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ABSTRACT. The terminal Wiener index TW = TW (G) of a graph G is equal to the

sum of distances between all pairs of pendent vertices of G . This distance–based molecular

structure descriptor was put forward quite recently [I. Gutman, B. Furtula, M. Petrović, J.

Math. Chem. 46 (2009) 522–531]. In this paper we report results on TW of thorn graphs.

Also a method for calculation of TW of dendrimers is described.

INTRODUCTION

Let G be a connected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set

E(G) = {e1, e2, . . . , em} . The distance between the vertices vi and vj , vi, vj ∈ V(G) ,

is equal to the length (= number of edges) of the shortest path starting at vi and

ending at vj (or vice versa) [1], and will be denoted by d(vi, vj|G) .

The oldest molecular structure descriptor (topological index) is the one put for-

ward in 1947 by Harold Wiener [2], nowadays referred to as the Wiener index and
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denoted by W . It is defined as the sum of distances between all pairs of vertices of

a (molecular) graph:

W = W (G) =
∑

{u,v}⊆V(G)

d(u, v|G) =
∑

1≤i<j≤n

d(vi, vj|G) . (1)

Details on the chemical applications and mathematical properties of the Wiener index

can be found in the reviews [3–5].

The square matrix of order n whose (i, j)-entry is d(vi, vj|G) is called the distance

matrix of G . Also this matrix has been much studied by mathematical chemists,

for details see [6, 7]. From the distance matrix not only the Wiener index, but also

numerous other structure descriptors can be derived [8, 9].

In a number of recently published articles, the so-called terminal distance matrix

[10, 11] or reduced distance matrix [12] of trees was considered.

If an n-vertex graph G has k pendent vertices (= vertices of degree one), labeled

by v1, v2, . . . , vk , then its terminal distance matrix is the square matrix of order k

whose (i, j)-entry is d(vi, vj|G) .

Terminal distance matrices were used for modeling of amino acid sequences of

proteins and of the genetic code [10, 11, 13], and were proposed to serve as a source

of novel molecular–structure descriptors [10, 11].

Motivated by the previous researches on the terminal distance matrix and on its

chemical applications, the present authors have conceived the terminal Wiener index

TW (G) of a graph G as the sum of the distances between all pairs of its pendent

vertices [14].

Without loss of generality, we may assume that the graph G has n vertices of which

k vertices, labeled by v1, v2, . . . , vk , are pendent. Let thus V1(G) = {v1, v2, . . . , vk} be

the set of pendent vertices of G . In harmony with the previously introduced notation,

V1(G) ⊆ V(G) . Then, in analogy with Eq. (1), we define

TW = TW (G) =
∑

{u,v}⊆V1(G)

d(u, v|G) =
∑

1≤i<j≤k

d(vi, vj|G) . (2)

In addition to [14], there seems to exist only one more paper [15] on terminal

Wiener index. Thus, neither the theory nor the chemical applications of TW are



59

nowadays well elaborated. The aim of the present work is to contribute towards

filling this gap.

TERMINAL WIENER INDEX OF THORN GRAPHS

Let G a connected n-vertex graph with vertex set V(G) = {v1, v2, . . . , vn} , and

let p = (p1, p2, . . . , pn) be an n-tuple of non-negative integers. The thorn graph Gp

is the graph obtained by attaching pi pendent vertices to the vertex vi of G for

i = 1, 2, . . . , n . The pi pendent vertices attached to the vertex vi will be called the

thorns of vi .

The concept of thorny graphs was introduced by one of the present authors [16],

and eventually found a variety of chemical applications [17–22]. We now show how,

in the general case, one can compute the terminal Wiener index of a thorn graph.

Theorem 1. Let Gp be the thorn graph, obtained by attaching pi terminal vertices to

the vertex vi of the connected graph G , i = 1, 2, . . . , n . If pi > 0 for all i = 1, 2, . . . , n ,

then

TW (Gp) = 2
n∑

i=1

(
pi

2

)
+

∑
1≤i<j≤n

pi pj [d(vi, vj|G) + 2] . (3)

Proof. We obtain formula (3) by applying Eq. (2). Consider first the thorns attached

to a given vertex vi . Each of these are at distance 2, and therefore their contribution

to TW (Gp) is

(
pi

2

)
× 2 . This leads to the first term on the right–hand side of (3).

Consider a thorn attached to vertex vi and a thorn attached to vertex vj , i 6= j .

Their distance is by two greater than the distance between vi and vj . Since there

are pi × pj pairs of thorns of this kind, their contribution to TW (Gp) is equal to

pi pj [d(vi, vj|G)+2] . This leads to the second term on the right–hand side of (3). ¥

Corollary 1.1. Formula (3) remains valid also if some pi’s are equal to zero, provided

that the corresponding vertices of the graph G are not pendent.

Corollary 1.2. If p1 = p2 = · · · = pn = p > 0 , then

TW (Gp) = p2 W (G) + pn(pn− 1) . (4)
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Proof. Start with Eq. (3) and apply the definition (1) of the Wiener index of the

graph G . This yields

TW (Gp) = np(p− 1) + p2 [W (G)− n(n− 1)]

which is then easily transformed into Eq. (4). ¥

Corollary 1.3. Let the graph G be not connected, and consist of a (connected)

component G∗ and some other components. Let all pendent vertices of G (if any)

belong to G∗ . Let V(G∗) = {v1, v2, . . . , vn∗} . If all thorns of Gp are on vertices of

G∗ , and if each vertex of G∗ possesses at least one thorn, then

TW (Gp) = 2
n∗∑
i=1

(
pi

2

)
+

∑
1≤i<j≤n∗

pi pj [d(vi, vj|G∗) + 2] .

Corollary 1.4. If the conditions specified in Corollary 1.3 hold, and if p1 = p2 =

· · · = pn∗ = p > 0 , then

TW (Gp) = p2 W (G∗) + p n∗ (p n∗ − 1) .

Theorem 2. Let G be a connected n-vertex graph, and let v1, v2, . . . , vk be its

pendent vertices. Choose the n-tuple p so that

pi =

{
p for i = 1, 2, . . . , k

0 for i = k + 1, . . . , n

and let p > 0 . Then

TW (Gp) = p2 TW (G) + pk(pk − 1) . (5)

Proof. Start with Eq. (3) and apply the definition (2) of the terminal Wiener index

of the graph G . This yields

TW (Gp) = kp(p− 1) + p2 [TW (G)− k(k − 1)]

which is then easily transformed into Eq. (5). ¥

Note that if in the above theorem p = 0 , then TW (Gp) ≡ TW (G) .
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Note also that Eq. (5) is a kind of recurrence relation, because the terminal

Wiener index of a bigger graph (namely of Gp) is expressed in terms of the terminal

Wiener index of a smaller graph (namely of G). This observation will be utilized in

the subsequent section.

APPLICATION TO DENDRIMERS

By means of Theorem 2 it is possible to recursively compute the terminal Wiener

indices of certain dendrimers. An example of a dendrimer series to which formula (5)

is applicable is shown in Fig. 1.

D D D

D

1 2

3

0

Fig. 1. The first four members of a series of dendrimer graphs. Their termi-
nal Wiener indices are calculated recursively as TW (D0) = 12 , TW (D1) = 78 ,
TW (D2) = 444 , TW (D3) = 2328 , . . . ; for details see text.

Let D0 , D1 , D2 , . . . be a series of dendrimer graphs. Let for h = 1, 2, . . . , the

dendrimer graph Dh be obtained so that p pendent vertices are attached to each

pendent vertex of Dh−1 . For an illustration see Fig. 1.
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Details on dendrimers, an important and recently much studied class of nano-

materials, and especially on their topological properties can be found in the books

[23, 24] and the references quoted therein.

Let kh be the number of pendent vertices of Dh . Then from Theorem 2 we get

the recurrence relations:

TW (Dh+1) = p2 TW (Dh) + p kh(p kh − 1)

kh+1 = p kh .

In the examples depicted in Fig. 1, p = 2 . It is easy to check that TW (D0) = 12

and k0 = 3 . Then

TW (D1) = p2 TW (D0) + p k0(p k0 − 1) = 22 · 12 + 2 · 3 · (2 · 3− 1) = 78

k1 = p k0 = 2 · 3 = 6

TW (D2) = p2 TW (D1) + p k1(p k1 − 1) = 22 · 78 + 2 · 6 · (2 · 6− 1) = 444

k2 = p k1 = 2 · 6 = 12

TW (D3) = p2 TW (D2) + p k2(p k2 − 1) = 22 · 444 + 2 · 12 · (2 · 12− 1) = 2328

k3 = p k2 = 2 · 12 = 24

TW (D4) = p2 TW (D3) + p k3(p k3 − 1) = 22 · 2328 + 2 · 24 · (2 · 24− 1) = 11568

k4 = p k3 = 2 · 24 = 48

etc.

CONCLUDING REMARKS

As already mentioned, the terminal Wiener index is a very new molecular–structure

descriptor. Only a limited number of its mathematical properties were established so

far [14, 15].

Until now no attempt was reported to find some chemical application of TW or,

at least, to investigate how TW is correlated with the usually employed physico–

chemical properties of alkanes (octane isomers, in particular). The same applies to
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the TW -values of dendrimers. It remains a task for the future to work along these

lines.
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[14] I. Gutman, B. Furtula, M. Petrović, Terminal Wiener index, J. Math. Chem. 46

(2009) 522–531.

[15] X. Deng, J. Zhang, Equiseparability on terminal Wiener index, in: A. V. Gold-

berg, Y. Zhou (Eds.), Algorithmic Aspects in Information and Management ,

Springer–Verlag, Berlin, 2009, pp. 166–174.

[16] I. Gutman, Distance in thorny graph, Publ. Inst. Math. (Beograd) 63 (1998)

31–36.

[17] L. Bytautas, D. Bonchev, D. J. Klein, On the generation of mean Wiener numbers

of thorny graphs, MATCH Commun. Math. Comput. Chem. 44 (2001) 31–40.

[18] D. Bonchev, D. J. Klein, On the Wiener number of thorn trees, stars, rings, and

rods, Croat. Chem. Acta 75 (2002) 613–620.

[19] D. Vukičević, A. Graovac, On modified Wiener indices of thorn graphs, MATCH

Commun. Math. Comput. Chem. 50 (2004) 93–108.

[20] H. B. Walikar, H. S. Ramane, L. Sindagi, S. S. Shirakol, I. Gutman, Hosoya

polynomial of thorn trees, rods, rings, and stars, Kragujevac J. Sci. 28 (2006)

47–56.
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Kragujevac, Kragujevac, 2008, pp. 221–226.

[23] M. V. Diudea (Ed.), Nanostructures: Novel Architecture, Nova, New York, 2006.

[24] M. V. Diudea, C. L. Nagy, Periodic Nanostructures , Springer–Verlag, Amster-

dam, 2007.


