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ABSTRACT. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint vertex

sets V1 and V2. Let u1 ∈ V1 and u2 ∈ V2. A splice of G1 and G2 by vertices u1 and

u2, S(G1, G2;u1, u2), is defined by identifying the vertices u1 and u2 in the union of G1

and G2. In this paper we calculate the Szeged, edge-Szeged, PI, vertex-PI and eccentric

connectivity indices of splice graphs.

1 Introduction

Let G = (V,E) be a simple graph with V and E being its vertex and edge sets,

respectively. Graph theory has successfully provided chemists with a variety of useful

tools [2,5,7,8,15], among which are the topological indices or molecular–graph–based

structure descriptors [11–14,23,24]. In this paper we are concerned with five of these

topological indices, that recently attracted much attention and found noteworthy

chemical applications.

All graphs considered in this paper are assumed to be simple, undirected, without

weighted edges, and connected.
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The Szeged index of a graph G is denoted by Sz(G) and defined as [6]

Sz = Sz(G) =
∑
e=uv

nu(e)nv(e) . (1.1)

Here the sum is taken over all edges of G, and for a given edge e = uv, the quantity

nu(e) denotes the number of vertices closer to u than to v, and the quantity nv(e) is

defined analogously. For more details on the Szeged index see the review [10] and the

references cited therein.

Denote by dG(x, y) the distance (= number of edges in a shortest path) between

the vertices x and y of the graph G. Then we can define the sets

N(e, u,G) =
{
x ∈ V (G) | dG(x, u) < dG(x, v)

}
and

N(e, v,G) =
{
x ∈ V (G) | dG(x, v) < dG(x, u)

}
by means of which we have:

nu(e) = nu(e,G) =
∣∣∣N(e, u,G)

∣∣∣ and nv(e) = nv(e,G) =
∣∣∣N(e, v,G)

∣∣∣ .
It is obvious that an end-vertex of any edge is closer to itself than to the other

end-vertex of that edge. Therefore the product nu(e)nv(e) is always positive.

The edge-Szeged index is obtained by replacing nu(e)nv(e) in Eq. (1.1) by

mu(e)mv(e), where mu(e) is the number of edges in G whose distance to vertex u is

smaller than the distance to vertex v, and mv(e) is defined analogously. Hence the

edge version of the Szeged index is given by [9]

Sze = Sze(G) =
∑
e=uv

mu(e)mv(e) .

We recall that the distance between the edge f = xy and the vertex u in the graph G,

denoted by dG(f, u), is define as dG(f, u) = min
{
dG(x, u), dG(y, u)

}
. We can now

introduce the sets

M(e, u,G) =
{
f ∈ E(G) | dG(f, u) < dG(f, v)

}
and

M(e, v,G) =
{
f ∈ E(G) | dG(f, v) < dG(f, u)

}
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by means of which we have:

mu(e) = mu(e,G) =
∣∣∣M(e, u,G)

∣∣∣ and mv(e) = mv(e,G) =
∣∣∣M(e, v,G)

∣∣∣ .
If instead of multiplicative contributions nu(e)nv(e) and mu(e)mv(e), we consider

their additive versions, nu(e) + nv(e) and mu(e) +mv(e), then we obtain the vertex–

and the edge-PI indices, respectively.1

The edge-PI index is defined as [16]

PIe = PIe(G) =
∑
e=uv

[
mu(e) +mv(e)

]
.

Since this edge version was introduced first, the subscript e is usually omitted and

the index is referred to simply as PI index. More details on the PI index are found

in the review [17] and the references cited therein.

The vertex-PI index seems to was first considered by Khalifeh et al. [18] and is

defined as

PIv = PIv(G) =
∑
e=uv

[
nu(e) + nv(e)

]
.

The eccentric connectivity index of the graph G is defined as [22]

Ecc = Ecc(G) =
∑
u∈V

deg(u) ε(u) (1.2)

where for a given vertex u, its eccentricity ε(u) is the greatest distance between u

and any other vertex of G. The maximum eccentricity over all vertices of G is called

the diameter of G whereas the minimum eccentricity among the vertices of G is the

radius of G. The set of vertices whose eccentricity is equal to the radius of G is called

the center of G. It is well known that each tree has either one or two vertices in its

center.

The aim of this article is to contribute to the theory of the above described five

topological indices by showing how these can be computed in the case of splice graphs.

Suppose that G1 = (V1, E1) and G2 = (V2, E2) are two graphs with disjoint vertex

sets. Let u1 ∈ V1 and u2 ∈ V2 be given vertices of G1 and G2 , respectively. Following

1The acronym PI comes from Padmakar and Ivan. Whereas Padmakar is the first name of P. V.
Khadikar, the inventor of the PI index [16], Ivan comes from the first name of one of the present
authors, whose contribution to the discovery of the PI index was nil.
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Došlić [4], a splice of G1 and G2 at vertices u1 and u2, denoted by S(G1, G2;u1, u2),

is obtained by identifying the vertices u1 and u2 in the union of G1 and G2 (see Fig.

1).

G G1
1

2

2

u

u

Fig. 1. The splice graph S(G1, G2;u1, u2) and the labeling of its structural details.

A variety of topological indices of splice graphs have been computed already in

[1, 3, 19, 21]. In this paper we aim at continuing work along the same lines, for a few

additional indices. Note that the proof techniques in this article are based on those

used in the recent work [20], in which bridge graphs have been examined.

2 Main Results

In this section, we compute the Szeged, edge-Szeged, edge-PI, vertex-PI, and eccen-

tric connectivity indices of the above described splice graph. We first introduce the fol-

lowing structural parameters of S = S(G1, G2;u1, u2). Let i = 1, 2 and f = xy ∈ Ei ,

and

ni
x(f) =

∣∣∣N(f, x,Gi)
∣∣∣ , ni

y(f) =
∣∣∣N(f, y,Gi)

∣∣∣
nx(f) =

∣∣∣N(f, x,S)
∣∣∣ , ny(f) =

∣∣∣N(f, y,S)
∣∣∣

mi
x(f) =

∣∣∣M(f, x,Gi)
∣∣∣ , mi

y(f) =
∣∣∣M(f, y,Gi)

∣∣∣
mx(f) =

∣∣∣M(f, x,S)
∣∣∣ , my(f) =

∣∣∣M(f, y,S)
∣∣∣ .

In addition, for a given vertex u ∈ V (S), let ε1(u) be the eccentricity of u as a vertex

of G1 , ε2(u) the eccentricity of u as a vertex of G2 , and ε(u) the eccentricity of u as

a vertex of the splice graph S .
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Proposition 2.1. Assume that f = xy ∈ E1 .

(i) If u1 ∈ N(f, x,G1), then

nx(f) = n1
x(f) + |V2| , ny(f) = n1

y(f)

mx(f) = m1
x(f) + |E2| , my(f) = m1

y(f) .

(ii) If dG1(u1, x) = dG1(u1, y), then

nx(f) = n1
x(f) , ny(f) = n1

y(f)

mx(f) = m1
x(f) , my(f) = m1

y(f) .

Analogous relations hold if f = xy ∈ E2 .

Proof is easy and is left to the reader.

In order to verify the following propositions we need some preparations. For

i = 1, 2, let

Si =
{
f = xy ∈ Ei | dGi

(x, ui) = dGi
(y, ui)

}
, Ti = Ei \ Si , ti = |Ti| .

In addition, for f = xy ∈ Ei define

ni(f) =


ni
x(f) if dGi

(x, ui) > dGi
(y, ui)

ni
y(f) if dGi

(x, ui) < dGi
(y, ui)

0 if dGi
(x, ui) = dGi

(y, ui)

and

mi(f) =


mi

x(f) if dGi
(x, ui) > dGi

(y, ui)

mi
y(f) if dGi

(x, ui) < dGi
(y, ui)

0 if dGi
(x, ui) = dGi

(y, ui) .

Proposition 2.2.

Sz(S) = Sz(G1) + Sz(G2)

+ |V2|
∑

f=xy∈E1

n1(f) + |V1|
∑

f=xy∈E2

n2(f) .
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Proof.

Sz(S) =
∑

f=xy∈E1

nx(f)ny(f) +
∑

f=xy∈E2

nx(f)ny(f)

=
∑

f=xy∈E1

n1
x(f)n

1
y(f) +

∑
f=xy∈E1

|V2|n1(f)

+
∑

f=xy∈E2

n2
x(f)n

2
y(f) +

∑
f=xy∈E2

|V1|n2(f) . (2.1)

Because for i = 1, 2, ∑
f=xy∈Ei

ni
x(f)n

i
y(f) = Sz(Gi)

from Eq. (2.1) we directly obtain Proposition 2.2.

Proposition 2.3.

Sze(S) = Sze(G1) + Sze(G2)

+ |E2|
∑

f=xy∈E1

m1(f) + |E1|
∑

f=xy∈E2

m2(f) .

Proof.

Sze(S) =
∑

f=xy∈E1

mx(f)my(f) +
∑

f=xy∈E2

mx(f)my(f)

=
∑

f=xy∈E1

m1
x(f)m

1
y(f) +

∑
f=xy∈E1

|E2|m1(f)

+
∑

f=xy∈E2

m2
x(f)m

2
y(f) +

∑
f=xy∈E2

|E1|m2(f) . (2.2)

Because for i = 1, 2, ∑
f=xy∈Ei

mi
x(f)m

i
y(f) = Sze(Gi)

from Eq. (2.2) we directly obtain Proposition 2.3.

Proposition 2.4.

PIv(S) = PIv(G1) + PIv(G2) + (t2 + 1)|V1|+ (t1 + 1)|V2| .
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Proof.

PIv(S) =
∑

f=xy∈T1

[nx(f) + ny(f)] +
∑

f=xy∈S1

[nx(f) + ny(f)]

+
∑

f=xy∈T2

[nx(f) + ny(f)] +
∑

f=xy∈S2

[nx(f) + ny(f)] + [nu1(e) + nu2(e)]

=
∑

f=xy∈T1

[n1
x(f) + |V2|+ n1

y(f)] +
∑

f=xy∈S1

[n1
x(f) + n1

y(f)]

+
∑

f=xy∈T2

[n2
x(f) + |V1|+ n2

y(f)] +
∑

f=xy∈S2

[n2
x(f) + n2

y(f)] + (|V1|+ |V2|)

=
∑

f=xy∈T1

[n1
x(f) + n1

y(f)] + t1 |V2|+
∑

f=xy∈S1

[n1
x(f) + n1

y(f)]

+
∑

f=xy∈T2

[n2
x(f) + n2

y(f)] + t2 |V1|+
∑

f=xy∈S2

[n2
x(f) + n2

y(f)]

+ (|V1|+ |V2|) . (2.3)

Because for i = 1, 2,∑
f=xy∈Ti

[ni
x(f) + ni

y(f)] +
∑

f=xy∈Si

[ni
x(f) + ni

y(f)] =
∑

f=xy∈Ei

[ni
x(f) + ni

y(f)] = PIv(Gi)

from Eq. (2.3) we directly obtain Proposition 2.4.

Proposition 2.5.

PI(S) = PI(G1) + PI(G2) + t2 |E1|+ t1 |E2| .

Proof.

PI(S) =
∑

f=xy∈T1

[mx(f) +my(f)] +
∑

f=xy∈S1

[mx(f) +my(f)]

+
∑

f=xy∈T2

[mx(f) +my(f)] +
∑

f=xy∈S2

[mx(f) +my(f)] + [mu1(e) +mu2(e)]

=
∑

f=xy∈T1

[m1
x(f) + |E2|+m1

y(f)] +
∑

f=xy∈S1

[m1
x(f) +m1

y(f)]

+
∑

f=xy∈T2

[m2
x(f) + |E1|+m2

y(f)] +
∑

f=xy∈S2

[m2
x(f) +m2

y(f)]



96

=
∑

f=xy∈T1

[m1
x(f) +m1

y(f)] + t1|E2|+
∑

f=xy∈S1

[m1
x(f) +m1

y(f)]

+
∑

f=xy∈T2

[m2
x(f) +m2

y(f)] + t2|E1|+
∑

f=xy∈S2

[m2
x(f) +m2

y(f)] .

Because for i = 1, 2,∑
f=xy∈Ti

[mi
x(f)+mi

y(f)]+
∑

f=xy∈Si

[mi
x(f)+mi

y(f)] =
∑

f=xy∈Ei

[mi
x(f)+mi

y(f)] = PI(Gi)

from Eq. (2.4) we directly obtain Proposition 2.5.

Proposition 2.6.

Ecc(S) =
∑
x∈V1

degS(x) ·max
{
dG1(x, u1) + ε2(u2), ε1(x)

}

+
∑
y∈V2

degS(y) ·max
{
dG2(y, u2) + ε1(u1) , ε2(y)

}
.

Proof. Consider a vertex x of the splice graph S, such that x ∈ V1. Let z be the

vertex of S whose distance to x is maximal. Thus, ε(x) = dS(x, z). If z belongs to

the graph G1 , then ε(x) = ε1(x). If z belongs to the graph G2 , then the distance

between x and z is equal to dG1(x, u1) + dG2(u2, z), see Fig. 1. In addition, z must

be the vertex at greatest distance from u2 . Consequently, ε(x) = dG1(x, u1) + ε2(u2).

This means that no matter where the vertex z is located,

ε(x) = max
{
dG1(x, u1) + ε2(u2) , ε1(x)

}
holds for any vertex x ∈ V1. The formula for ε(y) in the case when y ∈ V2 is fully

analogous.

Proposition 2.6 follows now from the definition of the eccentric connectivity index,

Eq. (1.2).
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