ON THE TERMINAL WIENER INDEX OF THORN GRAPHS

Abbas Heydari, ${ }^{a}$ Ivan Gutman ${ }^{b}$
${ }^{a}$ Department of Science, Islamic Azad University, Arak Branch, Arak, Iran e-mail: a-heydari@math.iut.ac.ir
${ }^{b}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia
e-mail: gutman@kg.ac.rs

(Received December 29, 2009)

Abstract

The terminal Wiener index $T W=T W(G)$ of a graph G is equal to the sum of distances between all pairs of pendent vertices of G. This distance-based molecular structure descriptor was put forward quite recently [I. Gutman, B. Furtula, M. Petrović, J. Math. Chem. 46 (2009) 522-531]. In this paper we report results on $T W$ of thorn graphs.

 Also a method for calculation of $T W$ of dendrimers is described.
INTRODUCTION

Let G be a connected graph with vertex set $\mathbf{V}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\mathbf{E}(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. The distance between the vertices v_{i} and $v_{j}, v_{i}, v_{j} \in \mathbf{V}(G)$, is equal to the length (= number of edges) of the shortest path starting at v_{i} and ending at v_{j} (or vice versa) [1], and will be denoted by $d\left(v_{i}, v_{j} \mid G\right)$.

The oldest molecular structure descriptor (topological index) is the one put forward in 1947 by Harold Wiener [2], nowadays referred to as the Wiener index and
denoted by W. It is defined as the sum of distances between all pairs of vertices of a (molecular) graph:

$$
\begin{equation*}
W=W(G)=\sum_{\{u, v\} \subseteq \mathbf{V}(G)} d(u, v \mid G)=\sum_{1 \leq i<j \leq n} d\left(v_{i}, v_{j} \mid G\right) \tag{1}
\end{equation*}
$$

Details on the chemical applications and mathematical properties of the Wiener index can be found in the reviews [3-5].

The square matrix of order n whose (i, j)-entry is $d\left(v_{i}, v_{j} \mid G\right)$ is called the distance matrix of G. Also this matrix has been much studied by mathematical chemists, for details see $[6,7]$. From the distance matrix not only the Wiener index, but also numerous other structure descriptors can be derived $[8,9]$.

In a number of recently published articles, the so-called terminal distance matrix [10, 11] or reduced distance matrix [12] of trees was considered.

If an n-vertex graph G has k pendent vertices ($=$ vertices of degree one), labeled by $v_{1}, v_{2}, \ldots, v_{k}$, then its terminal distance matrix is the square matrix of order k whose (i, j)-entry is $d\left(v_{i}, v_{j} \mid G\right)$.

Terminal distance matrices were used for modeling of amino acid sequences of proteins and of the genetic code $[10,11,13]$, and were proposed to serve as a source of novel molecular-structure descriptors $[10,11]$.

Motivated by the previous researches on the terminal distance matrix and on its chemical applications, the present authors have conceived the terminal Wiener index $T W(G)$ of a graph G as the sum of the distances between all pairs of its pendent vertices [14].

Without loss of generality, we may assume that the graph G has n vertices of which k vertices, labeled by $v_{1}, v_{2}, \ldots, v_{k}$, are pendent. Let thus $\mathbf{V}_{1}(G)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the set of pendent vertices of G. In harmony with the previously introduced notation, $\mathbf{V}_{1}(G) \subseteq \mathbf{V}(G)$. Then, in analogy with Eq. (1), we define

$$
\begin{equation*}
T W=T W(G)=\sum_{\{u, v\} \subseteq \mathbf{V}_{1}(G)} d(u, v \mid G)=\sum_{1 \leq i<j \leq k} d\left(v_{i}, v_{j} \mid G\right) . \tag{2}
\end{equation*}
$$

In addition to [14], there seems to exist only one more paper [15] on terminal Wiener index. Thus, neither the theory nor the chemical applications of $T W$ are
nowadays well elaborated. The aim of the present work is to contribute towards filling this gap.

TERMINAL WIENER INDEX OF THORN GRAPHS

Let G a connected n-vertex graph with vertex set $\mathbf{V}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be an n-tuple of non-negative integers. The thorn graph $G_{\mathbf{p}}$ is the graph obtained by attaching p_{i} pendent vertices to the vertex v_{i} of G for $i=1,2, \ldots, n$. The p_{i} pendent vertices attached to the vertex v_{i} will be called the thorns of v_{i}.

The concept of thorny graphs was introduced by one of the present authors [16], and eventually found a variety of chemical applications [17-22]. We now show how, in the general case, one can compute the terminal Wiener index of a thorn graph.

Theorem 1. Let $G_{\mathbf{p}}$ be the thorn graph, obtained by attaching p_{i} terminal vertices to the vertex v_{i} of the connected graph $G, i=1,2, \ldots, n$. If $p_{i}>0$ for all $i=1,2, \ldots, n$, then

$$
\begin{equation*}
T W\left(G_{\mathbf{p}}\right)=2 \sum_{i=1}^{n}\binom{p_{i}}{2}+\sum_{1 \leq i<j \leq n} p_{i} p_{j}\left[d\left(v_{i}, v_{j} \mid G\right)+2\right] \tag{3}
\end{equation*}
$$

Proof. We obtain formula (3) by applying Eq. (2). Consider first the thorns attached to a given vertex v_{i}. Each of these are at distance 2, and therefore their contribution to $T W\left(G_{\mathbf{p}}\right)$ is $\binom{p_{i}}{2} \times 2$. This leads to the first term on the right-hand side of (3). Consider a thorn attached to vertex v_{i} and a thorn attached to vertex $v_{j}, i \neq j$. Their distance is by two greater than the distance between v_{i} and v_{j}. Since there are $p_{i} \times p_{j}$ pairs of thorns of this kind, their contribution to $T W\left(G_{\mathbf{p}}\right)$ is equal to $p_{i} p_{j}\left[d\left(v_{i}, v_{j} \mid G\right)+2\right]$. This leads to the second term on the right-hand side of (3).

Corollary 1.1. Formula (3) remains valid also if some p_{i} 's are equal to zero, provided that the corresponding vertices of the graph G are not pendent.

Corollary 1.2. If $p_{1}=p_{2}=\cdots=p_{n}=p>0$, then

$$
\begin{equation*}
T W\left(G_{\mathbf{p}}\right)=p^{2} W(G)+p n(p n-1) . \tag{4}
\end{equation*}
$$

Proof. Start with Eq. (3) and apply the definition (1) of the Wiener index of the graph G. This yields

$$
T W\left(G_{\mathbf{p}}\right)=n p(p-1)+p^{2}[W(G)-n(n-1)]
$$

which is then easily transformed into Eq. (4).

Corollary 1.3. Let the graph G be not connected, and consist of a (connected) component G^{*} and some other components. Let all pendent vertices of G (if any) belong to G^{*}. Let $\mathbf{V}\left(G^{*}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n^{*}}\right\}$. If all thorns of $G_{\mathbf{p}}$ are on vertices of G^{*}, and if each vertex of G^{*} possesses at least one thorn, then

$$
T W\left(G_{\mathbf{p}}\right)=2 \sum_{i=1}^{n^{*}}\binom{p_{i}}{2}+\sum_{1 \leq i<j \leq n^{*}} p_{i} p_{j}\left[d\left(v_{i}, v_{j} \mid G^{*}\right)+2\right] .
$$

Corollary 1.4. If the conditions specified in Corollary 1.3 hold, and if $p_{1}=p_{2}=$ $\cdots=p_{n^{*}}=p>0$, then

$$
T W\left(G_{\mathbf{p}}\right)=p^{2} W\left(G^{*}\right)+p n^{*}\left(p n^{*}-1\right) .
$$

Theorem 2. Let G be a connected n-vertex graph, and let $v_{1}, v_{2}, \ldots, v_{k}$ be its pendent vertices. Choose the n-tuple \mathbf{p} so that

$$
p_{i}= \begin{cases}p & \text { for } i=1,2, \ldots, k \\ 0 & \text { for } i=k+1, \ldots, n\end{cases}
$$

and let $p>0$. Then

$$
\begin{equation*}
T W\left(G_{\mathbf{p}}\right)=p^{2} T W(G)+p k(p k-1) . \tag{5}
\end{equation*}
$$

Proof. Start with Eq. (3) and apply the definition (2) of the terminal Wiener index of the graph G. This yields

$$
T W\left(G_{\mathbf{p}}\right)=k p(p-1)+p^{2}[T W(G)-k(k-1)]
$$

which is then easily transformed into Eq. (5).

Note that if in the above theorem $p=0$, then $T W\left(G_{\mathbf{p}}\right) \equiv T W(G)$.

Note also that Eq. (5) is a kind of recurrence relation, because the terminal Wiener index of a bigger graph (namely of $G_{\mathbf{p}}$) is expressed in terms of the terminal Wiener index of a smaller graph (namely of G). This observation will be utilized in the subsequent section.

APPLICATION TO DENDRIMERS

By means of Theorem 2 it is possible to recursively compute the terminal Wiener indices of certain dendrimers. An example of a dendrimer series to which formula (5) is applicable is shown in Fig. 1.

D_{0}

D_{1}

Fig. 1. The first four members of a series of dendrimer graphs. Their terminal Wiener indices are calculated recursively as $T W\left(D_{0}\right)=12, T W\left(D_{1}\right)=78$, $T W\left(D_{2}\right)=444, T W\left(D_{3}\right)=2328, \ldots$ for details see text.

Let $D_{0}, D_{1}, D_{2}, \ldots$ be a series of dendrimer graphs. Let for $h=1,2, \ldots$, the dendrimer graph D_{h} be obtained so that p pendent vertices are attached to each pendent vertex of D_{h-1}. For an illustration see Fig. 1.

Details on dendrimers, an important and recently much studied class of nanomaterials, and especially on their topological properties can be found in the books $[23,24]$ and the references quoted therein.

Let k_{h} be the number of pendent vertices of D_{h}. Then from Theorem 2 we get the recurrence relations:

$$
\begin{aligned}
T W\left(D_{h+1}\right) & =p^{2} T W\left(D_{h}\right)+p k_{h}\left(p k_{h}-1\right) \\
k_{h+1} & =p k_{h}
\end{aligned}
$$

In the examples depicted in Fig. $1, p=2$. It is easy to check that $T W\left(D_{0}\right)=12$ and $k_{0}=3$. Then

$$
\begin{aligned}
T W\left(D_{1}\right) & =p^{2} T W\left(D_{0}\right)+p k_{0}\left(p k_{0}-1\right)=2^{2} \cdot 12+2 \cdot 3 \cdot(2 \cdot 3-1)=78 \\
k_{1} & =p k_{0}=2 \cdot 3=6 \\
T W\left(D_{2}\right) & =p^{2} T W\left(D_{1}\right)+p k_{1}\left(p k_{1}-1\right)=2^{2} \cdot 78+2 \cdot 6 \cdot(2 \cdot 6-1)=444 \\
k_{2} & =p k_{1}=2 \cdot 6=12 \\
T W\left(D_{3}\right) & =p^{2} T W\left(D_{2}\right)+p k_{2}\left(p k_{2}-1\right)=2^{2} \cdot 444+2 \cdot 12 \cdot(2 \cdot 12-1)=2328 \\
k_{3} & =p k_{2}=2 \cdot 12=24 \\
T W\left(D_{4}\right) & =p^{2} T W\left(D_{3}\right)+p k_{3}\left(p k_{3}-1\right)=2^{2} \cdot 2328+2 \cdot 24 \cdot(2 \cdot 24-1)=11568 \\
k_{4} & =p k_{3}=2 \cdot 24=48
\end{aligned}
$$

etc.

CONCLUDING REMARKS

As already mentioned, the terminal Wiener index is a very new molecular-structure descriptor. Only a limited number of its mathematical properties were established so far $[14,15]$.

Until now no attempt was reported to find some chemical application of $T W$ or, at least, to investigate how $T W$ is correlated with the usually employed physicochemical properties of alkanes (octane isomers, in particular). The same applies to
the $T W$-values of dendrimers. It remains a task for the future to work along these lines.

Acknowledgement. Part of this work was supported by the Serbian Ministry of Science, through Grant no. 144015G.

REFERENCES

[1] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
[2] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[3] I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651-661.
[4] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[5] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294.
[6] D. H. Rouvray, The role of the topological distance matrix in chemistry, in: N. Trinajstić (Ed.), Mathematics and Computational Concepts in Chemistry, Horwood, Chichester, 1986, pp. 295-306.
[7] Z. Mihalić, D. Veljan, D. Amić, S. Nikolić, D. Plavšić, N. Trinajstić, The distance matrix in chemistry, J. Math. Chem. 11 (1992) 223-258.
[8] Z. Mihalić, S. Nikolić, N. Trinajstić, Comparative study of molecular descriptors derived from the distance matrix, J. Chem. Inf. Comput. Sci. 32 (1992) 28-36.
[9] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[10] B. Horvat, T. Pisanski, M. Randić, Terminal polynomials and star-like graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 493-512.
[11] M. Randić, J. Zupan, D. Vikić-Topić, On representation of proteins by starlike graphs, J. Mol. Graph. Modell. 26 (2007) 290-305.
[12] E. A. Smolenskii, E. V. Shuvalova, L. K. Maslova, I. V. Chuvaeva, M. S. Molchanova, Reduced matrix of topological distances with a minimum number of independent parameters: distance vectors and molecular codes, J. Math. Chem. 45 (2009) 1004-1020.
[13] M. Randić, J. Zupan, Highly compact 2D graphical representation of DNA sequences, SAR QSAR Environ. Res. 15 (2004) 191-205.
[14] I. Gutman, B. Furtula, M. Petrović, Terminal Wiener index, J. Math. Chem. 46 (2009) 522-531.
[15] X. Deng, J. Zhang, Equiseparability on terminal Wiener index, in: A. V. Goldberg, Y. Zhou (Eds.), Algorithmic Aspects in Information and Management, Springer-Verlag, Berlin, 2009, pp. 166-174.
[16] I. Gutman, Distance in thorny graph, Publ. Inst. Math. (Beograd) 63 (1998) 31-36.
[17] L. Bytautas, D. Bonchev, D. J. Klein, On the generation of mean Wiener numbers of thorny graphs, MATCH Commun. Math. Comput. Chem. 44 (2001) 31-40.
[18] D. Bonchev, D. J. Klein, On the Wiener number of thorn trees, stars, rings, and rods, Croat. Chem. Acta 75 (2002) 613-620.
[19] D. Vukičević, A. Graovac, On modified Wiener indices of thorn graphs, MATCH Commun. Math. Comput. Chem. 50 (2004) 93-108.
[20] H. B. Walikar, H. S. Ramane, L. Sindagi, S. S. Shirakol, I. Gutman, Hosoya polynomial of thorn trees, rods, rings, and stars, Kragujevac J. Sci. 28 (2006) 47-56.
[21] D. Vukičević, B. Zhou, N. Trinajstić, Altered Wiener indices of thorn trees, Croat. Chem. Acta 80 (2007) 283-285.
[22] S. Chen, J. Li, On the zeroth-order general Randić index of thorn graphs, in: I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008, pp. 221-226.
[23] M. V. Diudea (Ed.), Nanostructures: Novel Architecture, Nova, New York, 2006.
[24] M. V. Diudea, C. L. Nagy, Periodic Nanostructures, Springer-Verlag, Amsterdam, 2007.

