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ABSTRACT. The paper deals with the physical states of an elastic pendulum near its reso-
nant point. As far as we know, in the rich literature on the subject there is a lack of experimen-
tal studies of variable mass harmonic oscillations. We perform a set of such measurements in 
order to investigate the behavior of non-stationary oscillators including autoparametric reso-
nance conditions. Our experiments reveal that the lateral instability really starts when the bob 
mass equals the critical value predicted by the linear theory of the phenomenon. The subse-
quent evolution of the motion is generally very complex and strongly depends on many subtle 
details of the physical system at the early moments in the post-resonant period. 
We also undertook the detailed computational job to compare the full theory of the elastic pen-
dulum with the linear approximation and found that the main predictions of the linear theory, 
as stated in [1], are correct. The characteristic comparisons of vertical and horizontal oscilla-
tions are presented.  

 
 

1. INTRODUCTION 
 

The elastic pendulum (also known as the extensible pendulum or spring pendulum) 
is a simple pendulum with a spring incorporated in its string. This sort of harmonic oscilla-
tor placed in a gravitational field sometimes exhibits loss of lateral stability. The horizontal 
or pendulum oscillations of such kind are due to parametric resonance.  

As we will describe below, if the pendulum weight is forced to start with some ver-
tical displacement, but no horizontal displacement, vertical oscillations are set up and the 
bob will simply bounce up and down. However, if the frequency of the vertical harmonic 
oscillations is exactly twice the pendulum frequency, the vertical motion becomes para-
metrically unstable. It means that any small initial horizontal deviation of the bob from the 
vertical equilibrium position results in an exponentially increasing pendulum motion. Evi-
dently, the energy of the spring oscillations goes into the pendulum oscillations. After the 
full amount of the energy is transferred, the centrifugal force initiates the reverse process. 
The initial state will be soon restored. Of course, then begins a novel cycle of this recur-
rence process, and so on.  

The elastic pendulum is seemingly a simple physical system. Nevertheless, it can 
exhibit very complex phenomena, which require rather sophisticated analytical methods 
for the satisfactory explanations). Therefore, this mass-spring-sting combination has been 
treated many times in the past, as a challengeable scientific problem. ANIČIN, DAVIDOVIĆ 
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and BABOVIĆ [1] give a literature survey of the subject, with short critical notes of some 
extent. In addition, the elastic pendulum has been often used as an efficient model when 
treating different problems in several fields of physics, e.g. in accelerators physics (theory 
of orbital oscillations), nonlinear optics and plasma physics (wave-wave interactions).  

In the cited paper [1] the authors have presented the linear theory of the elastic 
pendulum. The standpoint there adopted is the Ince-Strutt stability chart of the Mathieu 
equation. They have determined graphically the range of mass leading to instability for 
particular amplitude of the initial vertical oscillation and the corresponding growth coeffi-
cient. In the beginning, they have derived the relevant system of two nonlinear coupled 
differential equations. Further, the authors have restricted their analyses to the case of mo-
tion limited to a relatively small region around the origin in the ( ,x y ) plane, i.e. for  
and . The linear system of equations appeared fully capable to demonstrate the pa-
rametric resonance at 

1x �
1y �

2 2 1ω ω=  and practically to remove the possibility of the parametric 
resonance at 2 1ω ω=  (here, 1ω  and 2ω  are, respectively, the angular frequencies of hori-
zontal and vertical harmonic oscillations). 

In this paper, we are going to perform two tasks. First, we want to study numeri-
cally the original, nonlinear system of coupled differential equations for the given lateral 
instability problem – without any linearization procedure. So far, a direct numerical analy-
sis has not been performed and it is doubtful how much the linear approximation is reli-
able. Secondly, we have done an experiment with variable mass elastic pendulum. Our aim 
was to study the resonant process while passing the critical combinations of relevant pa-
rameters during time. As far as we know, no one has yet reported on such type of observa-
tions when dealing with a laterally unstable harmonic oscillator.  

In the next section we will, in the sake of readers comfort, present the detailed the-
ory of the elastic pendulum and outline the relevant equation published in several papers 
on the subject, among them in above cited reference [1].  

 
 

2. THEORY 
 

In order to write down all the necessary expressions, let us take the advantage of 
the figure 1, where is sketched the elastic pendulum: a bob hanged on string with an incor-
porated spring.  

 

 

 

 

 

 

 

 

Fig. 1  Elastic pendulum in the position when its string makes 
the angle ϕ  with the vertical Y − axis; ( ),x y  point defines the 
instantaneous position of the pendulum weight; the point O is the 
origin of the Cartesian right-handed system and represents the 
locus of weight in the static equilibrium. 
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The Cartesian axes start from the origin that physically represents the equilibrium 
point of the attached weight. The coordinates 

,X Y
( ),x y  give the instantaneous position of the 

weight. We will designate the spring stiffness constant with k . For the mass of the bob let 
us write . This mass depends on time. The angular frequency of the vertical harmonic 
oscillations is then  

m

 

 2
k
m

ω = . (1) 

 

Assume that  is the acceleration due to gravity. The natural length of the pendulum we 
will denote with . When the bob is attached, the spring would become longer, according 
to the relation  

g

0l

 0 1= +l l l . (2) 

 

Of course, the additional length  is determined with the above-defined parameters, and 
in fact 

1l

 1
mg
k

=l  (3) 

In the operating position depicted on the figure 1, the bob is for the distance λ  apart from 
the point of suspension (therefore, λ  is the pendulum length at a given instant). The Carte-
sian coordinates of the bob in this position are  and , whereas the polar ones are x y λ  and 
ϕ .  

 Using the geometry (sketched on the figure 2) of the two forces which are  

 
Fig. 2  Forces acting on the pendulum bob in the position sketched in Fig. 1; T is the 

string tension, 

r

gr  the acceleration due to gravity. 

acting on the oscillating bob, we write according to the Newton second law 
 

 ma T mg= +
rr r . (4) 

The projection of this vector equation on the abscissa yields 

 
2

2 sind xm T
dt

ϕ= − . (5) 
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Here we may put sin /xϕ λ= . The force in string, according to Hook’s law reads 
 

 ( )0T k λ= − l . (6) 

Hence, we obtain 

 ( )
2

02

d x xm k
dt

λ
λ

= − − + −l l l . (7) 

Recall that . The above equation could be divided with the length ; in 
what follows we shall consider that 

( )0k − =l l mg l

x  and λ  are the normalized quantities. Therefore, 
 

 ( )
2

2 1d x k x g x
dt m

λ
λ λ

= − − −
l

. (8) 

We can extent the both sides of this equation with the expression 2
1 xω , where 1 /gω = l . 

The equation which originate from such a procedure could be put in the form 
 

 ( )
2

2 2 2
1 2 12

1d x x x
dt

λω ω ω
λ
−

+ = − − . (9) 

Using the abbreviation  
 2

2
2
1β ω ω= − , (10) 

we arrive at the expression  

 
2

2
12

1d x x x
dt

λω β
λ
−

+ = − . (11) 

 Now we shall seek what would be the -component of the vector equation (4). 
First, we have 

y

 ( )
2

02 cosd ym k
dt

λ ϕ= − − +l mg . (12) 

The extension used above in the equation (8) gives now once more from (11) 

 ( ) (
2

2 1 cos 1 cosd ym k mg
dt

)λ ϕ= − − + − ϕ . (13) 

Also, we shall incorporate here our familiar quantities 1ω , 2ω  and β . Therefore, we arrive 
at 

 
2

2
22

1d y yy
dt

ω β β
λ
+

+ = − + . (14) 

We have obtained the two necessary equations. As an intermediate résumé, let us group 
here these equations, (11) and (14), calling them now the equations (I) and (II): 
 

 
2

2
12

1d x x x
dt

λω β
λ
−

+ = − , (I) 

 
2

2
22

1d y yy
dt

ω β β
λ
+

+ = − + . (II) 
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The possible linearization process assumes the validity of approximations  and 
. It leads to the approximated equation pair (see the Appendix A) 

1x �
1y �

 

 
2

2
12

d x x xy
dt

ω β+ = − ,                             (I- l ) 

 
2

2
22

1
2

d y y
dt

2xω β+ = − , (II- ) l

 

which were the basis for the linear analysis conducted in [1]. As we have already pointed 
out, we shell shall here numerically treat the original pair of coupled equations (I) and (II), 
in its full nonlinear content. Nevertheless, since it will be useful in our subsequent analysis 
of experimental data, we shall now in short repeat the basic conclusions of the linear the-
ory.  

Suppose we start the vertical simple harmonic oscillation  
 

 ( )2cosy A tω=  (15) 
 

of some amplitude A . Therefore, we have from (I- ) l
 

 (
2

2
12 cosd x )2x xA t

dt
ω β ω+ = − . (16) 

Consequently, the differential equation  
 

 ( )
2

2
1 22 cos 0d x A t x

dt
ω β ω⎡ ⎤+ +⎣ =⎦  (17) 

has to be compared with the well-known Mathieu equation [6] in its standard form 
 

 ( )
2

2 16 cos 2 0d x a q x
d

τ
τ

⎡ ⎤+ +⎣ =⎦ . (18) 

We conclude that the parameters satisfy these relations: 
 

 2
1
2

tτ ω= , (19) 

 14 4 mga
k

= =
l

l l
, (20) 

 1
4 4
A aq ⎛= −⎜
⎝ ⎠

⎞
⎟

1

. (21) 

The condition  corresponds to the parametric resonance 1a = 2 2ω ω= . This condition 
acts when we have , or 4 Rm g k= l
 

 0
R 3

km
g

=
l . (22) 

Therefore, the formula (22) specifies the resonant  mass. By this value of mass, the system 
spring-mass quickly develops the lateral instability.  

From the very definition of the spring stiffness constant , we may write k
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 m gk ∆
=

∆l
. (23) 

After putting this value into the result (22), we obtain immediately 0
R

1
3

m m= ∆
∆
l

l
. If 

DM m≡ ∆  is that mass which would double the natural length of spring, , a simple and 
retentive formula arises: 

0l

 D
R 3

Mm = . (24) 

Finally, we would like to remark what follows. In some applications, using the lat-
est version of the Mathematica computational system, we found that the appropriate solu-
tions are of the form: 

 
2

2 0
v2

1d x x
dt p

λω
λ
−

= −
l , (25) 

 ( )( )2
02

v2

1 yd y g
dt p

λ
ω

λ
− +

= − +
l l

, (26) 

instead of (I) and (II). The dimensionless parameter p , when passing through unity, de-
fines the nonlinear coupling resonance condition. The derivation of the above equations is 
straightforward and we omit here the proof.  

 
3. COMPUTATIONS 

 
As it already has been announced, we shall now numerically treat the set of two 

nonlinearly coupled equations (I) and (II). The figure 3 shows the time evolution of the 
elastic pendulum motion when the conditions of the autoparametric resonance are nearly 
or fully satisfied. Here our choice of parameters was: the spring stiffness constant 50 N/m 
and the equilibrium length of string/spring combination 100 cm.  
 

 
Fig. 3  Mathematica 6.0 plot of the full nonlinear system of equations (I), (II); time 
evolution of the vertical oscillations (continuous line) and horizontal oscillations 

(dashed line);  N/m, 50k = 1=l  m,  kg. R 1.274m m= =
 

In fact, we have presented two curves on the same plot. The vertical oscillations start 
with a given amplitude. The initial horizontal displacement is very small, but cannot be put 
to zero. After some periods of oscillations, a considerable amount of energy of this mode is 
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transferred to the horizontal, or pendulum mode of oscillations. The amplitude of the pen-
dulum mode exponentially grows. At some instant, designated on the figure 3 with the tick 
8, almost all the energy is in this horizontal mode of motion; simultaneously, the amplitude 
of vertical oscillations is at its minimum. The process is now reversed. There are two cy-
cles of vertical oscillations in each pendulum period. Physically, the centrifugal force acts 
as an excitation term to the vertical oscillations. Soon the initial state is restored. The oscil-
lating energy is flowing from the vertical motion into the horizontal motion and vice versa 
without interruption.  

The linear theory, under the same condition (conditions) valid for the figure 3, 
gives the result we plotted in the figure 4. 
 

 
Fig. 4  Mathematica 6.0  plot of the linearized system of equations ( I − l ), ( ); time evolution 

of the vertical oscillations (continuous line) and horizontal oscillations (dashed line); 
II − l

50k =  N/m, 1=l  m,  kg. R 1.274m m= =
 

Let us now examine the figure 5. There we have plotted the horizontal component 
of the above collective graphic and added the horizontal curve obtained according to the 
approximated pair of equations (I- ) and (II- l ). l
 

 
Fig. 5  The comparison of solutions for horizontal oscillations; 
exact theory (continuous line) and linear theory (dashed line); 

50k =  N/m, 1=l  m,  kg. R 1.274m m= =
 

The dashed line corresponds to linear solution. The difference between the solutions seems 
to be hardly discernible. Evidently, the linearization has in this case its full justification, 
because it spreads analytical possibilities in the problem treated. 
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Fig. 6  The comparison of solutions for vertical oscillations;  

exact theory (continuous line) and linear theory (dashed line);  
50k =  N/m, 1=l  m,  kg. R 1.274m m= =

 
Finally, let us see in the figure 6 the comparison of the two solutions concerning the verti-
cal oscillations. The dashed curve is the linear solution. Again, we have the good agree-
ment between the exact and approximated formulae.  
 

4. APPARATUS 
 

We must begin the experimental work by performing two preliminary measure-
ments: a) the determination of the spring stiffness constant, and b) the determination of the 
string length. The both tasks must be done as carefully as possible, because the reliability 
of the results depends on it.  

 
Determination of the spring stiffness constant  
In fact, this procedure is standard and could be easily performed applying Hook’s 

law m gk ∆
=

∆l
. Nevertheless, one must be cautious. The spring will not stretch at all under 

the action of a small gravitational force m g∆ . The measurements are to be performed well 
in the region of full linearity, sufficiently above the critical force. We did so, applying 
seven masses, one by one, in the range from 20 g to 80 g. Each time we have readout the 
corresponding lengthening of the spring. The pairs of such measured values were indicated 
into a graphic. Through the set of points we have plotted a strait line by means of the least 
squares method.  

The spring we finally choose as appropriate for our measurements was proved, ac-
cording to this procedure, to have the stiffness constant 9.2k =  N/m.  

 
Determination of the natural pendulum length   
In our notation,  is the distance, with no weight attached, from the hook where 

the spring is attached to its other end. We found that this length was nearly 11 cm. To this 
value must be added, as we have estimated, additional 4 cm (2 cm from the hook on the 
vessel to the center of mass of the vessel containing water and 2cm for two small pieces of 
string on both sides of spring). The vessel is the plastic cylinder with diameter 6 cm and 
height 4.5 cm. It could optimally contain 100 g of water.  

0l
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The effective length of the spring with no mass attached, i.e. the natural length of 
the pendulum was so determined to be 0 15=l  cm.  

 
Determination of the spring mass   

spring 12.75m =The mass of our spring is g. The mass of the empty vessel is 
g. The bob mass of the elastic pendulum in action is the sum . 

We see that the relation  is nearly satisfied.  
tank 19.5m = tank waterm m m= +

springm � m
In our theory, the mass of the spring is regarded as negligible.  

 
5. EXPERIMENT 

 
We made in the center on the bottom of the vessel a small cyclic opening 1mm in 

diameter. On the top side of the vessel, there is a hole for the inlet of air while the water 
leaks out through the opening. We have proved, in non-oscillating state, that the initially 
vessel full of water would be empty in nearly 25 seconds. Making our variable mass oscil-
lator, we were fully aware of experimental troubles, which could follow the usage of a 
fluid-weight changing in time, even if in a controlled manner (FLORES, SOLOVEY & GIL, 
2003b). 

We excite a periodic oscillation of the type ( )2cosy A tω=  by pulling down the 
weight and setting it free with the zero velocity at 0t = . As the oscillations progress, the 
mass of the weight diminishes and the motion of vessel becomes quicker. At some instant, 
the pendulum starts to develop the horizontal oscillations. The instability grows fast and 
soon we see only the pendulum mode of motion. We have taken a set of photographs of 
this phenomenon and one of these is shown on the picture. 
 

 
Photograph of the apparatus in action; the instant of maximum horizontal deviation; the 
flow of water is visible; in this pendulum mode of oscillations, the flow rate depends on 

the water height in vessel, but otherwise is constant. 
 
Obviously, the oscillator goes through the point of its parametric resonance. We have 
measured the corresponding critical mass of weight (the mass of vessel with the mass of 
remaining water) in a series of observations.  

The mean measured critical mass was found to be  g.  m
R 48.25m =

Now we shall compute the theoretical critical mass. Using the above-mentioned 
values for the free pendulum length and the spring stiffness constant, we obtain 

t 0
R 46.89

3
km

g
= =

l  g.  
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The percent error is 2.8δ =  %.  
At this point, we have undertaken a computational simulation of the phenomenon. 

We have modeled the process of water leaking down adopting the linear mass dependence 

of time, (1 2
R

1m C C t
m

= − ) . In the literature, one can find the evidence that sand sifts very 

close to a constant rate (FLORES, SOLOVEY & GIL (2003a)). For water, this is only but an 
approximation (certainly, there are laboratory techniques, which would help to overcome 
the trouble [5]).  

 
Fig. 7  The time evolution of the horizontal oscillations according to nonlinear theory; 

parameters used in experiments: 
9.2k =  N/m,  cm, , ;  kg; . 0 0.15=l 1 1.3C = 2 0.02C = R 0.0467m = ( )R 1 21m m C C t= −

 
From a vertically oscillating vessel, the flow rate also oscillates. (We plan to study 

particularly this phenomenon in a separate paper.) Nevertheless, near the resonant point we 
shall try with the indicated linearization. Assuming the pair of coupled equations is suffi-
ciently true in the case of a variable mass, we have looked for the solution in the Mathe-
matica 6.0 program. The results are shown on Figs. 7-9. 
 

 
Fig. 8  The time evolution of the vertical oscillations according to nonlinear theory; 

parameters used in experiments: 
9.2k =  N/m,  cm, , ;  kg; . 0 0.15=l 1 1.3C = 2 0.02C = R 0.0467m = ( )R 1 21m m C C t= −
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Fig. 9  The comparison of oscillations; vertical oscillations (continuous line), 

horizontal oscillations (dashed line); parameters used in experiments: 
9.2k =  N/m,  cm, , ;  kg; . 0 0.15=l 1 1.3C = 2 0.02C = R 0.0467m = ( )R 1 21m m C C t= −

 
Again, we have the excellent global agreement in the frame of our physical model. The 
process of the lateral instability development entirely coincides with the growth of the 
pendulum amplitude as well as with the vertical amplitude diminishment. However, let us 
see the Fig. 10. 
 

 
Fig. 10  The pendulum weight is supposed to decrease linearly with time; 

( )R 1 21m m C C t= − ,  kg; , ; R 0.0467m = 1 1.3C = 2 0.02C =
 
This figure gives the variable mass versus time. The dependence is of the type 
( ) ( )Rm t m f t= , where ( ) ( )1 21f t C C t= −  and the resonant mass . The 

constants are 1.  and 0.02 , respectively. We already know that the resonant mass which 
corresponds to the parameters adopted in measurements is approximately 49 grams. 

(R 0 / 3m k g= l )

%

3

From Fig. 7 we read that the maximum lateral weight deviation occurs 3.5 seconds 
after the motion started. From Fig. 10 we may conclude that for  s the mass is 

 g. The computed mass value, obviously, does not coincide very well with the 
measured mass value. However, the error of about 13  could not be regarded as quite 
unsatisfactory.  

3.5t =
55m ≈

Factors, which supposedly could cause the discrepancy, are numerous; the main, as 
we believe, is the rude and incomplete model of the vessel with leaking water. In addition, 
the physicists in this area of experimental physics, well know it is extremely important to 
set up the system as precisely as possible – a small error can have a large negative effect 
on the quality of the results. A carelessly started process of the vertical oscillations could 
initiate an undesired evolution of motion. There are two types of qualitative motion of the 
elastic pendulum. These are a) crescent and b) lemon oscillations (Rusbridge (1980); 
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Davidović, Aničin & Babović (1996)). None of the both is of primary interest in the cur-
rent paper; we are amidst the job of searching how the variable mass could affect the mo-
tion of an elastic pendulum in connection with the autoparametric resonance: in other 
words, could the variable mass elastic pendulum demonstrate unstable motion.  

As we see, it can and, besides, would help deeper insights into this complex physi-
cal phenomenon.  
 

6. CONCLUSION 

This paper deals with the variable mass elastic pendulum. We proved it exhibits the 
lateral instability, under the conditions known to be valid in stationary experiments. When 
passing through the resonant mass, the strong autoparametric resonance in the system is 
evident.  

While preparing the apparatus, we experimented with many and many strings seek-
ing the optimal combination of string parameters (stiffness constant, length, diameter, 
mass and so on). Our impression is that the strings of about 10k =  N/m and  cm 
are preferable, at least in preliminary experiments. Leaking fluids, presumable water, are 
attractive in designing the variable weights, but we do not exclude other possibilities (first 
of all, fine sorts of sands offer interesting possibilities). We must be aware that the fluid jet 
streaming from an oscillating vessel gives a flow rate far from being a constant one. This is 
a problem deserving its own right.  

0 10=l

The non-linear coupled equations (I, II) explain the various details in experiments 
with the elastic pendula very well. Our analyses and computations show that the linearized 
equations retained the basic capability of the standard elastic pendulum theory; this is im-
portant because the simplified equations enable the rich area of analytical activity.  

In the paper [4], the authors investigated the problem of the variable mass oscillator 
rather thoroughly. However, they have not commented at all the possibility that the oscilla-
tor passes the region of the lateral instability connected with the autoparametric instability, 
although their pendulum is evidently elastic (extensible). Our experience is that the vari-
able mass harmonic oscillator can exhibit the lateral instability and this aspect of the prob-
lem can not be disregarded.  
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Appendix A 

 
The linearization of the coupled equations of the elastic pendulum 

 
Let us first see the equation (I).  

 

 
2

2
12

1d x x x
dt

λω β
λ
−

+ = − . (I) 
 
We need to approximate the rhs expression:  
 

 
( )
( )

2 2

2 2

1 11

1

y o
x x

o o

λβ β
λ

+ + −−
− → −

+ +
. (A-1) 

 
It means 
 

 1x xyλβ β
λ
−

− → − , (A-2) 
 
in agreement with the equation (I- ) which reads l
 

 
2

2
12

d x x xy
dt

ω β+ = − . (I- ) l

 
Let us now focus our attention on the second equation (II) 
 

 
2

2
22

1d y yy
dt

ω β β
λ
+

+ = − + . (II) 
 
The rhs converges to 



 44 

 

 

( )
( )

2
2

2

1 1

1 1
1

y

xy
y

β β β β
λ
+ +

− + → − +
y

⎡ ⎤
+ +⎢ ⎥

+⎢ ⎥⎣ ⎦

, (A-3) 

 

( )

2

2

1 1
1 1 0.5

1

y
xy

o

β β +
→ − +

+ +
+

, (A-4) 

 211
2

xβ β ⎛→ − + −⎜
⎝ ⎠

⎞
⎟ , (A-5) 

 21
2

xβ→ − . (A-6) 
 
This is in agreement with the equation (II- ): l
 

 
2

2
22

1
2

d y y
dt

2xω β+ = − . (II- ) l

 
The linear set of the two equations, which we have just derived applying the rea-

sonable approximations to the original equations of the elastic pendulum are easy adapt-
able to the forms rightly required by the Mathieu equation.  

 
 
 

Appendix B 
 

The listing of the Mathematica 5.0 programme used in the Experiment section 
 

 


