesis and characterization of hexadentate cobalt(III) complexes with
new edta-type ligands. Part 3. Circular dichroism of a cobalt(III) complexes
of ethylenediamine-N,N,N'-triacetic-N'-3-propionic acid and
ethylenediamine-N,N-diazetic-N',N'-di-3-propionic acid

Identification and characterization of the trans(O_{5}) and trans(O_{5}O_{6}) Isomers of
hexadentate rhodium(III) complex of 1,3-propanediamine-N,N'-diazetic-N,N'-di-3-
propionic acid

[43] B. E. Douglas and D. J. Radanović
Coordination chemistry of hexadentate EDTA-type ligands with M(III) ions
Synthesis and characterization of hexadentate cobalt(III) complexes with new edta-type ligands. Part 4. Circular dichroism of the trans(O₅O₆) isomer of a cobalt(III) complex of 1,3-propanediamine-N,N,N',N'-triacetic-N',3-propionic acid
Gold(I) complexes of azoles
Cytotoxic activity of some gold(III) complexes
Il Farmaco, 49(4) (1994) 301-305.
Gold(III) complexes with imidazole, benzoxazole, purine and pyrimidine derivatives
The favored uns-cis geometry in octahedral nickel(II) complexes containing linear tetradentate edda-type ligands forming six-membered rings. Crystal structure of uns-cis-[Ni(1,3-pdda)(H₂O)₂]
Reaction products distribution between some square-planar gold(III) complexes and N,N,N',N'-tetramethylthiuram disulfide. Crystal structure of bis(N,N'-dimethylthiocarbamato)gold(III) bromide dihydrate [Au(dtc)₂]Br·H₂O
The crystal structure of potassium trans(O₆)-1,3-propanediamine-N,N'-diacetato-N,N'-di-3-propionatocobaltate(III) trihydrate and consideration of ring strain, K-trans(O₆)·[Co(1,3-pddap)]·3H₂O,
Mixed-ligand complexes of platinum and palladium with purine and pyrimidine bases of DNA and imidazole derivatives. Part III. Synthesis and structure of platinum(IV) complexes with purine or pyrimidine and imidazole derivatives
Mixed-ligand complexes of platinum and palladium with purine and pyrimidine bases of DNA and imidazole derivatives. Part IV. Synthesis and structure of platinum(IV) complexes with purine or pyrimidine and imidazole derivatives
Reaction products distribution between square-planar gold(III) complexes and N,N,N',N'-tetramethylthiuram disulfide. Crystal structure of bis(N,N-dimethylthiocarbamato)gold(III) bromide dihydrate,
[Au(Me₂NCS)₂]Br·2H₂O
Preparation and molecular structure of the trans(O₆) isomer of Dihydrogen (1,3-propanediamine-\(N,N'-\)diaceto-\(N,N'-\)di-3-propionato)copper(II) complex. The stereochemistry of copper(II)-edta-type complexes in relation to the structure of the ligand Polyhedron, 15 (1996) 3761-3770.

[57] D. J. Radanović, D. D. Radanović and Z. D. Matović

[61] D. J. Radanović, V. D. Miletic, T. Ama and H. Kawaguchi
Synthesis and characterization of hexadentate cobalt(III) complexes with
new edta-type ligands. Part 5. Structure and absolute configuration of
the trans(O₅)(-)-s₄₆-isomer lithium(ethylenediamine-N,N,N′-triacetato-N′-3-
propionato)cobaltate(III) monohydrate,(-)-s₄₆-trans(O₅)-Li[Co(ed3ap)]·H₂O.
Strain analysis of [Co(edta-type)] chelates in relation to their octahedral distortion

S. R. Trifunovic and D. J. Radanovic
Solvent induced reaction of rhodium(III) halide with N-heterocyclic
ligands. Crystal structure of trans-dichlorotetrakis(N-
methyllumidazole)rhodium(III) chloride dihydrate

[63] I. Bernal, J. Cetrullo, J. Myrczek, J. S. Ricci, Jr., D. J. Radanovic and
S. R. Trifunovic
Metal amine carboxylates as hydronium ion traps. Part 5.1. The structure
of K₁/₂(H₂O)₁/₂ {(-)-trans(O₅)-[Co(1,3-SS-pddadp)]}·2H₂O (I)
determined at 18°C and -100°C and of Li{(-)-trans-(O₅)-[Co(1,3-SS-
pddadp)]}·7H₂O (II) at 18°C. Intra- and intermolecular interactions in the
crystallization of metal diamine carboxylates and on hydronium ion trapes,
INTERMOLECULAR INTERACTIONS, W. Gans and J. C. A. Boyens, eds.,

[64] D. J. Radanovic, V. M. Ristanovic, B. Stojceva-Radovanovic, A. D. Todorovska,
N. Sakagami, A. Iino and S. Kaizaki
Preparation and spectral assignments of hexadentate chromium(III)
complexes containing unsymmetrical edta-type ligands. Trans(O₅)
geometrical isomer of sodium (ethylenediamine-N,N′-triacetato-
N′-3-propionato)chromate(III) trihydrate, trans(O₅)-Na[Cr(ed3ap)]·3H₂O
and sodium (ethylenediamine-N-diacetato-N′-di-3-
propionato)chromate(III) trihydrate, Na[Cr(u-eddadp)]·3H₂O

[65] D. J. Radanovic, N. Sakagami, V. M. Ristanovic and S. Kaizaki
Hexadentate chromium(III) complexes containing unsymmetrical edta-type
ligands. Part IV. Crystal structure of (-)s₈₉-trans(O₅)-Na[Cr(ed3ap)]·3H₂O
and Na[Cr(u-eddadp)]·3H₂O and CD spectra correlation. Structural
parameters of [Cr(edta-type)] complexes and their octahedral distortion in
relation to the structure of the ligand

Synthesis and X-ray structural study of magnesium (1,3-propanediamine-
tetraacetato)cuprate(II) octahydrate Mg[Cu(1,3-pdta)]·8H₂O.
Stereochemistry of hexadentate copper(II)-edta-type complexes in relation
to the structure of the ligand
Preparation and crystal structure of the trans(O₅) isomer of magnesium (ethylenediamine-N,N,N\(^{-}\)-triacetato-N\(^{-}\)-3-propionato)cuprate(II) octahydrate, Mg[Cu(ed3ap)]·8H₂O. Stereochemistry of octahedral Cu(II)-edta-type complexes in relation to the structure of the ligand

Synthesis and X-ray structural study of magnesium (1,3-propanediaminetetraacetato)nickelate(II) octahydrate, Mg[Ni(1,3-pdta)]·8H₂O. Structural parameters and strain analysis of [M(1,3-pdta)]\(^{n-}\) complexes in relation to their octahedral distortion

Square-pyramidal copper(II) chelate complexes of edta-type and related ligands forming six-membered rings. Crystal structure of magnesium (ethylenediamine-N,N,N\(^{-}\)-tri-3-propionato-N\(^{-}\)-3-propionate)cupper(II) decahydrate, Mg[Cu(edtp)]·10H₂O

[70] U. Rychlewska, M. I. Djuran, M. M. Vasojević, D. J. Radanović, V. M. Ristanović and D. J. Radanović
Hexadentate rhodium(III) complexes of 1,3-propanediamine-N,N\(^{-}\)-diacetic-N,N\(^{-}\)-di-3-propionic acid. Crystal structures of trans(O₅)-Na[Rh(1,3-pddadp)]·H₂O and (+)SSS-trans(O₅,O₆)-Na[Rh(1,3-pddadp)].3H₂O and CD spectra correlation. Octahedral distortion of [Rh(edta-type)] complexs in relation to the structure of the ligand and geometry of the complex

Characterization of the two geometrical isomers of (1,3-propanediamine-N,N\(^{-}\)-diacetato-N,N\(^{-}\)-di-3-propionato)-nickelate(II). X-ray structure of the binuclear complex trans(O₅)-[Ni₂(1,3-pddadp)(H₂O)₄]·4H₂O and octahedral distortion of edta-type chelates

Simple synthetic method and structural characteristics of (1,3-propanediaminetetraacetato)cobalt(II) complexes: uniform crystal packing in a series of metal (II) complexes with 1,3-propanediaminetetraacetate ligand
Polyhedron, _accepted for publication._

Crystal structure of cis-polar,trans(Cl,O₅)-Na₂[Rh(1,3-pddadp)Cl]·7H₂O and structural correlations between octahedral pentadentate metal(III) complexes with diaminopolycarboxylato-type ligands
Polyhedron, _submitted for publication._
3. Other publications of Dušan J. Radanović

[1] D. J. Radanović
Odredjivanje konfiguracije dinitrodiglicinatokobaltata(III), dinitrobis(β-
alaminato)kobaltata(III) i dinitrodialaninatokobaltata(III)
Magistarska teza, Univerzitet u Beogradu, 1968

Odredjivanje konfiguracije dinitro-bis(amino-acidato)-kobaltat(III)-
kompleksa