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ABSTRACT. A Leapfrog transform Gl of G is a graph on 3n vertices obtained by 
truncating the dual of G. Hence, Gl = Tr(G*), where G* denotes the dual of G. It is easy to 
check that Gl itself is a fullerene graph. In this paper, the Omega and Sadhana 
polynomials of a new infinite class of Leapfrog fullerenes are computed for the first time. 
The topology of this fullerene is described in terms of Omega counting polynomial. The 
topological description can be used in structure interpretation analysis. 

 
 
 

INTRODUCTION 
 

In mathematics, groups are often used to describe symmetries of objects. This is 
formalized by the notion of a group action: every element of the group "acts" like a bijective 
map (or "symmetry") on some set. To clarify this notion, we assume that G is a group and X is 
a set. G is said to act on X when there is a map φ : G  X ⎯→X such that all elements x ∈ X, 
(i) φ(e,x) = x where e is the identity element of G, and, (ii) φ(g, φ(h,x)) = φ(gh,x) for all g,h ∈ 
G. In this case, G is called a transformation group, X is called a G-set, and φ is called the 
group action. For simplicity we define gx = φ(g,x). In a group action, a group permutes the 
elements of X. The identity does nothing, while a composition of actions corresponds to the 
action of the composition. For a given X, the set {gx | g ∈ G}, where the group action moves 
x, is called the group orbit of x. The subgroup which fixes is the isotropy group of x. 

By a graph G means a pair G = (V, E) in which V and E denote to the set of vertices 
and edges, respectively. For two vertices x and y belong to V, x is adjacent to y if and only if 

)(GExy∈ . G is connected, if for every pair (x, y) of V, there is a path between them. In this 
paper all of graphs are connected.  

A chemical graph is a graph theoretical representation of a molecule whose vertices 
correspond to the atoms of the compound and edges correspond to chemical bonds. 

The fullerene era was started by discovery of a stable cluster of C60 in 1985 by Kroto 
[1-4]. A fullerene graph is a cubic 3-connected plane graph. Let p, h, n and m be the number 
of pentagons, hexagons, carbon atoms and bonds between them, in a given fullerene F. Since 
each atom lies in exactly 3 faces and each edge lies in 2 faces, the number of atoms is n = 
(5p+6h)/3, the number of edges is m = (5p+6h)/2 = 3n/2 and the number of faces is f = p + h. 
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By the Euler’s formula n − m + f = 2, one can deduce that (5p+6h)/3 – (5p+6h)/2 + p + h = 2, 
and therefore p = 12, n = 2h + 20 and m = 3h + 30. This implies that such molecules, made 
entirely of n carbon atoms, have 12 pentagonal and (n/2 − 10) hexagonal faces, while n ≠ 22 
is a natural number equal or greater than 20. 

Let G be a fullerene graph on n vertices. A Leapfrog transform Gl of G is a graph on 
3n vertices obtained by truncating the dual of G. Hence, Gl= Tr(G*), where G* denotes the 
dual of G. It is easy to check that Gl itself is a fullerene graph. We say that Gl is a Leapfrog 
fullerene obtained from G and write Gl = Le(G). In other word, for a given fullerene Fn put an 
extra vertex into the centre of each face of Fn. Then connect these new vertices with all the 
vertices surrounding the corresponding face. Then the dual polyhedron is again a fullerene 
having 3n vertices 12 pentagonal and (3n/2)-10 hexagonal faces. A sequence of stellation-
dualization rotates the parent s-gonal faces by π/s. Leapfrog operation is illustrated, for a 
pentagonal face, in Fig. 1. 

 

Fig. 1. Leapfrog of a pentagonal face. 

For a more thorough introduction and treatment of Leapfrog fullerenes we refer the 
reader to [5, 6]. Through this paper all notations are standard and mainly taken from [7 – 16].  

Two edges e = ab and f = xy of graph G are called codistant, “e co f”, if and only if 
d(a,x) = d(b,y) = k and d(a,y) = d(b,x) = k+1 or vice versa, for a non-negative integer k. It is 
easy to check that the relation “co” is reflexive and symmetric but it is not necessary to be 
transitive. Set ( ) { ( ) | }       C e f E G f co e= ∈ . If the relation “co” is transitive on C(e) then 
C(e) is called an orthogonal cut “oc” of the graph G. The graph G is called co-graph if and 
only if the edge set E(G) a union of disjoint orthogonal cuts. If any two consecutive edges of 
an edge-cut sequence are topologically parallel within the same face of the covering, such a 
sequence is called a quasi-orthogonal cut qoc strip. Let G be an arbitrary connected graph and 
s1, s2, ..., sk be the oposite edges, ops strips of a plane graph G. Then the ops strips form a 
partition of E(G) and the Ω-polynomial of G is defined as [15] 

∑ =
=Ω

k

i
Sixx

1
||)( . 

Respect to qoc strips the Omega polynomial is defined as follows: 

∑ ⋅=
c

cxcGmxΩ ),()(       (1) 

with m(G, c) being the number of strips of length c. The summation runs up to the maximum 
length of qoc strips in G. This index can be useful in correlating properties with molecular 
structures. In other words, Diudea [10] proved that the total energy of some molecular 
structures has a correlation with Omega polynomial.  

Another polynomial also related to the ops in G, but counting the non-opposite edges 
is the Sadhana Sd polynomial defined as [17] 
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The Sadhana index Sd(G) for counting qoc strips in G was defined by Khadikar et al. 
[12, 13] as 1( ) | ( ) | | |k

iiSd G E G S== −∑ . By definition of Omega polynomial, one can obtain 

the Sadhana polynomial by replacing || iSx with |||| iSEx −  in omega polynomial. Then the Sadhana 
index will be the first derivative of Sd(x) evaluated at x = 1. 
 
 

MAIN RESULTS AND DISCUSSION 
 
The aim of this section is computing Omega and Sadhana polynomials of Leapfrog 

fullerenes constructed from F36. In other word, by using the Leapfrog principle we can 
construct an infinite class of fullerenes denoted by n36 3  

F
×

. Finally, we compute Omega and 

Sadhana polynomials of 6 n3 3  F × . To do it at first we should consider the following examples 

[17 – 28].  
 

Example 1. Let F20 be a fullerene with 20 vertices depicted in Fig. 2. It is easy to see that 
|E(F20)| = 30. By computing the qoc strips of F20 one can see that the Omega and Sadhana 
polynomials are Ω(x) = 30x and Sd(x) = 30x29, respectively. 

 

Fig. 2. The graph of fullerene F20. 
 
Example 2. Consider the fullerene graph F24 in Fig. 3. This fullerene graph has 36 edges. 
Similar to Example 1, one can see that Ω(x) = 24x + 6x2 and so Sd(x)= 24x35 + 6x34. In Fig. 3 
the planer graphs of F24 and Le(F24) are shown.  
 

  

F24 Le(F24) 

Fig. 3. The Leapfrog of graph F24. 
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Example 3. Consider the fullerene graph F26 depicted in Fig. 4. This fullerene graph has 39 
edges. Similar to Examples 1 and 2,it is not difficult to check Ω(F26, x) = 21x + 9x2 and 
Sd(F24, x)= 21x38 + 9x37. By computing these polynomials for related Leapfrog fullerene we 
have:  

Ω(x) = 24x3 + 6x6 + x9. 

  

F26 Le(F26) 

Fig. 4. The Leapfrog of graph F26. 
 

An automorphism of the graph G = (V, E) is a bijection σ  on V which preserves the 
edge set E, i.e., if e = uv is an edge, then σ( ) σ( )σ( )e u v=  is an edge of E. Here the image of 
vertex u is denoted by σ( )u . The set of all automorphisms of G under the composition of 
mappings forms a group which is denoted by Aut(G). Aut(G) acts transitively on V if for any 
vertices u and v in V there is α ( )Aut G∈  such that α( )u v= . Similarly G = (V, E) is called 
edge-transitive graph if for any two edges e1 = uv and e2 = xy in E there is an element 
β ( )Aut G∈  such that 1 2β( )e e=  where, )()()( 1 vue ββ=β . Furthermore, if F be a fullerene 
graph, then Aut(F) = Aut(Le(F)). Now let G = (V, E) be a graph. If Aut(G) acts edge-
transitively on E, then we have the following Lemma: 
 
Lemma 4. Let )(GEe∈  be an arbitrary edge and c = |C(e)|. Then the Omega polynomial of 
graph G is as follows: 

| ( ) |Ω( ) cE Gx x
c

= . 

Proof. Because Aut(G) acts edge-transitively on E, so we can divide E to some qoc strips of 
equal size c.  
 

As a result of Lemma 4 we can compute the Omega polynomial of a hyper – cube. 
The vertex set of the hypercube Hn consist of all n-tuples b1b2…bn with }1,0{∈ib . Two 
vertices are adjacent if the corresponding tuples differ in precisely one place. So the hyper – 
cube Hn has 2n vertices and n.2n-1 edges. In other word, {2 2 2n

n
H K K K≅ × × ×L . Darafsheh 

[29] proved Hn is vertex and edge transitive. We use from this result and so, the following 
Theorem is deduced: 

 
Theorem 5.  

12)(
−

=Ω
n

nxH n . 
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Proof. Let e = uv be an arbitrary edge of Hn. By computing the qoc strips one can see that c = 
|C(e)| = 2n-1. Since |E(Hn)| = n.2n-1, the proof is completed.  
 
Example 6. Consider the fullerene graph C20 shown in Fig. 5. This fullerene is edge - 
transitive, |E| = 30 and c=1. So by using Lemma 4 we have xxG 30),( =Ω .  

u v

 
Fig. 5. The graph of fullerene C20. 

 
Fullerenes C20 and C60 are the only transitive fullerenes. So it is important how to 

compute the Omega polynomial for graphs whose Aut(G) is not edge - transitive. One can 
apply the following Theorem for this case: 
 
Theorem 7. Suppose Aut(G) acts on E and E1, E2, …,En be its orbits. Then the Omega 

polynomial of G is 
1

| |( ) i
n ci

i i

EG x
c=

Ω = ∑ , where ie E∈  and ci = |C(ei)|.  

 
Proof. We know Aut(G) acts edge-transitively on its orbits. By using Lemma 4 the proof is 
straightforward.  

Theorem 7 implies in the case that Aut(G) is not edge – transitive then, ),( cGm  in 
equation 1, determine exactly the number of elements of any orbit of Aut(G). In other words 
for an arbitrary edge e belong to E(G), when we say m(G,c) = k, it means that there exist an 
orbit such as Δ in which c = |C(e)| and m(G,c) = | Δ | = k. Thus for a given graph of high order 
to enumeration of ),( cGm  it is sufficient to compute all orbits of Aut(G) acting on E.  

By continuing the methods shown in Examples 1 – 3 one can draw the graph of 
fullerene

 326 nF
×

, see Fig.s 6,7. Hence, by using Theorem 7 we have  
 

Theorem 8. Consider the fullerene graph nF36 3  ×  (n ≥ 2) depicted in Fig. 7. Then the Omega 
polynomial is as follows: 

( ) ( ) ( 1) ( )
2 2 2 2

1 1 1 3( ) ( ) ( ) ( )
2 2 2 2

( ) ( )3 3 2 3 2 3 72 2

1 1( ) ( )3 3 2 3 4 3 52 2

18 15 (2 3 1) 6(3 1) 2 |
Ω( ) .

18 12 3(2 3 1) 2(3 1) 2 |

n n n n

n n n n

n n

n n

x x x x n
x

x x x x n

+

+ + + +

× × ×

− −
× × ×

⎧
⎪ + + × − + −⎪= ⎨
⎪
⎪ + + × − + − /⎩
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Proof. At first by using a GAP [30] program(Appendix) we can prove 36 12( )Aut F D≅ . In 
other words generators of 36( )Aut F  are as follows (see Fig. 6): 
a:=(1,2)*(3,6)*(4,5)*(7,13)*(8,12)*(9,11)*(14,18)*(15,17)*(20,26)*(21,25)*(22,24)*(19,27)*
(28,30)*(31,36)*(32,35)*(33,34); 
b:=(1,2,3,4,5,6)*(7,9,11,13,15,17)*(8,10,12,14,16,18)*(21,23,25,27,29,19)*(22,24,26,28,30,2
0)*(31,32,33,34,35,36); 

It is necessary to consider two cases. At first suppose n be even. 36( )Aut F  act on 
edges of F36 and it has exactly four orbits. Since for a fullerene graph F, Aut(F) = Aut(Le(F)), 
by using Theorem 7, there are four types of edges for qoc strips. We denote them by e1, e2, e3 
and e4. It is not difficult to see that |C(e1)| = 2/3n , |C(e2)| = 2/32 n× , |C(e3)| = 2/)2(32 +× n  and 

|C(e4)| = 2/37 n× . On the other hand there are 18, 15, 132 2 −×
n

 and )13(6 2 −
n

 edges of type e1, 
e2, e3 and e4, respectively. Now let n be odd. By the same way we can prove that there are four 
types of edges for qoc strips namely e1, e2, e3 and e4, in which |C(e1)| = 3(n+1)/2, |C(e2)| = 2 × 

3(n+1)/2, |C(e3)| = 3(n+2)/2 × 4 and |C(e4)| = 5 × 3(n+3)/2. Also, there are 18, 12, )132(3 2
1

−×
−n

 and 

)13(2 2
1

−
−n

 edges of type e1, e2, e3 and e4, respectively. This completes the proof. 
 

Corollary 9. For the fullerene graph n36 3  
F

×
 (n ≥ 2) the Sadhana polynomial is as follows: 
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where, 332|| +×= nE . 
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Fig. 6. The graph of fullerene 36F . 
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Fig. 7(i). The graph of 
 336 nF

×
 for n = 1. 
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Fig. 7(ii). The graph of 
 336 nF

×
 for n = 2. 
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Fig. 7(iii). The graph of 
 336 nF

×
 for n = 3. 

 
CONCLUSIONS 

A counting polynomial C(G, x) is a sequence description of a topological property so that the 
exponents express the extent of its partitions while the coefficients are related to the 
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occurrence of these partitions. Basic definitions and properties of the Omega polynomial Ω(x) 
and Sadhana polynomial Sd(x) are presented. These polynomials are also computed for an 
infinite class of fullerenes. 

Omega polynomial introduced by M. V. Diudeacounts the quasi orthogonal cut qoc 
strips in a graph G. A qoc strip, defined with respect to any edge in G, represents the smallest 
subset of edges closed under taking opposite edges on faces. The first and second derivatives, 
in x = 1, of Omega polynomial enables the evaluation of the Cluj-Ilmenau CI index. 
Composition rules for Omega polynomial in fullerenes, according to their topology, are 
derived. In recent years, several papers on methods for computing Omega polynomials of 
molecular graphs have been published. Good ability of these descriptors in predicting the heat 
of formation and strain energy in small fullerenes or the resonance energy in planar 
benzenoids was found. Omega polynomial is useful in describing the topology of tubular 
nanostructures.  
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