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ABSTRACT. Let Pn be the n-vertex path, whose vertices are labelled consecutively by

v1, v2, . . . , vn . For a ≥ 1 and 1 ≤ i ≤ n , the generalized broom Pn(i, a) is the (n+ a)-vertex

tree, obtained by attaching a pendent vertices to the vertex vi of Pn . For a, b ≥ 1 and

1 ≤ i < j ≤ n , the generalized double broom Pn(i, a|j, b) is the (n + a + b)-vertex tree,

obtained by attaching a pendent vertices to the vertex vi of Pn , and b pendent vertices to

the vertex vj of Pn . In this paper we study the spectra and energies of Pn , Pn(i, a) , and

Pn(i, a|j, b) , but some more general results are also pointed out.
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INTRODUCTION

The study of eigenvalues and characteristic polynomials of trees is a well-developed

part of spectral graph theory [1]. Also since the publication of the seminal monograph

[1], numerous results along these lines have been obtained, e. g. [2–9].

If G is a graph on n vertices and λ1, λ2, . . . , λn are its eigenvalues, then the energy

of G is defined as

E(G) =
n∑

i=1

|λi| .

The first results on the energy of trees were obtained as early as in 1977 [10]. In

the meantime scores of results on this topic have accumulated; for some most recent

of them see [11–24]. For more detail on graph energy see the recent review [25].

Let Pn be the n-vertex path, whose vertices are labelled by v1, v2, . . . , vn , so that

vi and vi+1 are adjacent, i = 1, 2, . . . , n − 1 . For a ≥ 1 and 1 ≤ i ≤ n , the

generalized broom Pn(i, a) is the (n+a)-vertex tree, obtained by attaching a pendent

vertices to the vertex vi of Pn . We call Pn(i, a) the “generalized broom”, because in

previous papers [26, 27] the tree Pn(1, a) was named “broom”. In [26] it was shown

that among all trees with a fixed number of vertices and fixed diameter, Pn(1, a) has

minimal energy. In [27] it was shown that Pn(1, a) has minimal energy also among

all trees with a fixed number of vertices and fixed number of pendent vertices.

For a, b ≥ 1 and 1 ≤ i < j ≤ n , the generalized double broom Pn(i, a|j, b) is the

(n + a + b)-vertex tree, obtained by attaching a pendent vertices to the vertex vi of

Pn , and b pendent vertices to the vertex vj of Pn . In view of the above, Pn(1, a|n, b)

should be referred to as a “double broom”.

ON THE COMPUTATION OF THE CHARACTERISTIC POLYNOMIAL

OF A TREE

In this paper we are mainly concerned with trees (i. e., connected acyclic graphs)

and forests (i. e., acyclic, but not necessarily connected graphs). Recall that the

characteristic polynomial of a graph G is the monic degree-n polynomial [1]

φ(G) = φ(G, λ) = det(λIn − A)
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where A is the adjacency matrix of G .

The roots λ1, λ2 . . . , λn of φ(G, λ) are the eigenvalues of G , while the set of the

eigenvalues is the spectrum of G [1].

Denote by m(G, k) the number of k-matchings of the graph G (that is, the number

of selection of k independent edges in G). By definition, m(G, 0) = 1 and m(G, 1) =

number of edges of G .

If T is an n-vertex tree, then [1]

φ(T, λ) =
∑

k≥0

(−1)k m(T, k) λn−2k . (1)

We are interested in explicitly constructing the characteristic polynomial of a tree

T . One reduction method, first reported by Heilbronner [28, 29], works as follows.

Let e be an edge connecting the vertices x1 and x2 . Then1

φ(T ) = φ(T − e)− φ(T − x1 − x2) . (2)

If x1 is a pendent vertex of T , and x2 is its neighbor, then, as a special case of

Eq. (2) we have

φ(T ) = λφ(T − x1)− φ(T − x1 − x2) . (3)

Two other relations for the characteristic polynomial, that are frequently used in

the below considerations, are

φ(G1 ∪G2) = φ(G1) φ(G2) and φ(En) = λn

where by G1 ∪G2 is denoted the graph composed of disjoint components G1 and G2 ,

and where En is the n-vertex graph without edges.

CHARACTERISTIC POLYNOMIALS OF BROOMS AND DOUBLE BROOMS

Applying Eq. (3) successively to the a pendent vertices of the generalized broom

Pn(i, a) , we obtain

φ(Pn(i, a)) = λa φ(Pn)− a λa−1 φ(Pi−1) φ(Pn−i) (4)

1Eq. (2) holds for all graphs, if e is a bridge. Thus, in particular, Eq. (2) holds for any edge of
any forest.
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which for the simple broom (i = 1) reduces to

φ(Pn(1, a)) = λa φ(Pn)− a λa−1 φ(Pn−1) . (5)

In a similar manner, by applying Eq. (3) successively to the b pendent vertices of

the generalized double broom Pn(i, a|j, b) , we get

φ(Pn(i, a|j, b)) = λb φ(Pn(i, a))− b λb−1 φ(Pj−1(i, a)) φ(Pn−j)

which combined with (4) yields

φ(Pn(i, a|j, b)) = λa+b φ(Pn)− a λa+b−1 φ(Pi−1) φ(Pn−i)

− b λa+b−1 φ(Pj−1) φ(Pn−j) + ab λa+b−2 φ(Pi−1) φ(Pj−i−1) φ(Pn−j) .

For the simple double broom (i = 1 , j = n) the above expression is simplified as:

φ(Pn(1, a|n, b)) = λa+b φ(Pn)− (a + b) λa+b−1 φ(Pn−1) + ab λa+b−2 φ(Pn−2) . (6)

In order to proceed, recall that the Chebyshev polynomial of the first kind, Tn(x) ,

may be defined by the following recurrence relation. Set T0(x) = 1 and T1(x) = x .

Then

Tn(x) = 2xTn−1(x)− Tn−2(x) , n = 2, 3, . . . .

The Chebyshev polynomial of the second kind, Un(x) , may be defined by an analogous

recurrence relation,

Un(x) = 2xUn−1(x)− Un−2(x) , n = 2, 3, . . .

with U0(x) = 1 and U1(x) = 2x .

Consider now the broom Pn(1, 2) , a tree with n + 2 vertices.

Proposition 1. The characteristic polynomial of Pn(1, 2) satisfies the identity

φ(Pn(1, 2)) = 2λTn+1(λ/2) . (7)

Proof. Induction on n . Notice that if n = 0, then Pn(1, 2) is composed by two

isolated vertices whose characteristic polynomial is λ2 = 2λT1(λ/2) . If n = 1 ,
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then Pn(1, 2) is a star with 3 vertices whose characteristic polynomial is λ(λ2 − 2) =

2λT2(λ/2) . Assuming that the result is true for all n = 0, 1, . . . , n′ − 1, consider the

broom Pn′(1, 2) . Applying the reduction method given by Eq. (3) to the end-vertex

vn′ of Pn′(1, 2) , and using the induction hypothesis, we obtain

φ(Pn′(1, 2)) = λφ(Pn′−1(1, 2))− φ(Pn′−2(1, 2))

= λ [2λTn′(λ/2)]− [2λ Tn′−1(λ/2)]

= 2λ

(
2 · λ

2
Tn′(λ/2)− Tn′−1(λ/2)

)

= 2λTn′+1(λ/2) .

Thus, Eq. (7) hods also for n = n′ , which proves the result. ¤

Proposition 2. The characteristic polynomial of the path Pn with n is

φ(Pn) = Un(λ/2) .

Proof. See [1, p. 73]. ¤

Theorem 1. The characteristic polynomial of the broom Pn(1, a) is

φ(Pn(1, a)) = λa−1 [Un+1(λ/2)− (a− 1)Un−1(λ/2)] .

Proof. Combine Proposition 2 with Eq. (5). ¤

Corollary 1.1. For any integer n ≥ 1 ,

Un+1(x)− Un−1(x) = 2 Tn+1(x) .

Proof. This follows by applying the theorem to Pn(1, 2) and taking into account

Proposition 1. ¤

Theorem 2. The characteristic polynomial of the double broom Pn(1, a|n, b) is

φ(Pn(1, a|n, b)) = λa+b Un(λ/2)− (a + b) λa+b−1 Un−1(λ/2) + ab λa+b−2 Un−2(λ/2) .

Proof. Combine Proposition 2 with Eq. (6). ¤
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Corollary 2.1. The characteristic polynomial of the double broom Pn(1, 2|n, 2)

satisfies the identity

φ(Pn(1, 2|n, 2)) = (λ4 − 4 λ2) Un(λ/2) .

Proof. In view of Proposition 2, it suffices to show that

φ(Pn(1, 2|n, 2)) = (λ4 − 4 λ2) φ(Pn) . (8)

From (6) we get

φ(Pn(1, 2|n, 2)) = λ4 φ(Pn)− 4 λ3 φ(Pn−1) + 4 λ2 φ(Pn−2)

= λ4 φ(Pn)− 4 λ2 [λφ(Pn−1)− φ(Pn−2)]

= λ4 φ(Pn)− 4 λ2 φ(Pn)

from which Eq. (8) follows. ¤

ENERGY OF BROOMS AND DOUBLE BROOMS

Proposition 3.

E(Pn) = 2
n∑

k=1

∣∣∣∣ cos
k π

n + 1

∣∣∣∣ .

Proof. This, otherwise well known result [1, 29], follows from Proposition 2 and the

(also well known) fact that the roots of Un are cos[(k π)/(n + 1)] , k = 1, . . . , n . ¤

Proposition 4.

E(Pn(1, 2)) = 2
n+1∑

k=0

∣∣∣∣ cos
(2k + 1)π

2n + 2

∣∣∣∣ .

Proof. This earlier reported result [30] follows from Proposition 1 and the fact that

the roots of Tn are cos[(2k + 1)π/(2n)] , k = 0, . . . , n− 1 . ¤

Proposition 5. E(Pn(1, 2|n, 2)) = E(Pn) + 4 .

Proof. See the proof of Corollary 2.1. ¤
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In a number of papers, published in the 1970s and 1980s [10, 31–38], one of the

present authors and Fuji Zhang considered the relation T1 Â T2 between two trees T1

and T2 (as well as an analogous relation between bipartite graphs).

Definition. Let the quantities m(T, k) be same as in Eq. (1). If T1 and T2 are two

trees, and if m(T1, k) ≥ m(T2, k) holds for all k ≥ 0 , then we write T1 º T2 . If

m(T1, k) > m(T2, k) for at least one k , then we write T1 Â T2 .

The importance of the relation Â lies in the fact [10] that the energy of a tree T

is a monotonically increasing function of the coefficients m(T, k) . Therefore, we have

[10]:

Proposition 6. T1 º T2 implies E(T1) ≥ E(T2) . T1 Â T2 implies E(T1) > E(T2) .

In the papers [10, 31–38] the relation Â was established for a variety of pairs of

trees and other types of graphs. Here we point out only one of these results.

Proposition 7. [37] Let, as before, Pn be the n-vertex path, whose vertices are

consecutively labelled by v1, v2, . . . , vn . Let T be an arbitrary tree and v its arbitrary

(but fixed) vertex. Let Pn(i, T ) be the graph obtained by identifying the vertex vi of

Pn with the vertex v of T . Then for n = 4k + h , h ∈ {−1, 0, 1, 2} , k ≥ 1 ,

Pn(1, T ) Â Pn(3, T ) Â · · · Â Pn(2k + 1, T ) Â Pn(2k, T )

Â Pn(2k − 2, T ) Â · · · Â Pn(2, T ) .

It should be noted that the Proposition 7 remains valid if the tree T is replaced

by an arbitrary graph G [37].

Applying Propositions 6 and 7 to the generalized brooms we obtain:

Theorem 3. Let Pn(i|a) be the generalized broom and let n = 4k + h , h ∈
{−1, 0, 1, 2} , k ≥ 1 . Then

E(Pn(1, a)) > E(Pn(3, a)) > · · · > E(Pn(2k + 1, a)) > E(Pn(2k, a))

> E(Pn(2k − 2, a)) > · · · > E(Pn(2, a)) .

A less straightforward result of the same kind is:
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Theorem 4. Using an analogous notation as in Proposition 7, let T ′ and T ′′ be

arbitrary trees, v′ an arbitrary (but fixed) vertex of T ′ , and v′′ an arbitrary (but

fixed) vertex of T ′′ . Let Pn(i, T ′|j, T ′′) be the graph obtained by identifying the

vertex vi of Pn with the vertex v′ of T ′ and by identifying the vertex vj of Pn with

the vertex v′′ of T ′′ . Then for 3 ≤ i < j ≤ n− 2 ,

Pn(1, T ′|n, T ′′) Â Pn(i, T ′|j, T ′′) Â Pn(2, T ′|n− 1, T ′′) .

Proof.

In view of Eq. (1), the Heilbronner formula (2) is tantamount to

m(T, k) = m(T − e, k) + m(T − x1 − x2, k − 1) for all k ≥ 1 . (9)

Applying the Eq. (9) to the edge connecting the vertices vj−1 and vj of the tree

Pn(i, T ′|j, T ′′) , we get

m(Pn(i, T ′|j, T ′′), k) = m(Pj−1(i, T
′) ∪X, k) + m(Pj−2(i, T

′) ∪ Y, k − 1) (10)

where X = Pn−j+1(1, T
′′) and Y = Pn−j+1(1, T

′′)− v1 .

Assume now that the parameter j in (Pn(i, T ′|j, T ′′) is fixed. If so, then the

structure of the subgraphs X and Y is also fixed. Then from Proposition 7 we

conclude that both terms m(Pj−1(i, T
′) ∪X, k) and m(Pj−2(i, T

′′) ∪ Y, k − 1) will be

maximal (resp. minimal) if i = 1 (resp. i = 2). Then by Eq. (10), for fixed value of

j , the term m(Pn(i, T ′|j, T ′′), k) will be maximal and minimal for i = 1 and i = 2 ,

respectively, i. e.,

m(Pn(1, T ′|j, T ′′), k) ≥ m(Pn(i, T ′|j, T ′′), k) > m(Pn(2, T ′|j, T ′′), k)

holds for all values of k ≥ 0 and for 3 ≤ i < j .

By symmetry, for fixed value of the parameter i ,

m(Pn(i, T ′|n, T ′′), k) ≥ m(Pn(i, T ′|j, T ′′), k) > m(Pn(i, T ′|n− 1, T ′′), k)

holds for all values of k ≥ 0 and for i < j ≤ n− 2 .

Theorem 4 follows by combining the above two results. ¤
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Corollary 4.1. For the trees Pn(i, T ′|j, T ′′) specified in Theorem 4, and for 3 ≤ i <

j ≤ n− 2 ,

E(Pn(1, T ′|n, T ′′)) > E(Pn(i, T ′|j, T ′′)) > E(Pn(2, T ′|n− 1, T ′′)) .

Corollary 4.2. Let Pn(i, a|j, b) be the generalized double broom. Then for 3 ≤ i <

j ≤ n− 2 ,

Pn(1, a|n, b) Â Pn(i, a|j, b) Â Pn(2, a|n− 1, b)

and

E(Pn(1, a|n, b)) > E(Pn(i, a|j, b)) > E(Pn(2, a|n− 1, b)) .

Extending Theorem 4 to specifying the trees Pn(i, T ′|j, T ′′) with second–maximal

and second–minimal energy seems to be a less easy task. It is not difficult to envis-

age that the species with second–maximal energy could be either Pn(3, T ′|n, T ′′) or

Pn(1, T ′|n− 2, T ′′) , but the complete answer may depend on the actual structure of

T ′ and T ′′ .

As for the energy of the double broom Pn(1, a|n, b) we can say something more.

Theorem 5. Among the double brooms Pn(1, a|n, b) with fixed number p of pen-

dent vertices (p = a + b), the double broom Pn(1, p − 2|n, 2) has minimal whereas

Pn(1, dp/2e|n, bp/2c) has maximal energy.

Proof. Assume that a ≥ b . Applying Eq. (9) to one of the pendent edges incident

to the vertex vn of Pn(1, a|n, b) results in:

m(Pn(1, a|n, b), k) = m(Pn(1, a|n, b− 1), k) + m(Pn−1(1, a), k − 1) .

Applying Eq. (9) to one of the pendent edges incident to the vertex v1 of the double

broom Pn(1, a + 1|n, b− 1) results in:

m(Pn(1, a + 1|n, b− 1), k) = m(Pn(1, a|n, b− 1), k) + m(Pn−1(1, b), k − 1) .

Then

m(Pn(1, a|n, b), k)−m(Pn(1, a + 1|n, b− 1), k)

= m(Pn−1(1, a), k − 1)−m(Pn−1(1, b), k − 1) . (11)
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If a = b then the right–hand side Eq. (11) is equal to zero for all values of k . If a > b

then the broom Pn−1(1, b) is a proper subgraph of the broom Pn−1(1, a) and therefore

the right–hand side of (11) is non-negative for all k and positive at least for k = 2 .

Consequently,

m(Pn(1, a|n, b), k) ≥ m(Pn(1, a + 1|n, b− 1), k) for all k ≥ 0

i. e.,

Pn(1, a|n, b) Â Pn(1, a + 1|n, b− 1) .

Theorem 5 follows. ¤

Theorem 6. Among the double brooms Pn(1, a|n, b) with fixed number N vertices

(N = n + a + b), PN−4(1, 2|N − 4, 2) has maximal whereas P2(1, N − 4|2, 2) has

minimal energy.

Proof. Denote by Sn the n-vertex star, and by En the n-vertex graph without edges.

Apply Eq. (9) to the edge between the vertices vn−1 and vn of Pn(1, a|n, b) . This

yields:

m(Pn(1, a|n, b), k) = m(Pn−1(1, a) ∪ Sb+1, k) + m(Pn−2(1, a) ∪ Eb, k − 1) .

Apply now Eq. (9) to the edge between the vertices vn−1 and vn of Pn+1(1, a|n +

1, b− 1) . This yields:

m(Pn+1(1, a|n + 1, b− 1), k) = m(Pn−1(1, a) ∪ Sb+1, k) + m(Pn−2(1, a) ∪ Sb, k − 1) .

Therefore

m(Pn+1(1, a|n + 1, b− 1), k)−m(Pn(1, a|n, b), k)

= m(Pn−2(1, a) ∪ Sb, k − 1)−m(Pn−2(1, a) ∪ Eb, k − 1) .

The right–hand side of the latter equality is evidently positive for some and zero for

the other values of k , implying

Pn+1(1, a|n + 1, b− 1) Â Pn(1, a|n, b)

and

E(Pn+1(1, a|n + 1, b− 1)) > E(Pn(1, a|n, b)) .
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In other words, extending the diameter of the double broom on the expense of the

number of pendent vertices, increase the energy. Hence the maximal–energy double

broom will have a minimal number of pendent vertices (= 2) on each of its side.

The minimal–energy double broom will have smallest possible diameter, i. e.,

n = 2 . The requirement that the difference between the parameters a and b be as

large as possible follows from Theorem 5. ¤

The energy of the maximal–energy N -vertex double broom PN−4(1, 2|n, 2) is deter-

mined by Proposition 5. By an easy calculation we find that for the minimal–energy

N -vertex double broom E(P2(1, N−4|2, 2) = 2
√

N − 1 +
√

8N − 32 . Thus we arrive

at:

Corollary 6.1. For n ≥ 2 , a ≥ 2 , b ≥ 2 , the energy of the double broom Pn(1, a|n, b)

satisfies the inequalities

2

√
n + a + b− 1 +

√
8n + 8a + 8b− 40 ≤ E(Pn(1, a|n, b)) ≤ 4 + E(Pn+a+b−4)

with equality on the left–hand side if and only if n = 2 and a = 2 or b = 2 , and with

equality on the right–hand side if and only if a = b = 2 .
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