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ABSTRACT. In this paper, we present some new lower and uppends for the
modified Randic index in terms of maximum, minimudegree, girth, algebraic
connectivity, diameter and average distance. Algoobtained relations between this
index with Harmonic and Atom-bond connectivity ioe. Finally, as an application we
computed this index for some classes of nano-strestand linear chains.

Keywords: Randic index, Girth, Harmonic index, ABC index, Algaic connectivity,
Average distance.

INTRODUCTION

In this papeiz = (V(G). E(G)) is a simple connected graph, whEi@) is the set
vertex ofs, ande ¢y is the edge set @& There are many different kinds of chemical indice
that some of them are distance based like Wiemmxinsome of them are based on degree
like Randic index. This fact is emphasized in tbeent survey [12] which contains uniform
approach to the degree- based indices.

The Randic index was proposed by Milan Randic in519 his topological index was
1
named Branching index, later called Randic indehictv defined adt (&)} = Eu.l:EE:jEj__WJ

4 gty

whered, denote the degree of vertéx This index has been defined to measure the egfent
branching of the carbon-atom skeleton of saturdgdrocarbons. Although Milan Randic
showed that there is a good correlation betweenitigiex and physicochemical properties of
alkanes such as boiling points, surface areas aathg levels [1, 3, 27]. There are many
applications in organic chemistry, medicinal chdmgisand pharmacology that this index
became one of the most interesting topic in gréygloty which 4 books are devoted [10, 18-
19, 23]. In 2011, Z.Dvorak proposed a modified ofanBic index, defined as
1

R'(6) = Xuvez(e) porrg 2. that is more tractable from computational pointiew. It is

much easier to follow during graph modificationarntfRandic index see [5] for more details.
In [2], the authors showed that for every graphhwitverticesR’(G) is at least 1 no more
thanZ and these bounds attained by stars and regulph.gidthough they determined graphs
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with minimal and maximal value of R"(G) among a#ds and unicylic graphs, in [4], the
authors showed that for all connected grakhe inequality R'(G) = rad (G —i holds
whererad(G) is the minimum eccentricity among all verticeszofind the eccentricity of the
vertex ¥ is the maximum distance fromto any vertex. The maximum and minimim degree
of a vertex inz denoted by (G) andd(G), respectively.

The Laplacian matrix of G is defined &g = Dz — Az, whered; is the diagonal
matrix of its vertex degree anik: is the adjacency matrix. Among all eigenvalueshsf
Laplacian matrix of G, one of the most popularhis second smallest, which was called the
algebraic connectivity of a graph by fiedler [9n] 1973, and denoted £G1. In [22], the
authors get relation between Randic index and &gelsonnectivity. The girth of a graph G,
denoted byg(&). is the minimum length of its cycles. In [21] thetl@ors computed upper

bound of Randlc index with girts. Let (&) be the average distance of G that defined as
ulG) = rr' . such that" (&) is the Wiener index defined as the sum of thetlengf the

shortest path between all pairs of vertices anchéiar ofé is the maximum distance over all

pairs of vertices# and " of & denoted byl'(G]). In [30], the authors obtained relation
between Randic index and diameter of a graph.

The edge cut of% is a group of edges whose total removal rendees gitaph
disconnected. The edge connectivitg) is the size of a smallest edge cut. In this paper,
obtain a new bounds for the modified Randic indexerms of girth, diameter and algebraic
connectivity. In continue, we establish some relatbetween this index and harmonic index

and ABC index. The harmonic indet graph G is defined aB(G} = Ew:EE:jE]ﬁ. The

atom—bond connectivityndex of a nontrivial graph G, denoted HBgC(G), is defined as

ABC(6) = Sppepie [etfe?
= u.l:EF.!.Ef'_.‘J oty

refer the reader to see [7,11,26,29].

. For more information about harmonic and ABC dee

MAIN RESULTS

The aim of this section is to determine some m®unds for®' in terms of girth,
diameter and algebraic connectivity minimum and imaxn degree.

Theorem 2.1: Let & be a connected triangle-free graph with: 2 vertices andm edges.
Then we have:
T T
K L E_. =
b
with equality if and only if is an (n+1)-vetrex stafn+1.

Proof: Let UT" be an edge i, Sincel is triangle-free, we havéi” =n-—d, . Therefore

regarding the definition oft’ {LT] we haveR' (G} }— . Furthermore, If¢ is the [n + 1]-
-1 m

vertex stafn+y, thenft'(i) = =7,

Conversely, we assume th»ﬁ'mirijl = E but ¢ is not isomorphic té¥,43, then there must

b.__-:nllj d

existan edgev such thaf v, implying that®'(G) ?E , a contradiction. This

completes the proof.
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Theorem 2.2: Let & be a 2-edge connected graph viltrertices andit edges then

vy o I
R(G)< >
with equality if and only iftz is ann-vertex cyclel,,.
Proof: Let 4V be an edge if-. Sincelr is 2-edge connected, we hafg = 2 andd, = 2.
So we haveR'(G) = = with equality if and only ifdy = 2 for any vertex?’ in G, that is
G=C,

Note that a 2-connected graph is necessarily eg-ednnected graph. By above theorem we
have:

Corollary 2.3: Let & be a 2-connected graph withvertices andn edges then we have
R'(G) < 3,
With equality if and only if5 is ann-vertex cyclely,.
Let 35 be a unicyclic graph obtained from st&rn-1 by joining two pendant vertices of
Ki n-1 by a new edge. (Fig. 1)

Fig. 1. The graph%s,

Theorem 2.4 : Let G be a connected graph @re 3 vertices and girtlg with & = 2. then the
following inequalities hold:
R+gz20—-3)+ . R.g=3/2n-3)-
The equality holds if & 5.
Proof: In [5], the authors proved that
R =2—3 -2 @)

B | i

It is easy to see thdit contains at least one cycle since minimum degriseat least 2, so the
girth of & is at least 3, this implies the inequality. Therefthe equalities hold if & 5, so
the proof is now completed.

Lemma 2.5: Let & be a graph ot vertices with the algebraic connectivitywe have:
ez 24(1 —.::'ﬂsi;—‘_“] ,

wherel denotes the edge connectivityif

Proof: see [9] for more details.

Theorem 2.6: Let ¢ be a graph on vertices and edge connectivitiz 2 such tha®i{&) = 2,
we get the following inequality:

Rlaz ‘}x-"'m (1 — cos g],

and ifi =1 then we have:
Rla=2/2(r-3)(1 —.:‘r:lsi),
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Proof: Due to theabove Lemma, if the edge connectivit¥ 2, we haver = 4(1 — cos E)
and by using inequality (1) we can obtain:

Rlaz4/2(n-3) {1 - cusgjl.

To prove the second patrt, it is enough to applynhan2.5.

Theorem 2.7: Fix a positive integer n. Among all treesorertices and maximum degrae
the maximum value of algebraic connectivity eqmal§ +a—1
Proof: See [28 ].

Theorem 2.8: Among all trees, the maximum value of modified Randdex equals tci;_—
Proof: See [2].

Theorem 2.9: Let T be a tree withit vertices and algebraic connectivity the following
ineqgaulity holds:

R'.a <22 (A+2/A—1).

Proof: Due to Theorem 2.7and 2.8, we have:
a<A+2/E-1  rn=Z
so we have:

n—3

Rla<"2(a+2/0-1)

-
&

Lemma2.10 : Let ¢ be a connected graph withvertices and minimum degré& 2. Then it
follows that

D) —=—1

Proof: see [6] for more details.

Theorem 2.11: Let G be a connected gaph withverices and minimum degrée= 2. Then
we get the following inequality:

- 1

gy (m—3)—5

;

=
Jn

Proof: By the Inequality (1) and the above Lemma we have:

— 1 . o —= 1

R’ /2(n—3) 5 L+ 1}(' Ty :l} dnn—3-73)

— = = fAlg—3)-2) e ——— &

D> 3m_ _ . T an ol 2/ =7 am
o+1

Lemma 2.12: If & is a graph wittn vertices and minimum degrée then we have:

WG < ﬁ1+z.

&+

Proof: See [20] for more details.
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Theorem 2.13: Let & be a connected graph withvertices and minimum degréethen it
follows that

oo | i

R ol "ﬁ 3 -
_:;. .
M nt 200+ 1)

Proof: By inequality (1) and the above Lemma we have

P | o 1
R J2m-3)-5 (F11)yfiin 3) _ FlWm—-3-3)
— = 2 = = = i
i +1+£ n+2(d+1) n+2(d+1)
I'I

The proof is now complete.
Now, we obtain relations between the modified Ramilex, Harmonic and ABC indices.

Theorem 2.14: let & be a nontrivial connected graph withvertices ancn edges then we
have
H(G) = B'(6)
1 1
Proof: Let 4 be an edge i Sincemasx(dy.d,) < dy +d,, we have; 5~ =

So clearly we obtain:
H(&) = R'(G)

Theorem 2.15: Let & be a nontrivial connected graph snvertices andm edgea, then we
have:

H(E) = % (ABCY* + R'(5)
with equality if and only ifG = K.
1
Proof: Let f(x)=, .It is obvious thaff(x) is a convex function. By Jensen’s inequality, for
each edgew=E (&}, we have

thus we have
171 Z ,] 1 - oy +dp—1 1

=2 (4BC)Y +R'(G).

s (lyaly) = gy + maz (dy,d) T 2

= _+__

dp+dy, = 2 sy Ly Uil

The equality holds in the above inequality if amdydf d,, = d,.

Computation of the modified Randic index of TUZCg(p,q) nanotubes:

A carbon nanotube is forming from a graphite shbat is rolled up so that it has a
zigzag edge. In this paper, we computed the matiRandic index for some families of
polyhex nanotubes, armchair, Phenylenic NanotdPoscyclic Aromatic Hydrocarbons and
polyomino chain (Figs. 2-8).
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By considering the lattice of TUZJp,q], we denote the number of hexagon in the
first row by p and the number of rows by g. In eaal, there are 2p vertices and hence the
number of vertices in this nanotube equals to 2pdl13] the authors obtained the hyper
Wiener and Schultz indices of TUZ(p,q] nanotube, in [14] the authors computed Gdeix
for this nanotube and in [8], the author computeches connectivity index and Zagreb index
of nanotube. Now in this section, we compute thelifredd index of TUZG [p,q].

Fig. 2. The 2-Dimensional Lattice of TUZ{7,6]

Set/imn = {uv | wve E(G J.dy, =wn,dy, = n}, since in the graph of nanotube TUZGq), all
of edges« are infz z or j =, we need to obtain the numberf@_fg andfz z.

Lemma 3.1: The number of 1 equals to 4p and the numberfafz equals to 3pg-5p.
Proof: Considerthe TUZG[p,q] nanotube. At the first and last rows, thexésteedges that

every edge in these rows belongfiaz, hence the number d = equals to 4p. At the other
rows there exist p edges that belongzte and the number of these edges are g-1, 2p edges
that every edges belong oz and the number of these edges are g-2, henceuthben of

fz 1 equals to 3pg-5p.

Theorem 3.2 : The modified Randic index of TUZ{p,q] equals tq_? (3pg —p).

Proof: By using the modified Randic index formula and the bhamof edges with their
degrees we have:

Fla)= Z -mnxln n:' Z -mn:::'n |:|:|+Z ..... -mnx'l:l ﬂ:'

== (3pg— 5:ﬂ+4:ﬂ} == (3pg— :ﬂ},

Now, we compute the modified Randic index of armiche)ACg[p,q] similar to previous
section. The number of vertices in this armcheiradg|to 2pq. The armchair’'s edges are in 3

types. The yellow edges belongjc:, the red edges belong fz and the other edges belong
to fz z. The number of? z, 2 z andf; ; are equal to p, 2p and 3pg-4p, respectively.

Fig. 3. The 2-Dimensional Lattice of TUA{D,q]
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Theorem 3.3: The modified Randic index of TUA{p,q] equals tagq —E.
Proof: Like the previous theorem we have:

R'(G)= Z ma}:'l:l madd.d) Z ax':il._._.d...:'-'-zm a}:ll:l maxid,d,) +Z._..

i ip !ﬂq—dﬂ P
:& T =Pq —

The next goal of this section is a computlng aeﬂbbrmula of the modified Randic index of

TUC,Cg[p,q] nanotube. In the structure of this nanotuimrd are pg horizontal regular squar-

octagone lattice with 8pg+2p vertices and 12pqg+gesdFig. 4). For more results about this

nanotube see [15-17, 24].

a}:'l:l maxld,, d,)

e

Fig. 4. 2-Dimensional Lattice of TU£Cg[p,q] nanotube, with p=4 and =3

Theorem 3.4: Forp.q = 1, the modified Randic index of TUCg[p,q] equals tctrg + Tﬂ
Proof: Consider the Lattice of TULC[p,q] nhanotube. In this nanotube we have threesyje
edges such that belongfoz, f: : and/z z that are shown by red, blue and black colors such

thatl 2 1= 2p. |f2 1= 4pand
| 22| = 12pq — 5p. Thus we have

S % N _t
RI"'G:I_ __>_E‘ ma}[ld |:L:| Z. I:'I:'I.E}['d. d..:'+ |_-.=':_I ma:-':d._._.i:'+> necdy g ma}{':lil_._.li,:l
P+‘H’+M s 2
- 3 3 = SPATg

In continue, we obtain R’(G) of a physico chemistilicture of Phenylenic Nanotorus. This
nano structure is V-Phenylenic Nanotorus VPHY[p,Tihe structure of this nanotorus in
terms of several £CsCg net that composed of four and six membered ringh shat every
square is adjacent to two hexagones (Fig. 5).

Fig. 5. The 2-Dimensional Lattice of VPHY[4,3]
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Theorem 3.5: For g. g = 1, the modified Randic index of V-Phenylenic Nano¥®PHY|[p,q]
equals t&_.
Proof: Due to the general Figure of V-Phenylenic Nand#itHY[p,q], this nanotori has 6pq

vertices, 9pg edges and all edges belongothis implies that

Frmm 1 _ 1 _ Pg
R(G) = Luves ) rmasd A) ~ EU‘FEf:: maeld_d,g 2

At the next goal, we calculate the modified Randdex of hydrocarbon structur@slycyclic
Aromatic Hydrocarbons (PAH,). PAH, are a complex group of chemicals containing two or
more aromatic rings. PAKd are created when products like coal, oil, gas gartbage are
burned but the burning process is not complete.firsiemember iBenzene (PAH;) with six
carbon and six hydrogen atoms and the second membaronene (PAH,) with 24 carbon
and 12 hydrogen atoms (Fig. 6). By the Figure ef gblycyclic aromatic hydrocarbon, it is
easy to see that the general representation d®Ads 6’ carbon and 6n hydrogen atoms.

Fig. 6. The first and second member of polycyclic aromhyidrocarbon PAH

Theorem 3.6: The modified Randic index dfAH,, equals ter + 3n?.

Proof: Let PAH ;be the general representation of polycyclic aromagdrocarbon. The edge
set of this graph can be dividing to two partitiotese partitions belong foz , fz .z and
show that by blue and black color, respectively.@drbon atoms have degree three and
Hydrogen atoms have degree one, so we hfive [~ 6n and £ 1| = %n® — 3n, so we have:

S 1 1 1 7 7
—_ . —_ — 3 - —_ '
R(G) = EquE:_l;j mand,a, E-L“-Ef:\; ] + Etvef,; maxdd) n+in“—n=n+ In-

The modified Randic index of polyomino chain:

A polyomino system is a finite 2-connected planapdr such that each interior face is
surrounded by a regular square of length one. Agmoino chain is a polyomino system, in
which the joining of the centers of its adjacergular forms a patlz;c; ... ¢,,. Wheree; is the
center of the i-th square. L& be the set of polyomino chains with n squares stiiggraph

of B, that induced by the vertices with degree 3 andsui2ares, called a linear chain and
denoted byl (Fig. 7). The subgraph &, induced by the vertices with degree bigger than 2
be a path with n-1 edges, called a zig-zag chaindemoted by,, (Fig. 8). In [31] the authors
obtained Randic index of this graph.

A kink of a polyomino chain is any branched or dagy connected squares. A
segment S of a polyomino chain is a maximal linglaain in the polyomino chains that

include the kinks at its end. The number of squar@ssegment denoted Eb'gﬁ:l‘
A polyomino chains consist a sequence of segmefis..,5;, k=1 with
I!':S._:I = |!-|_.I.I'- = 1_- ..._.ll:i.-_. Where

I,+...F+lz=n + k — 1 and n denote the number of squares of polyomiaich



87

HEERED

Fig. 7. The Linear chain

Fig. 8. The Zig-Zag chain

In the following, the aim is to calculate the Ranilidex of polyomino chains.

Theorem 4.1: Let L,. Z,, be the polyomino chains then we have

2, n=1 2, n=1

z - ] _
RoRLn)=9> "% | RoR (@)= n=2

#+-, nx3 ==, =nz3

Proof: For m = 2 it is trivial, we assume thai = 3. By the general Figure of,, the

number off: : equals to 2, the number & 2 equals to 4 and the number &fz equals to
3n — 3. By the definition of modified Randic index, weviea

R'(L) = Z m=zm_%_:m+z , maxid, I:L:'+Z ma}:'l:l maxld,d,)

- I.I
we S E{L)

4  3In—5 Z
= - :Tl+ -
1+3 + 5 2

The edge set df, with n squares can be dividing to 5 partitions, thesétjmars belong to

F22, f2 E 4, fiaandf.s. Thus we have
4 n—2 1 n—3 OSn-13

H.II:E__::' = Em-: E{L} ﬁ = 1+E + . 4 = 17

Theorem 4.2: Let By be a polyomino chain with = 3 squares and;.5; segments, such
thatly = 2,1, = an — 1. Then we have

n=3,
1
H {E :] kil +— = 3.
Proof: Form = 3 it is trivial, we assume that = 3. By considering the general Figure of

Z ., we have

1zl = E;lf;;l = 5;|f=_4| = 1,|,|",_+| = 3 and |f=;| = in— 1
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So we have
Rr{Er:-:l = Eu.l:EEiEf'

In following, we assume thdt = (i} = n— 1 suchthafl =i = k.

i _ 1 1 : In—10 1

maxldyd,) T 4 4 3

Theorem 4.3: Let E‘i., be a polyomino chain with = 4 squares andly, &5, . 5 (k = 3)

segments, such tht= Iy = 2.1;..... [z_; = 3.Then
o
N
k

—Z+1 n>4

=4,

R(ED=]

Proof: Forn = 4 it s trivial. Therefore, we assume tht= 4. By considering the structure
of BZ we havef ;| = 2.|fizl = 2t |f 4| = 2. |fs] =4k -6

andlg .| =3n+1-2-2k—2— (4k —6) = 3n— 6k + 3.

Thus we have:

Hr'::B::I =ELI_L‘EE::E:| - ;

ax(d,.d,.)

1 ok 2 4k—8& In-6ki3 h-+1
= — + - =f—C .
t e +=1+ . * 3 d

CONCLUSIONS

In this paper we achieved the lower and uppentsdor the modified Randic index in
terms of girth, diameter and algebraic connectivityen we obtained a relation between this
index with Harmonic and ABC indices. At the endtlos paper we computed this index for
some families of polyhex nanotubes TUHSq], TUACp,q], TUCCglp,q], VPHY[p,q]
nanotorus, Polycyclic Aromatic Hydrocarbons andypoiino chains for the first time.
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