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ABSTRACT. The magnetohydrodynamic (MHD) convective flow ofviscoelastic,
incompressible and electrically conducting fluidotligh a porous medium filled in a

vertical channel is analyzed. The channel platg*at —% is subjected to a slip-flow
condition and the other gt = +§to a no-slip condition. The temperature of the gkt

y* = +§ with no-slip condition is assumed to be varylgth in space and time. The

temperature difference of the walls of the chammelssumed high enough to induce heat
transfer due to radiation. A magnetic field of wnifi strength is applied perpendicular to
the planes of the channel walls. The magnetic Regnmumber is assumed very small so
that the induced magnetic field is neglected. #lsd assumed that the conducting fluid is
optically-thin gray gas, absorbing/ emitting ragiatand non-scattering. Exact analytical
solutions of the non-linear partial differentialuagjons governing the flow problem are
obtained. The velocity field, the temperature figlte amplitude and the phase angle of
the skin friction and the heat transfer coefficiaare shown graphically and their
dependence on the various flow parameters is diedus detail.

Keywords: Slip-condition, second grade, MHD, span-wise stidal temperature,
convective flow, porous medium, heat radiation.

INTRODUCTION

In recent years, the interest in the study of flasfsnon-Newtonian fluids through
porous medium has grown considerably because ofapglications in engineering. This is
mainly due to their several applications in petateindustry, manufacturing and processing
of foods, paper industry and many other industepplications, for example filtration
processes, biomechanics, packed bed reactors,aiimsul system, ceramic processing,
enhanced oil recovery, chromatography and manyrstlSacH and $NGH [1] studied MHD
flow of a dusty viscoelastic liquid through a posomedium between two inclined parallel
plates. KAYAT et al. [2] discussed analytical solution for MHD trangieotating flow of a
second grade fluid in a porous spacevARI and Rwi [3] studied analytically the transient
rotating flow of a second grade fluid in a porousdmm. Heat transfer aspect to MHD
oscillatory viscoelastic flow in a channel filleditiv porous medium is presented by
CHOUDHARY and s [4]. GHosH and ST [5] analyzed mixed convection MHD flow of
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viscoelastic fluid in a porous medium past a hottival plate. GIOUDHURY et al. [6]
investigated visco-elastic free convective flowtpawertical porous plate through a porous
medium with suction and heat source.

The problems of flow of non-Newtonian fluids offearied challenges to applied
mathematicians, numerical analysts and modelersleiveloping suitable algorithms for
computing the flows. From literatures, the non- lavian fluids are principally classified on
the basis of their behavior in shear. A fluid wéthinear relationship between the shear stress
and the shear rate, giving rise to a constant giggois always characterized to be a
Newtonian fluid. The equations that describe fla#Newtonian fluid are the Navier—Stokes
equations. The exact solutions for Navier— Stokpsggon are rare. Based on the knowledge
of solutions to Newtonian fluid, the different ftls can be extended, such as Maxwell fluid,
Voigt fluid, Oldroyd-B fluid, Rivlin-Ericksen fluidor power-law fluid. RPTIS and TAKHAR
[7] studied heat transfer from flow of an elastigseous fluid. FAYAT et al. [8] obtained
solution of MHD flows of an Oldroyd-B fluid. BHTA and R0 [9, 10] discussed buoyancy
induced flow of non-Newtonian fluids over a nontisgrmal horizontal plate embedded in a
porous medium and with non-uniform surface heat.flDue to the complexity of fluids,
several constitutive equations of non-Newtoniamd#thave been proposed in the literature.
Amongst these there is a subclass of non-Newtdhiais namely the second grade fluids for
which one can reasonably hope to obtain analysohltion. In the case of fiierential type
fluids, the equations of motion are one order highan the Navier—Stokes equations and,
thus, the adherence boundary condition isfiilgent to determine the solution completely
(see refs. WYAT et al. [11, 12] for a detailed discussion of the reldviasues). Because of
this fact equations governing flow of non-Newtonituds are much more complicated.
Therefore, the class of exact solutions furtheravaed down for non-Newtonian fluids.
RaJcopPAL and GQPTA [13] obtained an exact solution for the flow of@n-Newtonian fluid
past an infinite porous plate. Another exact solutbf non-Newtonian fluid flows with
prescribed vorticity is obtained byaBrRopuLU [14]. FETECAU and ZeREP [15] presented a
study on a class of exact solutions of the equatminmotion of a second grade fluid. An
exact solution of flow problem of a second gradedfithrough two porous walls is arrived at
by ARIEL [16]. KHAN et al. [17] obtained new exact solutions for an Oldrd/dhid in a
porous medium. ISGH [18] analyzed another exact solution of visco@&asiixed convection
MHD oscillatory flow through a porous medium fill@da vertical channel.

The wall slip flow is another very important phemenon that is widely encountered in
this era of industrialization. It has numerous agplons, for example in lubrication of
mechanical devices where a thin film of lubricantttached to the surface slipping over one
another or when the surfaces are coated with dpmmaéings to minimize the friction between
them. By lubricating or coating the solid surfabe fluid particles adjacent to it no longer
move with the velocity of the surface but has #@ditangential velocity and, hence slips along
the surface. ICHY [19] analyzed non-Newtonian lubrication with thengected Maxwell
model. A number of scholars have shown their irstere the phenomenon of slip-flow
regime due to its wide ranging applicationssR@UESet al. [20] have considered the effect of
the fluid slippage at the plate for Couette flowndd®ES and ROULEAU [21] studied the
hydrodynamic lubrication of partial porous metalabegs. The problem of the slip-flow
regime plays a very important role in modern saentechnology and vast ranging
industrialization. In view of the practical applims of the slip-flow regime it remained of
paramount interest for several scholars epRBIA and GIAUDHARY [22]; SHARMA [23];
JAaIN and QPTA [24]. KHALED and \AFAI [25] obtained exact solutions of oscillatory Steke



67

and Couette flows of Newtonian fluids under slipwll condition. MeEHMOOD and ALl [26]
also obtained an exact solution for the unsteadyDMidcillatory flow of a viscous fluid in a
planer channel to study the effect of slip conditidRecently, SiGH [27] studied an
oscillatory MHD forced convection flow of an elecally conducting, viscous incompressible
fluid through a porous medium in a vertical chanaetler slip condition. He [28] further
obtained an exact solution of an oscillatory fudgveloped MHD convection flow through a
porous medium in a vertical porous channel in f#tipy regime.

A number of studies have also appeared in tbratitire for the flows of non-Newtonian
fluids in slip-flow regime. KYAT et al. [29] studied slip flow and heat transfer of acet
grade fluid past a stretching sheet through a mospace. BDIQuI et al. [30] analyzed effect
of slip condition on unsteady flows of an Oldroydi&id between parallel plates H#ED and
TALUKDAR [31] studied transient magnetohydrodynamic (MHDW of a visco-elastic fluid
past an infinite vertical porous plate embedded porous medium with Hall current and slip
condition in a rotating system.J@n and RANDA [32] investigated the MHD flow of an
elastico-viscous fluid in porous medium in a slpaf regime. SNGH [33] obtained an exact
solution of an oscillatory MHD convective flow of \dscoelastic fluid through a porous
medium in a rotating vertical channel in slip-flo@gime with thermal radiation and Hall
current. Recently, ISGH [34] MHD mixed convection visco-elastic slip flothrough a
porous medium in a vertical porous channel withirttag radiation.

The aim of the present study is to formulate amélyze the flow problem of
viscoelastic (second grade), incompressible antkirelectrically conducting fluid through a
porous medium bounded by two infinite vertical pfatn the presence of heat radiation. The
temperatures of channel plates with no-slip coaditand with slip-condition respectively
remain span-wise cosinusoidal and constant as shovigure 1a,b. A magnetic field of
uniform strength is applied transverse to the flamd the magnetic Reynolds number is
assumed very small so that the induced magnettiSeeglected. It is also assumed that the
conducting fluid is optically-thin gray gas, absodi emitting radiation and non-scattering.
An exact solution of the mathematical problem sonfed is obtained and the final results for
the velocity, temperature, shear stress and headfr coefficient in terms of their amplitudes
and phase angles are discussed in the last settiba paper.

BASIC EQUATIONS

In order to derive basic equations for the problander consideration following
assumptions are made:
() The flow considered is unsteady and laminar betw®en infinite electrically non-
conducting vertical plates.
(i) The fluid is second order viscoelastic finitely dowting and with constant physical
properties.
(ii)A magnetic field of uniform strength is applienormal to the flow.
(iv) The magnetic Reynolds number is taken small ensogihat the induced magnetic field
is neglected.
(v) Hall effect, electrical and polarization effecte aeglected.
(vi)It is assumed that the fluid is optically-thin grgss, absorbing/ emitting radiation and
non-scattering.
Under these assumptions, we write hydromagnetiateans of continuity, motion and
energy as:
V.V =0. (1)
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plo+ WV.VN)|=V.T+(UxB)+F, )
oT* _ « 0q*
pCpos = kV2T* — 7 3)

where in equation (2J is Cauchy stress tensor and the constitutive equaterived by
COLEMAN and NOLL [35] for an incompressible homogens fluid of second order is

T = —pil + Ay + 1A, + usAi. 4)

Here—p, I is the interdeterminate part of the stress dumbtwstraint of incompressibility,,
u, and u; are the material constants describing viscositgstieity and cross-viscosity
respectively. The kinematit; andA, are the Rivelen Ericson constants defined as

_day

, =L (V7) Ay + 4, (V7) (5)

— —\T
A =(VW)+ (W), A
whereV denotes the gradient operator and d/dt the mbtiema derivative. According to
MARKoOVITZ and WLEMAN [36] the material constants, u; are taken as positive apd as
negative.

On the right hand side of equation (2) the lashtB{= pgBT"*) accounts for the force due to
buoyancy and the second last term is the Loremtzfdue to magnetic field given by

Jx B =o0(VxB)xB. (6)

HereV is the velocity vecto3 is the magnetic field] is the current density, is the density,
Cp is the specific heat at constant temperature, hésthermal conductivitys is electric
conductivity and qis the heat radiation.

FORMULATION OF THE PROBLEM

We consider an unsteady flow of a viscoelastic,ompressible and electrically
conducting fluid in a hot vertical channel filledtlwporous medium. A schematic diagram of
the physical problem with span-wise cosinusoidaiati@n of plate temperature is shown in
Figures la &1b.

X* X*

Z*
Z*

A, e e e e

PO LTy

Fig. 1a. Hot vertical channel. Fig. 1b. Spamwesinusoidal plate temperature.
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The two parallel stationary walls of the channel distance ‘d’ apart. A Cartesian coordinate
system (X, Y') is chosen such that axis directed upwards lies along the centerlinéhef
channel and ¥axis is perpendicular to the planes of parallekgs. A magnetic field Bof
uniform strength is applied transversely alongaXis. Since the walls of the channel are
considered non-porous, thus, the integration ottreinuity equation (1) implies that ¥ O.

All the physical quantities except pressure areefimshdent of X for this fully developed
laminar flow in the infinite vertical channel. Themperature of the plate &t =§ varies
span-wise cosinusoidally as

T* =T, + (Ty — Ty) cos(Z-w't). (7)

Then taking into account the usual Boussinsq's @ppration, the forced and free convection
flow is governed by the following differential edioms:

Momentum equation;

au*__la_p* 2,,% Za_u*_ﬁ *_ﬂ* *
at*  pox* + 9, V" + 9,V (at*) x ¢ , 4 +gB(T™ —Ty), (8)
Energy equation;

atr pcp i pcp dy*’ 9)

where in momentum equation (8) the term on the LSHs the inertial force and on the R. H.
S. the terms respectively represent imposed presgradient, viscous force, viscoelastic
force, pressure drop across the porous matrix,ntor®rce due to magnetic fieldoyBnd the
buoyancy force due to temperature difference. Brgnequation (9) the term on the L. H. S.
is the heat due to convection and on the R. Hh&tdrms respectively represent conduction
heat and radiation heat.

The boundary conditions for this problem in slgpaf regime are

ou* d

u*=Lay, T"=Ty at y"=-2, (20)
uw=0 T'=T,+(T,—-Ty) COS(”TZ*—w*t*) at y* =2, (11)
where= (Z;rl L, , L being the mean free path of the particle aritieg Maxwell’s reflection
1

coefficient.

For the case of an optically thin gray gas thelloadian tis expressed by

aq*
ay*

= 4a*c*(T* —T}), (12)

wherea® is the mean absorption coefficient and is the Stefan- Boltzmann constant.

We assume that the temperature differences witienflow are sufficiently small such that
T* may be expressed as a linear function of the tesmpe. This is accomplished by
expanding T in a Taylor series about, Bnd neglecting higher order terms, thus

T** = 4T;3T* — 3T}, (13)
Substituting (13) into (12) and simplifying, we alst
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2L = 16a0 T3 (T" —Ty). (14)

Further, substitution of (14) into the energy eaqura(9) gives

T _ Kk

_ k pape _ 16a*0* T (T*~Ty) (15)
at*  pep pcp )
Now introducing the following non-dimensional qtitias
X Y2 _ w*d? _uw o, _T'-1y, _ adp’
x=gy=gpisptset,e= 9, _U’G_TZ—Tl’p_pﬁlU’ (16)

in equations (8), (15), (10) and (11) we obtainegoing equations and the boundary
conditions in dimensionless form as

du__ _0p 2 2 (U _ a2 -1
= 5. TV utyolV (at) (M*+ K Hu+Gr o, a7
wPrZ =729 —N?9 (18)
with boundary conditions
du 1
u—ha, 6=0 at y=-3 (19)
u=0, O=cos(mz—t), at y= 2 (20)

2 b
where U mean axial velocity,

9, . . .
y = d—"; is the viscoelastic parameter,

Tod?
GT — gﬁ 0
9,U

9 .
Pr = % . is the Prandtl number,

is the Grashof number,

M = Byd /p%, is the Hartmann number,
1
K = K—Z is the permeability of the porous medium,
da

a*c*T . ..
N =4d — s the radiation parameter,

h = %, is the slip-flow parameter.

SOLUTION OF THE PROBLEM

In order to obtain the solution of this unsteadphbem it is convenient to adopt
complex variable notations for velocity, temperatand pressure. The real part of the
solution will have physical significance. Thus, wete velocity, temperature and pressure as

u(y,2,t) = up(y)e' ™0, 0(y,z,t) = 6o(y)e' ™, =L = geit-0  (21)
where A is a constant.

The boundary conditions in equations (19) and (@&) also be written in complex
notations as

_ pdu — —_1
u—hdy, 6=0 at y= 5 (22)
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u=0 6=e@D gt y =% : (23)

Substituting expressions (21) into equations (hd) @8), we get

12 ‘Z;‘; — m?uy = —A — Gré, (24)
2
20y =0, (25)

where = /1 — iwym = n2 + M2 + K~ —io(1 + yn2) and n=./(n%+ N2 — iwPr)
with transformed boundary conditions

Uy = 2—1;0 6p=0 at y=—3 (26)

Ug = 0, 90 = 1 at y = %. (27)
The ordinary differential equations (24) and (2B solved under boundary conditions (26)

and (27) and the solutions for the velocity and teenperature fields are obtained,
respectively, as

(12n2- mz) sinh(n)

-A 1 ZSinh( )cosh(Ty + hcosh (y+2) n
m?2 (smh(m)+ hcosh(m)

u(y,z,t) = smh(n)[smh T +p]+Th cosh[TT(y+p] [+nhsinh [Ty —3)] et (28)
(smh(m)+—hcosh(—))
—sinh [n()’ + 5)]
_ (0N icuz-o
0y, zt) = { sinh(n) }e l -

From the velocity field in equation (28) we canaibtthe skin-friction at the left walt;, in
terms of its amplitud¢F| and the phase angfeas

T, = (g;) = |F|cos(tz —t + ¢) , (30)
2
where
A cosh (m) 1 Gr m sinh(n)+nhcosh(#)
B+ ik = Im {smh(m)+ hcosh(m)} + (12n2-m2) sinh(n) {T <sinh(?)+%heosh(#)) B n}' (31)

The amplitude and the phase angle of the skinidnat, are respectively given by

IF| = /Frz +F?, and ¢ =tan™! (%) . (32)

From the temperature field given in equation (B8 heat transfer coefficient Nu
(Nusselt number) in terms of its amplityHd¢ and the phase angfecan be obtained as

Nu = (Zi)y_ = |H| cos(rz — t + ), (33)

where H, + i H; =

sinhn *

The amplituddH| and the phase angleof the heat transfer coefficient Nu (Nusselt nurhbe
are given by
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|H| = / H? + H?and y= tan™! (%) respectively. (34)

RESULTSAND DISCUSSION

An unsteady MHD convective flow of a viscoelastiad through a porous medium in a
vertical channel under slip flow condition is armdg. The closed form solutions for the
velocity and temperature fields are obtained aily and then evaluated numerically for
different values of parameters appeared in thetemmsa To have better insight of the physical
problem the variations of the velocity, temperatian-friction rate of heat transfer in terms
of their amplitudes and phase angles with the perars like viscoelastic parameter
Grashof number Gr, Hartmann number M, permeabdityhe porous medium K, Prandtl
number Pr, radiation parameter N, pressure gradiemtd the frequency of oscillatioasare
then shown graphically to assess the effect of paclimeter.

The velocity variations with these parameters otlex width of the channel are
presented in Figure 2. The curveslu) corresponds the case of no-slip conditions &t Hut
plates of the channel i.e. when the slip-flow paetanh = 0. Curve ligreer) represents the
case of Newtonian fluid i.e. when viscoelastic pagtery = 0. Rests of all the curves are
compared with curve lliréd. Comparison of curves IV, VI, VIII and XI withed curve IlI
clearly shows that the velocity increases with ititerease of slip flow parameter Grashof
number Gr, permeability of the porous medium K #relfavorable pressure gradient A. The
increasing slip-flow parameter clearly means thatihcreasing tangential velocity at the wall
give rise to the velocity in the channel. The ims® of velocity with increasing Grashof
number, physically, means the increase of buoyadiocge because of which velocity
increases. The maximum of the velocity profiles ifareased Grashof number shifts toward
right half of the channel due to the greater buoydorce in this part of the channel because
of the presence of hotter plate otherwise the viglaemains parabolic with its maxima
almost at the center of the channel with the irsmeat all other parameters. The increase of
permeability of the porous medium K implies that tiesistance posed by the porous matrix
reduces and, thus, the velocity increases. ltsis agry natural that the flow will be faster for
increased favorable pressure gradient. Similaydbmparison of rest of the curves namely
V, VI, IX, X and XII with red curve lll reveals that the velocity decreases wittreasing
viscoelastic parametgr Hartmann number M, Prandtl number Pr, radiatiarapeter N and
the frequency of oscillations. The velocity decreases with the increasing Hamtmraumber
means that the flow retards with the increasingebtr force due to increasing magnetic field
strength. Since the Prandtl number gives the weathportance of viscous dissipation to the
thermal dissipation, therefore, for larger Pramdtinber viscous dissipation is predominant
and due to this velocity decreases. Thus, the itglocthe case of water (Pr = 7) is less than
that in the case of air (Pr = 0.7).

The amplitudg F|of the skin-friction against the frequency of olatibns is presented

in Figure 3 for different sets of parameter valuésthis figure comparison of curves IV, VI
and IX with the dashed curve | (---) reveals the &amplitude increases with the increase of
Grashof number Gr, permeability of the porous medid and the pressure gradient
parameter A. However, the comparison of curvedlll,V, VIl and VIII shows that|F|
decreases with the increase of slip-flow parambteviscoelastic parameter Hartmann
number M, Prandtl number Pr and the radiation patamN. The amplitude goes on
decreasing with increasing frequency of oscillagion The phase anglke of the skin-friction
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is presented in Figure 4 against the frequenof oscillations. The comparison of curves lll,
IV and VI with the dashed curve | (---) in this diige exhibits that the phase angle of the skin-
friction increases with increase of viscoelastioapaeter y, Grashof number Gr, and
permeability K of the porous medium while the phasgle decreases with the increase of
slip-flow parameter h, Hartmann number M, Prandtinber Pr, radiation parameter N and
pressure gradient A as is very clear by the coraparof curves 11, V, VII, VIII and IX with

the dashed curve | (---). It is depicted in Fighdt there is always a phase lead and it goes on
increasing with increasing frequency of oscillaian

The temperature profiles are shown in Figure 5. fipere clearly depicts that the
temperature decreases with the increase of eatheoparameters i.e. Prandtl number Pr,
radiation parameter N and the frequency of oswiltestm. The amplituddH| and phase angle
v of the rate of heat transfer are shown in Figérasad 7 respectively. It is clear from Figure
6 that the amplitude decreases with the increasé’rahdtl number and the radiation
parameter. There is a sharp decrease in amplitudbe case of water (Pr=7) than the case
of air (Pr=0.7). However, the amplitude remains saene for large values of radiation for
increasing frequency of oscillatioas Figure 7 shows that with increasing oscillatianthe
phase angl@ of the rate of heat transfer oscillates betweenptmase lag and the phase lead
but for increased radiation parameter there is ydveaphase lead and the phase angle remains
linear.

CONCLUSIONS

From the discussion above following conclusionsraagle:-

» The velocity increases with the increase of slgwflparameter h, Grashof number
Gr, permeability of the porous medium K and theofaable pressure gradient A.

» But the velocity decreases with increasing viscstelaparametety, Hartmann
number M, Prandtl number Pr, radiation parametearid the frequency of
oscillationso.

» The amplitude of the skin-friction also increase® do the increase of all those
parameters because of which velocity increaseslaoctases with the increase of
other parameters because of which velocity decsease

» The phase angle of the skin-friction increases withrease of viscoelastic

parametery, Grashof number Gr, and porous medium permeabHitybut
decreases with the increase of slip parameter htmtdan number M, Prandtl
number Pr, radiation parameter N and pressuregradi.

There is always a phase lead of the skin-frictiod & goes on increasing with
increasing frequency of oscillations

The temperature decreases with the increase ofaddbb parameters.

The amplitude of rate of heat transfer is less atew(Pr=7) than in air (Pr=0.7).
The phase of heat transfer oscillates betweenthseglag and the phase lead.
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Figure 2. Velocity profiles for z=0.5 andri2.
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