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ABSTRACT. The heat transfer in a steady laminar stagnation point flow of an 
incompressible non-Newtonian micropolar fluid impinging on a permeable 
stretching surface with heat generation or absorption is investigated. Numerical 
solution for the governing nonlinear momentum and energy equations is obtained.  
The effect of the characteristics of the non-Newtonian fluid, the surface stretching 
velocity, and the heat generation/absorption coefficient on the heat transfer is 
presented 

 
 
 

INTRODUCTION 
 

The two dimensional flow of a fluid near a stagnation point is a classical problem in 
fluid mechanics.  It was first examined by HIEMENZ who demonstrated that the Navier-Stokes 
equations governing the flow can be reduced to an ordinary differential equation of third order 
using similarity transformation [1].  Owing to the nonlinearities in the reduced differential 
equation, no analytical solution is available and the nonlinear equation is usually solved 
numerically subject to two-point boundary conditions, one of which is prescribed at infinity. 

 
Flow of an incompressible viscous fluid over stretching surface has important 

applications in polymer industry. For instance, a number of technical processes concerning 
polymers involves the cooling of continuous strips (or filaments) extruded from a die by 
drawing them  through a stagnant fluid with controlled cooling system and in the process of 
drawing these strips are sometimes stretched.  The quality of the final product depends on the 
rate of heat transfer at the stretching surface. CRANE [2] gave a similarity solution in closed 
analytical form for steady two-dimensional  incompressible boundary layer flow caused by 
the stretching of a sheet which moves in its own plane with a velocity varying linearly with 
the distance from a fixed point.  CHIAM [3] has combined the steady boundary layer problems 
of flow over a stretching sheet, originally studied by CRANE [2], and the Hiemenz two-
dimensional stagnation-point flow into a new boundary layer problem of steady two-
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dimensional point Newtonian fluid flow over a stretching sheet.  Subsequently, CHIAM [4] 
extended his earlier analysis to include heat transfer with variable conductivity.  Temperature 
distribution in the steady plane stagnation-point flow of a viscous fluid towards a stretching 
surface was investigated by MAHAPATRA and GUPTA [5].  Steady flow of a non-Newtonian 
micropolar fluid past a stretching sheet was investigated by NASAR et al. [6] with zero vertical 
velocity at the surface.   
 The purpose of the present paper is to study the heat transfer in a steady laminar 
stagnation point flow of an incompressible non-Newtonian micropolar fluid impinging on a 
permeable stretching surface with heat generation or absorption.  The wall and stream 
temperatures are assumed to be constants. A numerical solution is obtained for the governing 
momentum and energy equations using finite difference approximations which takes into 
account the asymptotic boundary conditions.  The numerical solution computes the flow and 
heat characteristics for the whole range of the non-Newtonian fluid characteristics, the 
stretching velocity, the heat generation/absorption coefficient and the Prandtl number. 

 
 

FORMULATION OF THE PROBLEM 
 

Consider the two-dimensional stagnation point flow of an incompressible non-Newtonian 
micropolar fluid near a stagnation point at a surface coinciding with the plane y=0, the flow 
being  in a region y>0.  Two equal and opposing forces are applied along the x-axis so that the 
surface is stretched in the x-axis direction keeping the origin fixed such that the x-component 
of the velocity varies linearly along it. Considering the case of vanishing of anti-symmetric 
part of the stress tensor, which denotes weak concentration of microelements [6], the final 
form of the equations governing the flow in the boundary layer of a steady, laminar and 
incompressible micropolar fluid are given by [6], 
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subject to the boundary conditions 
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where K  is the material parameter, C is the stretching parameter, f is a non-dimensional 
scaled variable related to velocity, and primes denote differentiation with respect to 
dimensionless vertical distance η.  If we now 
take ηηηη 2/12/1 )2/1(),()2/1()( −+=+= KhKf , Eq. (1) reduces, respectively, to (the bar 
will be dropped for convenience) 
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Using the boundary layer approximations and neglecting the dissipation, the final form 

of the energy equation and the appropriate boundary conditions including the heat 
generation/absorption term is given by [5], 
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where kc p /Pr µ=  is the Prandtl number, pcbQB ρ/=  is the dimensionless heat 
generation/absorption coefficient, θ is the dimensionless temperature, ρ is the density of the 
fluid, pc  is the specific heat capacity at constant pressure of the fluid, k is the thermal 
conductivity of the fluid, Q is the volumetric rate of heat generation/absorption, and b is a 
constant related to the stretching velocity of the wall.   
 

It should be pointed out that in our work we have added heat generation and 
absorption in contrast to the work of CHIAM [4] and MAHAPATRA and GUPTA [5] where this 
term was not taken into consideration.  Also, we choose constant wall temperature condition 
as given by MAHAPATRA and GUPTA [5], while constant and variable wall temperature 
distributions are considered. 
 
 The flow Eqs. (2) and (3) are decoupled from the energy Eqs. (4) and (5), and need to 
be solved before the latter can be solved.  The flow Eq. (3) constitutes a non-linear, non-
homogeneous boundary value problem (BVP).  In the absence of an analytical solution of a 
problem, a numerical solution is indeed an obvious and natural choice.  The flow Eqs. (2) and 
(3) are solved numerically using finite difference approximations.   
 
 The energy Eq. (4) is a linear second order ordinary differential equation with variable 
coefficient, f(η ), which is known from the solution of the flow Eqs. (2) and (3) and the 
Prandtl number Pr is assumed constant.  Equation (4) is solved numerically under the 
boundary condition (5) using central differences for the derivatives and Thomas' algorithm for 
the solution of the set of discritized equations.  The resulting system of equations has to be 
solved in the infinite domain 0<η <∞.  A finite domain in the η -direction can be used instead 
with η  chosen large enough to ensure that the solutions are not affected  by imposing the 
asymptotic conditions at a finite distance.  Grid-independence studies show that the 
computational domain 0<η <η ∞ can be divided into intervals each is of uniform step size 
which equals 0.02.  The value η ∞=10 was found to be adequate for all the ranges of 
parameters studied here.  
 
 

RESULTS AND DISCUSSION 
 

Figure 1 presents the profile of temperature θ for various values of C and K and for 
Pr=0.7 and B=0.1.  It is clear that increasing C decreases θ and its effect on θ becomes more 
apparent for smaller values of K.  The figure indicates that the thermal boundary layer 
thickness decreases when C increases.  Increasing K decreases θ for all C and its effect is 
more clear for smaller C.  Figure 2 presents the temperature profiles for various values of C 
and B and for K=1 and Pr=0.7.  Increasing B increases the temperature θ and the boundary 
layer thickness.  The effect of B on θ is more pronounced for smaller C.  Figure 3 presents the 
effect of the parameter K on the profile of the temperature θ for C=1.5, Pr=0.7 and B=0.1.  It 
is shown in Fig. 3 that increasing K slightly increases θ for all distances.    

 
Table 1 presents the variation of the dimensionless heat transfer rate at the wall 

)0(θ ′ for various values of C and K and for Pr=0.7 and B=0.1.  It is shown that, increasing C 
or K increases )0(θ ′− . Table 2 presents the effect of the parameters C and B on )0(θ ′−  for 
K=1 and Pr=0.7.  Increasing C increases )0(θ ′−  for all B.  But, increasing B decreases 

)0(θ ′−  for all C.  
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Table 1. Variation of the rate of heat transfer at the wall )0(θ ′−  with C and K (Pr=0.7, 
B=0.1) 

K C=0.1 C=0.2 C=0.5 C=1 C=1.1 C=1.2 C=1.5 
0 0.3913 0.4254 0.5089 0.6201 0.6399 0.6589 0.7136 
1 0.4295 0.4540 0.5221 0.6201 0.6379 0.6553 0.7049
2 0.4538 0.4731 0.5313 0.6201 0.6366 0.6527 0.6989 

 

Table 2. Variation of the rate of heat transfer at the wall )0(θ ′−  with C and B (K=1, Pr=0.7) 
B C=0.1 C=0.2 C=0.5 C=1 C=1.1 C=1.2 C=1.5 

-0.1 0.5745 0.5885 0.6351 0.7127 0.7277 0.7424 0.7853 
0 0.5072 0.5252 0.5807 0.6676 0.6839 0.6998 0.7459

0.1 0.4295 0.4540 0.5221 0.6201 0.6379 0.6553 0.7049 
 
 

CONCLUSIONS 
 

The heat transfer in a steady laminar stagnation point flow of an incompressible non-
Newtonian micropolar fluid impinging on a permeable stretching surface with heat generation 
/ absorption was investigated. A numerical solution for the governing nonlinear momentum 
and energy equations was obtained which allows the computation of the flow and heat 
transfer characteristics for various values of the non-Newtonian parameter K, the stretching 
velocity C, and the heat generation/absorption coefficient B.  The results indicate that 
increasing the stretching velocity decreases the temperature as well as the thermal boundary 
layer thickness.  The effect of the stretching parameter on temperature is more apparent for 
smaller values of the non-Newtonian parameter.   The effect of the heat generation/absorption 
parameter B on the rate of heat transfer at the wall becomes more apparent for smaller C. 
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Fig. 1 Effect of the parameters C and K on the profile of θ  (Pr=0.7, B=0.1) 
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Fig. 2 Effect of the parameters C and B on the profile of θ  (K=1, Pr=0.7) 
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Fig. 3 Effect of the parameter K on the profile of θ  (C=1.5, Pr=0.7, B=0.1) 
 


