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ABSTRACT. The transient magnetohydrodynamic (MHD) flow of an electrically 
conducting, viscous, incompressible fluid between two parallel non-conducting po-
rous plates with heat transfer is studied considering the ion slip.  An external uniform 
magnetic field and a uniform suction and injection are applied perpendicular to the 
plates while the fluid motion is subjected to an exponential decaying pressure gradient.  
The two plates are kept at different but constant temperatures while the Joule and 
viscous dissipations are included in the energy equation.  The effect of the ion slip and 
the uniform suction and injection on both the velocity and temperature distributions is 
examined. 

 
 
 

INTRODUCTION 
 

The magnetohydrodynamic flow between two parallel plates, known as Hartmann 
flow, is a classical problem that has many applications in magnetohydrodynamic (MHD) 
power generators, MHD pumps, accelerators, aerodynamic heating, electrostatic precipita-
tion, polymer technology, petroleum industry, purification of crude oil and fluid droplets 
and sprays.  Hartmann and Lazarus [1] studied the influence of a transverse uniform mag-
netic field on the flow of a conducting fluid between two infinite parallel, stationary, and 
insulated plates.  Then, a lot of research work concerning the Hartmann flow has been 
obtained under different physical effects [2-10].  In most cases the Hall and ion slip terms 
were ignored in applying Ohm's law as they have no marked effect for small and moderate 
values of the magnetic field.  However, the current trend for the application of magne-
tohydrodynamics is towards a strong magnetic field, so that the influence of electromag-
netic force is noticeable [5].  Under these conditions, the Hall current and ion slip are im-
portant and they have a marked effect on the magnitude and direction of the current den-
sity and consequently on the magnetic force term.  TANI [7] studied the Hall effect on the 
steady motion of electrically conducting and viscous fluids in channels.  SOUDALGEKAR et 
al. [8-9] studied the effect of the Hall currents on the steady MHD Couette flow with heat 
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transfer.  The temperatures of the two plates were assumed either to be constant [8] or to 
vary linearly along the plates in the direction of the flow [9]. ABO-EL-DAHAB [10] studied 
the effect of Hall current on the steady Hartmann flow subjected to a uniform suction and 
injection at the bounding plates. Later, ATTIA [11] extended the problem to the unsteady 
state with heat transfer in the presence of a constant pressure gradient, taking the Hall 
effect into consideration while neglecting the ion slip. 
 In the present study, the unsteady flow and heat transfer of an incompressible, 
viscous, electrically conducting fluid between two infinite non-conducting horizontal 
porous plates are studied with the consideration of both the Hall current and ion slip.  The 
fluid is acted upon by an exponential decaying pressure gradient, a uniform suction and 
injection and a uniform magnetic field perpendicular to the plates.  The induced magnetic 
field is neglected by assuming a very small magnetic Reynolds number [4, 5].  The two 
plates are maintained at two different but constant temperatures.  This configuration is a 
good approximation of some practical situations such as heat exchangers, flow meters, and 
pipes that connect system components.  The cooling of these devices can be achieved by 
utilizing a porous surface through which a coolant, either a liquid or gas, is forced.  
Therefore, the results obtained here are important for the design of the wall and the cooling 
arrangements of these devices.  The equations of motion are solved analytically using the 
Laplace transform method while the energy equation is solved numerically taking the 
Joule and the viscous dissipations into consideration.  The effect of the magnetic field, the 
Hall current, the ion slip, and the suction and injection on both the velocity and 
temperature distributions is studied. 
 
 

DESCRIPTION OF THE PROBLEM 
 

The two non-conducting plates are located at the y=±h planes and extend from x=-
∞ to ∞ and z=-∞ to ∞. The lower and upper plates are kept at the two constant tempe-
ratures T1 and T2, respectively, where T2>T1. The fluid flows between the two plates under 
the influence of an exponential decaying pressure gradient dP/dx in the x-direction, and a 
uniform suction from above and injection from below with uniform velocity vo which all 
are applied at t=0. The whole system is subjected to a uniform magnetic field Bo in the 
positive y-direction. This is the total magnetic field acting on the fluid since the induced 
magnetic field is neglected. From the geometry of the problem, it is evident that 
∂/∂x=∂/∂z=0. The existence of the Hall term gives rise to a z-component of the velocity.  
Thus, the velocity vector of the fluid is 
 

ktywjvityutyv o ),(),(),( ++=  
 
with the initial and boundary conditions u=w=0 at t≤0, and u=w=0 at y=±h for t>0.  The 
temperature T(y,t) at any point in the fluid satisfies both the initial and boundary 
conditions T=T1 at t≤0, T=T2 at y=+h, and T=T1 at y=-h for t>0. The fluid flow is 
governed by the momentum equation 
 

oBJPv
Dt
Dv

∧+∇−∇= 2µρ                                                                                    (1) 

 
where ρ  and µ  are, respectively, the density and the coefficient of viscosity of the fluid.    
If the Hall and ion slip terms are retained, the current density J is given by 
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where σ  is the electric conductivity of the fluid, β  is the Hall factor and Bi is the ion slip 
parameter [4].  This equation may be solved in J to yield 
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where oBBe σβ= , is the Hall parameter [4].  Thus, in terms of Eq. (2), the two components 
of Eq. (1) read 
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To find the temperature distribution inside the fluid we use the energy equation [12] 
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where c and k are, respectively, the specific heat capacity and the thermal conductivity of 
the fluid.  The second and third terms on the right-hand side represent the viscous and 
Joule dissipations, respectively. 
 The problem is simplified by writing the equations in the non-dimensional form.  
The characteristic length is taken to be h, and the characteristic time is  while the 
characteristic velocity is 

22 / µρh
hρµ / .  We define the following non-dimensional quantities 
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,/ µρ hvS o=  is the suction parameter, 

kc /Pr µ=  is the Prandtl number, 

)(/ 12
222 TTchEc −= ρµ   is the Eckert number, 

µσ /222 hBHa o=  where Ha is the Hartmann number, 
 
 In terms of the above non-dimensional variables and parameters, the basic Eqs. (3)-
(5) are written as (the "hats" will be dropped for convenience) 
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The initial and boundary conditions for the velocity become 
 

0,1,0,0,0 >±===≤== tywutwu                                                                  (9) 
 
and the initial and boundary conditions for the temperature are given by 
 

.1,0,1,1:0,0:0 −==+==>=≤ yTyTtTt                                                      (10) 
 
 

Analytical solution of the equations of motion 
 
Equations (6) and (7) are the two equations of motion which, if solved, give the two 
components of the velocity field as functions of space and time.  Multiplying Eq. (7) by i  
and adding to Eq. (6) we obtain 
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with the initial and boundary conditions 
 

.0,1,0,0,0 >±==≤= tyVtV                                                                            (12) 
 
where .  Equations (11) and (12) can be solved using the method of Laplace 
Transform (LT) [13] to obtain V as functions of y and t.  The real part of V represents the 
x-component of the velocity while the imaginary part represents the z-component. Taking 
LT of Eqs. (11) and (12) we have 

iwuV +=

 

)(),()(),(),(
2

2
sFsyVsK

dy
syVdS

dy
syVd

−=−−                                                   (13) 

 
where )),((),( tyVLsyV = , -F(s) is the LT of the pressure gradient, , and 

. The solution of Eq. (13) with y as an inde-
pendent variable is given as 
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where .  Using the complex inversion formula and the residue theorem 
[13], the inverse transform of U(y,s) is determined as 

KSq += 4/22
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The expression for the complex velocity V is to be evaluated for different values of the 
parameters Ha, Be, Bi, and S.  The velocity components u and w are, respectively, the real 
and imaginary parts of V. 
 
 

Numerical Solution of the Energy Equation 
 

The exact solution of the equations of motion, given by Eq. (14), determines the 
velocity field for different values of the parameters Ha, βe, βi, and S. The values of the 
velocity components, when substituted in the right-hand side of the inhomogeneous energy 
equation (8), make it too difficult to solve analytically.  The energy equation is to be sol-
ved numerically with the initial and boundary conditions given by Eq. (10) using finite 
differences [14].  The Crank-Nicolson implicit method is applied. The finite difference 
equations are written at the mid-point of the computational cell and the different terms are 
replaced by their second-order central difference approximations in the y-direction. The 
diffusion term is replaced by the average of the central differences at two successive time 
levels. The viscous and Joule dissipation terms are evaluated using the velocity compo-
nents and their derivatives in the y-direction which are obtained from the exact solution.  
Finally, the block tri-diagonal system is solved using Thomas' algorithm. All calculations 
have been carried out for C=-5, α=1, Pr=1 and Ec=0.2.   
 
 

RESULTS AND DISCUSSION 
 

Figure 1 shows the profiles of the velocity components u and w and temperature T 
for various values of time t.  The figure is plotted for Ha=3, Be=3, Bi=3, and S=1.  As 
shown in Fig. 1a and 1b, the profiles of u and w are asymmetric about the plane y=0 
because of the suction.  It is observed that the velocity component u reaches the steady 
state faster than w which, in turn, reaches the steady state faster then T. This is expected, 
since u is the source of w, while both u and w act as sources for the temperature. 
 Figure 2 shows the time evolution of u, w and T at the centre of the channel y=0, 
respectively, for various values of the Hall parameter Be and the ion slip parameter Bi.  In 
this figure, Ha=3 and S=0.  It is clear from Fig. 2a that increasing the parameter Be or Bi 
increases u.  This is because the effective conductivity ( ) decreases 
with increasing Be or Bi which reduces the magnetic damping force on u.  In Fig. 3b, the 
velocity component w increases with increasing Be, since w is a result of the Hall effect.  
On the other hand, increasing the ion slip parameter Bi decreases w for all values of Be as 
a result of decreasing the source term of w ( ) and increasing 

its damping term ( ).  The influence of the ion slip on w 
becomes more pronounced for higher values of Be.   

})1/{( 22 BeBiBe ++σ

})1/{( 222 BeBiBeuBeHa ++

})1/{( 222 BeBiBewHa ++

 Figure 2c indicates that the effect of Be or Bi on T is more pronounced for small 
time than for large time.  Increasing Be or Bi decreases T at small times but slightly  
increases it at large times.  This can be attributed to the fact that, for small times, u and w 
are small and an increase in Be or Bi decreases the Joule dissipation which is also 
proportional to ( ).  For large times, increasing Be increases both u 
and w and, in turn, increases the Joule and viscous dissipations. Also, for large times, 
increasing Bi, although it decreases w, it increases the velocity component u of the main 
flow and consequently increases the viscous and Joule dissipations.  

})1/{(1 22 BeBiBe ++
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 Figure 3 shows the time evolution of u, w, and T at the centre of the channel y=0, 
respectively, for various values of the Hartmann number Ha and the ion slip parameter Bi.  
In this figure, Be=3 and S=0.  Figure 3a indicates that the effect of Bi on u depends on Ha.  
For small values of Ha, increasing Bi slightly decreases u as a result of increasing the 
damping force on u which is proportional to Bi.  Increasing Bi more increases the effective 
conductivity and, in turn, decreases the damping force on u which increases u. On the 
other hand, for larger values of Ha, u becomes small, and increasing Bi always decreases 
the effective conductivity and therefore increases u. It is also clear that the effect of Bi on 
u becomes more apparent for higher values of Ha. Figure 3b ensures that increasing the ion 
slip parameter Bi decreases w for all values of Ha and that its effect is more apparent for 
higher values of Ha. Figure 3c indicates that the parameter Bi has a more pronounced 
effect on T for higher values of the magnetic field.  It is clear that increasing Bi decreases 
T while increasing Ha increases T as a result of the influence of each parameter Bi and Ha 
on the Joule dissipation.   

Figure 4 presents the time evolution of u and w at the centre of the channel y=0 for 
various values of the suction parameter S and the ion slip parameter Bi. In this figure Ha=3 
and Be=3. Figures 4a and 4b show that increasing the suction decreases both u and w due 
to the convection of the fluid from regions in the lower half to the centre which has higher 
fluid speed. It is also clear from Figs. 4a and 4b that the effect of the suction parameter on 
u becomes more pronounced as Bi increases while its effect on w decreases as Bi increases.  
Figure 4c shows that increasing S decreases the temperature at the centre of the channel.  
This is due to the influence of convection in pumping the fluid from the cold lower half 
towards the centre of the channel.  
 
 

CONCLUSION 
 

The transient Hartmann flow of a conducting fluid under the influence of an 
applied uniform magnetic field has been studied, considering the Hall and ion slip effects 
in the presence of uniform suction and injection. An analytical solution for the equations of 
motion has been developed while the energy equation has been solved numerically. The 
effect of the magnetic field, the Hall parameter, the ion slip parameter, and the suction and 
injection velocity on the velocity and temperature distributions has been investigated.  It is 
found that the effect of the ion slip on the main velocity u depends upon the magnetic field.  
For large values of the magnetic field, increasing the ion slip increases u.  For small values 
of the magnetic field, increasing the ion slip slightly decreases u, but increasing it more 
increases u. It is also shown that increasing the Hall parameter increases the velocity 
component w, while increasing the ion slip decreases w. The influence of the Hall current 
on w decreases greatly as the ion slip increases. The influence of the ion slip on the 
temperature T depends on time and the magnetic field. The effect of the ion slip on T is 
more pronounced for small time than for large time while it becomes more apparent for 
higher values of the magnetic field.    
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