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ABSTRACT. The energy E(G) of a graph G is the sum of the absolute values of the
eigenvalues of G. In 2001 Yaoping Hou et al. proved that among n-vertex unicyclic bipartite
graphs, either P 6

n or Cn has maximal energy, where P 6
n is the graph obtained by attaching a

hexagon to a terminal vertex of the (n−6)-vertex path graph, and Cn is the n-vertex cycle.
In this note we examine the relations between E(P 6

n) and E(Cn) and confirm that E(Cn) >

E(P 6
n) holds for n = 7, 9, 10, 11, 13, 15 whereas E(P 6

n) > E(Cn) holds for n = 8, 12, 14 and
n ≥ 16. In the limit n → ∞, the difference E(P 6

n) − E(Cn) assumes a value between 0.08
and 0.20.

INTRODUCTION

The experimental heats of formation of conjugated hydrocarbons are closely re-

lated to, and can be reliably calculated from, the total π-electron energy [1–3]. In

what follows, the total π-electron energy, calculated within the framework of the
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University

∗Corresponding author



40

HMO approximation, will be denoted by E(G), where G is the molecular graph [2]

of the underlying conjugated hydrocarbon. For the mathematical analysis E(G) (for

details see [2,4,5]), the the Coulson integral formula proved to be especially suitable:
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where a0, a1, a2, . . . , an are the coefficients of the characteristic polynomial of the

molecular graph G . In the case of bipartite graphs, formula (1) is significantly sim-

plified as:
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1
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where bj = (−1)j a2j and where bj ≥ 0 holds for all values of j. From Eq. (2) an

important consequence follows [6]:

Theorem 1. If G1 and G2 are two bipartite graphs, such that bj(G1) ≥ bj(G2) holds

for all values of j, then E(G1) ≥ E(G2). If, in addition, bj(G1) > bj(G2) holds for at

least one j, then E(G1) > E(G2).

By means of Theorem 1, numerous relations between the energies of various

(molecular) graphs have been established, and in many cases the graph having ex-

tremal (maximal or minimal) value of E(G) could be determined (for details see [5]).

One such result was established by Yaoping Hou et al. [7, 8].

Let P 6
n be the graph obtained by attaching a hexagon to a terminal vertex of the

(n− 6)-vertex path graph, and let Cn be the n-vertex cycle, see Fig. 1.

n-6

P
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n

Fig. 1. The two graphs mentioned in Theorem 2. Note that for n = 6, the graphs
P 6

n and Cn coincide.
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Theorem 2. [7, 8] Among all n-vertex unicyclic bipartite graphs, n ≥ 6, the graph

with maximal energy is either P 6
n or Cn.

If n is odd, then the cycle Cn is not bipartite. Therefore, Theorem 2 has the

following immediate consequence:

Corollary 2.1. If n is odd, n ≥ 7, then among all n-vertex unicyclic bipartite graphs

the graph with maximal energy is P 6
n .

The graphs P 6
n and Cn cannot be compared by means of Theorem 1. As illustrative

examples of this incomparability, we list here their characteristic polynomials for

n = 10 and n = 12:

φ(P 6
10, λ) = λ10 − 10 λ8 + 34 λ6 − 48 λ4 + 27 λ2 − 4

φ(C10, λ) = λ10 − 10 λ8 + 35 λ6 − 50 λ4 + 25 λ2 − 4

φ(P 6
12, λ) = λ12 − 12 λ10 + 53 λ8 − 105 λ6 + 104 λ4 − 42 λ2 + 4

φ(C12, λ) = λ12 − 12 λ10 + 55 λ8 − 112 λ6 + 105 λ4 − 36 λ2 .

Because of this difficulty, the problem of characterizing the unicyclic bipartite

graph with maximal energy was long time not completely resolved. Numerical cal-

culations [7, 9, 10] indicated that the maximal energy graph is P 6
n , except in the

case n = 10, when the maximal energy graph is the cycle Cn. These calculations

were restricted for the first few (even) values of n. Only quite recently it has been

proven [11–13] that for sufficiently large n, the difference E(P 6
n)−E(Cn) is positive–

valued, which provided a complete solution of the problem.

Caporossi et al. [9] conjectured that Theorem 2 can be extended to all (both

bipartite and non-bipartite) unicyclic graphs as follows:

Conjecture 3. If n = 7, 9, 10, 11, 13, and 15, then among all n-vertex unicyclic

graphs, the graph with maximal energy is Cn. If n = 8, 12, 14, and n ≥ 16, then

among all n-vertex unicyclic graphs, the graph with maximal energy is P 6
n . If n = 6,

then the maximal–energy graph is P 6
n
∼= Cn.

The correctness of this conjecture was recently verified [14].
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NUMERICAL WORK

In this note we offer some further numerical results on the comparison of E(P 6
n)

and E(Cn), embracing both the case of even and odd n and corroborating Conjecture

3. Our findings show that the inequality E(P 6
n) > E(Cn) holds for all values of n,

except for n = 7, 9, 10, 11, 13, and 15. In order to achieve this result, appropriate

computer–based investigations of the energies of P 6
n and Cn, were undertaken. Let

∆(n) = E(P 6
n)− E(Cn). The dependence of ∆(n) on n is shown in Figs. 2a and 2b.

Fig. 2a. Dependence of the difference E(P 6
n)− E(Cn) on the first few values of the

number of vertices n.

Fig. 2b. Dependence of the difference E(P 6
n)−E(Cn) on larger values of the number

of vertices n (n ≤ 200).
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From the data shown in Fig. 2a we see that ∆(n) < 0 exactly for n = 7, 9, 10, 11, 13, 15,

in full agreement with Conjecture 3. From Fig. 2b we see that for all values of n,

greater than 15, ∆(n) > 0. In the limit case n → ∞, ∆(n) tends to a finite value

that lies between 0.08 and 0.20. This finding is remarkable (but not surprising), in

view of the fact that for n →∞, both E(P 6
n) and E(Cn) tend to infinity.

CONCLUDING REMARKS

The numerical results reported in this note support the conclusion that for n =

7, 9, 10, 11, 13, 15, the unicyclic n-vertex graph with maximal energy is Cn whereas

P 6
n has the second–maximal energy. For other values of n , n > 6, the opposite is the

case: the unicyclic n-vertex graph with maximal energy is P 6
n whereas Cn has the

second–maximal energy. However, these numerical results must not be considered as

mathematically satisfactory proofs. Such proofs have recently been offered by Huo et

al. [14].
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