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ABSTRACT. The unsteady Couette flow of an incompressible viscous fluid between two 
parallel porous plates is studied with heat transfer in the presence of a uniform suction 
and injection considering variable properties. The viscosity and thermal conductivity of 
the fluid are assumed to vary with temperature. The fluid is subjected to a constant 
pressure gradient and a uniform suction and injection through the plates which are kept at 
different but constant temperatures. The effect of the suction and injection velocity and 
the variable viscosity and thermal conductivity on both the velocity and temperature 
fields is studied. 

 
 
 

INTRODUCTION 
 

The flow with heat transfer of a viscous incompressible fluid between two parallel plates has 
important applications in many devices such as aerodynamics heating, electrostatic precipitation, 
polymer technology, petroleum industry. Many researchers have considered this problem under 
different physical effects [1-5].  Most of these studies are based on constant physical properties, 
although some physical properties are varying with temperature and assuming constant properties is 
a good approximation as long as small differences in temperature are involved [6]. More accurate 
prediction for the flow and heat transfer can be achieved by considering the variation of these 
physical properties with temperature. The effect of temperature dependent viscosity on the flow in a 
channel has been studied in the hydrodynamic case [7] and the hydromagnetic case [8,9].   

 
In the present work, the unsteady Couette flow of a viscous incompressible fluid between two 

parallel porous plates is studied with heat transfer in the presence of uniform suction and injection 
through the plates with variable physical properties. The upper plate is moving with a constant 
speed and the lower plate is kept stationary. The viscosity and thermal conductivity of the fluid are 
assumed to vary with temperature and the two plates are kept at two constant but different temperatures.  
The fluid is acted upon by a constant pressure gradient. The coupled set of the nonlinear equations of motion 
and the energy equation including the viscous dissipation term is solved numerically using finite differences 
to obtain the velocity and temperature distributions at any instant of time. 
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FORMULATION OF THE PROBLEM 
 

The fluid is assumed to be flowing between two infinite horizontal plates located at the 
y=±h planes.  The fluid between the two plates is subjected to a uniform suction from above 
and injection from below with velocity Voj.  The motion is produced by a constant pressure 
gradient dP/dx in the x-direction.  The two plates are kept at two constant temperatures T1 for 
the lower plate and T2 for the upper plate with T2>T1.  The viscosity of the fluid is assumed to 
vary exponentially with temperature while the thermal conductivity is assumed to depend 
linearly on temperature.  The viscous dissipation is taken into consideration.  The flow of the 
fluid is governed by the Navier-Stokes equation which has the form [1,5] 
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where ρ is the density of the fluid, µ is the viscosity of the fluid, and u=u(y,t) is the velocity 
component of the fluid in the x-direction.  It is assumed that the pressure gradient is applied at 
t=0 and the fluid starts its motion from rest and for t>0, the no-slip condition at the plates 
implies that 

 
t=0: u=0, t>0: u=0, y=-h& u=Uo, y=h                                                                     (2) 

 
 The energy equation describing the temperature distribution for the fluid is given by [1,10] 
 

2)()()(
y
u

y
Tk

yy
TV

t
Tc op ∂

∂
+

∂
∂

∂
∂

=
∂
∂

+
∂
∂ µρ                                                               (3) 

 
where T is the temperature of the fluid, cp is the specific heat capacity of the fluid at constant 
volume, and k is the thermal conductivity of the fluid.  The last term in the left-hand side of 
Eq. (3) represents the viscous dissipation.  The temperature of the fluid must satisfy the 
boundary conditions, 

 

t=0: T=T1                                                                                                               (4a) 
 
t>0: T=T1, y=-h, T=T2, y=h                                                                                   (4b) 

 
 The viscosity of the fluid is assumed to vary with temperature and is defined as, 
µ=µof1(T). By assuming the viscosity to vary exponentially with temperature, the function f1(T) 
takes the form [7], f1(T)=exp(-a1(T-T1)).  In some cases a1 may be negative, i.e. the coefficient 
of viscosity increases with temperature [8,9].  Also, the thermal conductivity of the fluid is 
assumed to vary with temperature as k=kof2(T).  We assume linear dependence for the thermal 
conductivity upon temperature in the form k=ko[1+b1(T-T1)] [10], where the parameter b1 may 
be positive or negative [10]. 
 
 The problem is simplified by writing the equations in the non-dimensional form.  To 
achieve this, we define the following non-dimensional quantities, 
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1̂f (θ) = exp(-a1(T2-T1)) = exp(-aθ), “a” is the viscosity exponent,  

2f̂ (θ) = 1+b1(T2-T1) θ = 1+bθ, “b” is the thermal conductivity parameter, 
R=ρUoh/µo, is the Reynolds number, 
Pr = µocp/ko  is the Prandtl number, 
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Ec = µo
2/ρ2h2cp(T2-T1)    is the Eckert number, 

S=Vo ρh/µo, is the suction parameter, 
τL = (∂ û /∂ ŷ ) ŷ =-1    is the axial skin friction coefficient at the lower plate, 
τU = (∂ û /∂ ŷ ) ŷ =1  is the axial skin friction coefficient at the upper plate, 
NuL = (∂θ/∂ ŷ ) ŷ =-1  is the Nusselt number at the lower plate, 
NuU = (∂θ/∂ ŷ ) ŷ =1  is the Nusselt number at the upper plate, 
 
In terms of the above non-dimensional quantities Eqs. (1) to (4) read (the hats are dropped for 
convenience) 
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t=0: u=0,   t>0:  u=0, y=-1 &  u=1, y=1                                                                (6) 
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t=0: θ=0                                                                                                                (8a) 
 
t>0: θ=0, y=-1, θ=1, y=1                                                                                      (8b) 

 
 Equations (5) and (7) represent a system of coupled non-linear partial differential 
equations which can be solved numerically under the initial and boundary conditions (6) and 
(8) using the finite difference approximations.  The Crank-Nicolson implicit method is used 
[11].  Finite difference equations relating the variables are obtained by writing the equations 
at the mid point of the computational cell and then replacing the different terms by their 
second order central difference approximations in the y-direction.  The diffusion terms are 
replaced by the average of the central differences at two successive time levels.  The non-
linear terms are first linearized and then an iterative scheme is used at every time step to solve 
the linearized system of difference equations.  All calculations have been carried out for G=5, 
R=1, Pr=1, and Ec=0.2. 
 
 

RESULTS AND DISCUSSION 
 

Figures 1a and b present the time development of the velocity component u at the 
center of the channel (y=0), for various values of the parameters “a” and S and for b=0.  The 
figures show that increasing the parameter “a” increases u for all values of S as a result of 
decreasing the viscosity.  It is also shown that the steady state time of u increases with 
increasing “a” for all S.  Comparing Figs. 1a and b indicates that increasing S decreases u for 
all values of “a”.   Figures 2a and b present the time development of the temperature θ at the 
center of the channel (y=0), for various values of the parameters “a” and S and for b=0.  The 
figures show that increasing “a” increases θ for all values of S as a result of increasing the 
viscous dissipation.  It is also shown that the steady state time of θ increases with increasing 
“a” for all values of S.  The comparison between Figs. 2a and b shows that increasing S 
decreases θ for all values of “a”.  Also, it can be seen from Fig. 2a that θ may exceed the 
value 1 which is the temperature of the hot plate and this is due to the viscous dissipation. 

 
Figures 3a and 3b present the time development of the temperature θ at the center of 

the channel (y=0), for various values of the parameters “b” and S and for a=0. Figure 3a 
shows that, in the case of zero suction, the variation of the temperature θ with the parameter 
“b” depends on t where a crossover in θ-t charts occurs. For small t, θ increases with 
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increasing “b”, however, for large t, increasing “b” decreases θ. This occurs because, at low 
times, the center of the channel acquires heat by conduction from the hot plate, but after large 
time, when u is large, the viscous dissipation is large at the center and center looses heat by 
conduction. It is noticed that the parameter “b” has no significant effect on u in spite of the 
coupling between the momentum and energy equations. It is also shown in the figures that 
increasing the parameter “b” decreases the steady state time of θ.  Figure 3b indicates that, in 
the presence of suction, increasing “b” increases θ for all time and leads to the suppression of 
the crossover in θ-t charts. Comparing Figs. 3a and b shows that increasing S decreases θ for 
all values of “b”. 

 
Tables 1a and b present the variation of the steady state axial and transverse skin 

friction coefficients at both walls for various values of “a” and for S=0 and 2, respectively.  It 
is clear that increasing “a” increases the magnitude of τL and τU for the case S=0, as depicted 
in Table 1a.  Table 1b shows that, in the presence of suction, increasing “a” increases the 
magnitude of τU for all values of “a”. Increasing “a” increases τL for small and moderate 
values of “a”, however, increasing “a” more decreases τL.  Increasing S decreases τL but 
increases the magnitude of τU.  Tables 2 and 3 present the  variation  of  the  steady  state  
temperature θ at y=0,  the  Nusselt  number  at the  lower  and  upper plates for various values 
of the parameters “a” and “b” and, respectively, for S=0 and 2.   It is clear from Table 2 that 
increasing “a” increases θ, NuL and the magnitude of NuU for all values of “b”.  In the suction 
case, as shown in Table 3, increasing “a” increases θ, but decreases NuL and NuU for all 
values of “b”.  Table 2 indicates that increasing “b” decreases θ and the magnitude of NuU for 
all values of “a”.  On the other hand, increasing “b” increases NuL for all values of “a” except 
for negative values of “a” and “b” where increasing the magnitude of “b” decreases NuL.  
Table 3 shows that increasing “b” decreases NuL, and the magnitude of NuU but increases θ 
for all values of “a”. 
 

Table 1. - The Steady State Axial and Transverse Skin Friction Coefficients 
(a) S=0, (b) S=2 

 
       (a) S=0 a=-0.5 a=-0.1 a=0 a=0.1 a=0.5 

τL 5.2138 5.4494 5.4976 5.5396 5.5831 
         τU -2.9647 -4.1236 -4.4978 -5.9102 -6.9482 
 

     (b) S=2 a=-0.5 a=-0.1 a=0 a=0.1 a=0.5 
τL  2.2994 2.3484 2.3527 2.3546 2.3428 

         τU -3.5060 -5.1159 -5.6472 -6.2401 -9.3602 
 
 

Table 2. - Variation of the Steady State Temperature and the Nusselt Number  
at Both Walls of the Channel with the Parameters “a” and “b” and for S=0 

 
θ a=-0.5 a=-0.1 a=0 a=0.1 a=0.5 

b=-0.5 0.8594 1.0308 1.0888 1.1547 1.4789 
b=-0.1 0.8178 0.9290 0.9546 1.0042 1.1997 

b=0 0.8107 0.9129 0.9453 0.9812 1.1581 
b=0.1 0.8044 0.8989 0.9287 0.9615 1.1232 
b=0.5 0.7832 0.8564 0.8789 0.9036 1.0244 

 
       NuL a=-0.5 a=-0.1 a=0 a=0.1 a=0.5 

b=-0.5 2.0637 2.3867 2.4888 2.5995 3.0493 
b=-0.1 2.0626 2.3969 2.5013 2.6153 3.1463 

b=0 2.0678 2.4031 2.5073 2.6213 3.1583 
b=0.1 2.0741 2.4102 2.5145 2.6283 3.1691 
b=0.5 2.1049 2.4436 2.5474 2.6607 3.2074 
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      NuU a=-0.5 a=-0.1 a=0 a=0.1 a=0.5 

b=-0.5 -0.9711 -1.6109 -1.8097 -2.0236 -2.8695 
b=-0.1 -0.5219 -0.9038 -1.0248 -1.1589 -1.8219 

b=0 -0.4715 -0.8166 -0.9256 -1.0464 -1.6473 
b=0.1 -0.4319 -0.7464 -0.8454 -0.9549 -1.5023 
b=0.5 -0.3358 -0.5673 -0.6391 -0.7181 -1.1144 

 
 
 

CONCLUSION 
 

The unsteady Couette flow of a viscous incompressible fluid between two parallel plates has 
been studied with temperature dependent viscosity and thermal conductivity in the presence of 
uniform suction and injection.  It was found that increasing the viscosity exponent “a” increases the 
velocity u and the temperature θ for all values of the suction parameter S.  Increasing S decreases u 
and θ for all values of the parameter “a”.  In the case of zero suction, the effect of “b” on θ depends 
on the time t and leads to the appearance of crossover in θ-t charts.  On the other hand, in the 
presence of suction, increasing “b” increases θ for all time and leads to the suppression of the 
crossover in θ-t charts.  It was observed that the effect of suction on the velocity u depends greatly 
on the viscosity parameter.  The parameter “b” has a marked effect on the temperature field while 
its effect on the velocity field can be entirely neglected. 

 
Table 3. - Variation of the Steady State Temperature and the Nusselt Number  

at Both Walls of the Channel with the Parameters “a” and “b” and for $=2 
 

θ a=-0.5 a=-0.1 a=0 A=0.1 a=0.5 
b=-0.5 0.2824 0.2992 0.3028 0.3062 0.3163 
b=-0.1 0.3127 0.3316 0.3355 0.3391 0.3486 

b=0 0.3223 0.3415 0.3454 0.3489 0.3582 
b=0.1 0.3320 0.3514 0.3553 0.3589 0.3679 
b=0.5 0.3700 0.3894 0.3932 0.3966 0.4044 

 
       NuL a=-0.5 a=-0.1 a=0 A=0.1 a=0.5 

b=-0.5 0.5391 0.5302 0.5274 0.5244 0.5105 
b=-0.1 0.4248 0.4211 0.4187 0.4158 0.3996 

b=0 0.4067 0.4037 0.4014 0.3985 0.3817 
b=0.1 0.3913 0.3889 0.3866 0.3837 0.3662 
b=0.5 0.3464 0.3459 0.3436 0.3404 0.3205 

 
       NuU a=-0.5 a=-0.1 a=0 A=0.1 a=0.5 

b=-0.5 1.7446 1.3378 1.2287 1.1162 0.6346 
b=-0.1 0.9422 0.6985 0.6345 0.5692 0.2951 

b=0 0.8314 0.6092 0.5511 0.4919 0.2449
b=0.1 0.7392 0.5349 0.4818 0.4278 0.2029 
b=0.5 0.4878 0.3335 0.2938 0.2536 0.0886 

 
 

References: 
 

[1] CRAMER, K.R. and PAI, S.-I.: Magnetofluid dynamics for engineers and applied 
physicists. McGraw-Hill Book Co. (1973). 

[2] TANI, I.: J. of Aerospace Sci. 29, 287 (1962). 



22 

 

[3] SOUNDALGEKAR, V.M., VIGHNESAM, N.V., and TAKHAR, H.S.: IEEE Trans. Plasma Sci. 
PS-7(3), 178 (1979). 

[4] SOUNDALGEKAR, V.M. and UPLEKAR, A.G.: IEEE Trans. Plasma Sci. PS-14(5), 579 
(1986). 

[5] ATTIA, H.A.: Can. J. Phys. 76(9), 739 (1998). 

[6] HERWIG, H. and WICKEN, G.: Warme-und Stoffubertragung 20, 47 (1986). 

[7] KLEMP, K., HERWIG, H. and SELMANN, M.: Entrance flow in channel with temperature 
dependent viscosity including viscous dissipation effects. Proc. Third Int. Cong. Fluid 
Mech., Cairo, Egypt 3, 1257 (1990). 

[8] ATTIA, H.A. and KOTB, N.A.: Acta Mechanica 117, 215 (1996). 

[9] ATTIA, H.A.: Mech. Res. Comm. 26(1), 115 (1999). 

[10] WHITE, M.F.: Viscous fluid flow. McGraw-Hill (1991). 

[11] AMES, W.F.: Numerical solutions of partial differential equations, 2nd ed. Academic 
Press, New York (1977). 

 



23 

 

0
1
2
3
4
5

0 1 2 3 4

t

u

a=-0.5 a=0 a=0.5
 

(a) 
 

0

1

2

3

4

0 1 2 3 4

t

u

a=-0.5 a=0 a=0.5
 

(b) 
Fig. 1 Time development of u at y=0 for various values of a and S 

(a) S=0; (b) S=1. (b=0) 
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(b) 
Fig. 2 Time development of θ  at y=0 for various values of a and S 

(a) S=0; (b) S=1. (b=0) 
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(b) 
Fig. 3 Time development of θ  at y=0 for various values of b and S 

(a) S=0; (b) S=1. (a=0) 


