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ABSTRACT. In this paper, we present asymptotic solution to a Navier-
Stokes equation of von Karman type for the hydromagnetic flow of a 
conducting fluid due to a rotating disk.  Asymptotic solutions to a Navier-
Stokes equation is given in the case of small as well as large values of the 
magnetic interaction number β whose coefficients are obtained in closed form 
in terms of properly scaled von Karman’s similarity coordinate.  Straining of 
coordinates is used to remove secular terms and enable to obtain expressions 
that can be used to determine the coefficients of the expansions to any order.  
A comparison of the asymptotic solution with an exact numerical solution for 
the governing nonlinear differential equations is presented.   

 
 
 

INTRODUCTION 
 

The flow due to an infinite rotating disk is one of the classical problems in fluid 
mechanics which was first introduced by VON KARMAN (1921). The flow is a fully three 
dimensional one, involving a primary (azimuthal) flow and a secondary (meridional) flow. 
von Karman formulated the problem in the steady state and used similarity transformations 
to reduce the governing partial differential equations to ordinary differential equations. 
Asymptotic solutions were obtained for the reduced system of ordinary differential equa-
tions (COCHRAN, 1934). Their analysis was much simpler and valuable information was 
gained from it. This gave the problem significant theoretical value and invited many 
researchers to add to it new features. The extension of the steady hydrodynamic problem to 
the transient state was done by BENTON (1966). The effect of uniform suction or injection 
through a rotating porous disk on the steady hydrodynamic or hydromagnetic flow induced 
by the disk was investigated (STUART, 1954; KUIKEN, 1971; OCKENDON, 1972; ATTIA, 
1998, 2001, 2002). 

In this paper, asymptotic solutions of von Karman rotating disk problem of a steady 
flow of a viscous incompressible conducting fluid were obtained. The magnetic effect is to 
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restrain the motion in the azimuthal and radial directions by imposing resisting force 
components that are proportional to the corresponding velocity components and the 
magnetic interaction number β (SUTTON et al., 1965). 
 In particular, we study this problem in the limit as β  tends to zero or infinity.  
Straining the coordinate ζ  is used to remove this difficulty (NAYFEH, 1973). Expressions 
that can be used to determine the coefficients of the expansions to any order are obtained.  
Using finite differences and linearization, an exact numerical solution for the governing 
nonlinear differential equations is represented which takes into account the asymptotic 
boundary conditions. The results of the asymptotic solution are compared with that of the 
exact numerical solution to check its range of validity.  Sample results are presented. 
 

2. The Governing Equations 

We study the steady laminar flow of an incompressible viscous conducting fluid of 
density ρ, electrical conductivityσ , and kinematic viscosity υ. The motion is due to the 
rotation of an insulated disk of infinite extent about an axis perpendicular to its plane with 
constant angular speed ω. Otherwise the fluid is at rest under pressure . A schematic 
diagram for the problem is shown in Fig. 1. A external uniform magnetic field  of flux 
density  directed parallel to the axis of rotation is applied. The equations of steady 
motion are given by 
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where u, v, w are velocity components in the directions of increasing r,ϕ , z respectively, p 
is denoting the pressure, µ  is the coefficient of viscosity, ρ  is the density of the fluid.  
The last term in Eqs. (2) and (3) represents the components of the electromagnetic force 
(SUTTON et al., 1965). 
 The rotational symmetry suggests the use of cylindrical polar coordinates so that 
the flow variables (the radial, azimuthal, and normal velocity component u, v, and w, and 
the pressure p) be dependent only on the radial distance r and the normal distance z. 
Following VON KARMAN (1921) who discovered the self-similar nature of the problem, we 
introduce the similarity variables 

,
/ων

ζ z
=                                                                                                             (5a) 

measuring distances in the normal direction, 
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representing the radial, azimuthal, and normal velocity components, and  
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representing the pressure. 
 Using von Karman transformations given by Eq. (5), the governing continuity and 
Navier-Stokes equations (1)-(4) reduce to the following set of ordinary differential 
equations 
 

,02 =+′ FH                                                                                                            (6a) 

,022 =−+−′−′′ FGFFHF β                                                                               (6b) 

,02 =−−′−′′ GFGGHG β                                                                                      (6c) 

,0=−′−′−′′ HQHHH β                                                                                         (6d) 

where the primes denote differentiation with respect to ζ , and  is the 
magnetic interaction number (Sutton et al., 1965).  The terms including β represent the 
magnetic force.  Equations (6) are supplemented with the no-injection and no-slip 
conditions 

ρωσβ /B2
o=

 
1)0(,0)0(,0)0( === GFH                                                                                    (6e,f,g) 

and the far-field conditions 

0,0,0: →→→∞→ QGFζ                                                                               (6h,i,j) 

 
3. The Numerical Solution 

The system of nonlinear ordinary differential equations is solved by a two-point 
finite difference technique. We write this system as a set of first order equations by 
introducing new independent variables and the resulting nonlinear equations are solved 
iteratively. The linearized equations have to be solved in the infinite domain ∞<< ζ0 . A 
finite domain fζζ <<0  is used instead with fζ  chosen large enough to ensure that the 
solutions are not affected by imposing the asymptotic conditions at a finite distance. The 
computational domain is divided into (I) intervals where (I) is the number of ζ  divisions.  
Finite difference equations relating these variables are obtained by writing the linearized 
equations at the midpoint of the computational cell and then replacing the different terms 
by their second order accurate central difference approximations. Extrapolation to zero 
step size has been performed to produce fourth order accurate solutions. 
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4. Asymptotic solution for small β  

 Making use of Cochran’s analysis (1934) of von Karman problem, we recast 
problem (6) in terms of Cochran’s variables 
 

,1)(,/ cHhc +== ηζη                                                                                    (7a,b) 

,)(,)(,)( QcqGcgFcf === ηηη                                                                           (7c,d,e) 

where Cochran’s parameter c is such that  

)(/1 ∞−= Hc                                                                                                        (7f) 

Note that c is real since  is negative representing an inflow toward the disk to 
compensate for the fluid that is expelled radially by the centrifugal effect. 

)(∞H

 The governing equations become 

,02 =+′ fh                                                                                                            (8a) 

,0)1( 22 =−+−′−−′′ fcgffhf β                                                                      (8b) 

,02)1( =−−′−−′′ gcfgghg β                                                                              (8c) 

,0)1()1( =−−′−′−−′′ hcqhhh β                                                                          (8d) 

where, now the primes denote differentiation with respect to η . 
 The boundary conditions take the form 

,)0(,0)0(,1)0( cgfh ===                                                                                   (8e,f,g) 

,0,0,0,0: →→→→∞→ qgfhη                                                                  (8h,i,j,k)                   

where (8h) is implied by (7b,f).  After Eqs. (8a)-(8c) have been solved, pressure q from (8d) 
can be obtained by using the condition on q from (8e,f,g)-(8h,i,j,k) and it is given by 

∫ −−+−′= −
η

ηβ
0

21 )1(2 dhchhhq  

The terms including β in Eqs. (8) are those expressing the magnetic effect. By 
setting β=0 we arrive at von Karman’s problem (written in Cochran’s variables). For small 
β the terms cβf and cβg cause a perturbation )(βO  to von Karman’s problem. The 
asymptotic solution to the new problem (8) would, therefore, be expected to have, in the 
leading order, von Karman’s solution and to proceed in powers of  β. 
 We introduce straightforward expansions of the form (summations without upper 
bounds run indefinitely) 
( ) ( )∑

=
=
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i
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for h, f, g, and q, while the expansion for c takes the form 

{ } { }∑
=

=
0i

i
i β                                                                                                          (9b) 

Note that while ( ) ’s depend on i η , the { }i ’s are constants. Substituting in Eqs. (8) and 
equating the coefficients of like powers of β result in a hierarchy of problems, the zeroth 
order one of which is von Karman’s problem: 
 

,02 =+′ oo fh                                                                                                         (10a) 

,0)1( 22 =+−′−−′′ ooooo gffhf                                                                             (10b) 

,02)1( =−′−−′′ ooooo gfghg                                                                               (10c) 

,)0(,0)0(,1)0( oooo cgfh ===                                                                           (10d,e,f) 

,0,0,0: →→→∞→ ooo gfhη                                                                        (10g,h,i,j)                   

Cochran’s asymptotic expansions as ∞→η  takes the form 
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,
j

j
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Obviously, these expansions satisfy the farfield conditions (6h,i,j,k). Substituting in 
Eqs. (10a,b,c) and equating the coefficients of , recurrence relations relating the 

’s in terms of two unknown coefficients  and . Cochran determined these 

two coefficients by patching the asymptotic solution (11) to the asymptotic solution as 

ηje−

( ) jo, 1,of 1,og

0→η at an intermediate-point, and thus obtained a solution of problem (10). Benton 
(1966), on the other hand, determined the two coefficients by forcing the asymptotic 
solution (11) to satisfy (10d,e) and thus avoided the problems of patching and obtained an 
improved solution. 
 When Benton’s method is extended to the higher order problems obtained by 
introducing expansions (9) into Eqs. (8), it is found that expansions of the form 
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are not adequate for representing the solution of the i-th problem (when ).  Rather, 
expansions of the form 

1≥i

( ) ( )∑ ∑
= =

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

i

k

k

j

j
kjii e

0 1
,, ηη                                                                           (12b) 

for h, f, g, and q, with expansion (9b) for c, are to be used. 
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 However, the terms including  for are secular. They render the 
expansions non-uniformly valid as 

kje ηη− 0>k
∞→η . To overcome this difficulty, straining of the 

coordinate η  is used. A strained coordinate n defined by 
ηsn =                                                                                                                    (13) 

is introduced and the straining function is chosen such that no secular terms appear. The 
governing Eqs. (8) become 
 

,02 =+′ fhs                                                                                                          (14a) 

,0)1( 222 =−+−′−−′′ fcgffhsfs β                                                                 (14b) 

,02)1(2 =−−′−−′′ gcfgghsgs β                                                                         (14c) 

where the primes denote differentiation with respect to n, while the boundary conditions 
(12e-k) remain unchanged. 
 Transformation (13) is a near identity transformation with the straining function s 
having unity as a leading term. This leads again to von Karman’s problem as a leading 
order approximation to the problem defined by Eqs. (14). Its solution using Benton’s 
method has been described above. One can now proceed to solve the next problem O(β) 
using Benton’s method determining, at the same time, the O(β)-term in s that removes the 
secular behaviour and the process can, theoretically, be repeated with higher order 
problems. However, the analysis becomes more and more un-widely. Fortunately, the first 
few terms in the expansions show a systematic development that is exploited here to make 
possible the determination of any number of terms in the expansions. The expansions for h, 
f, g, and q assume the form 
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while c and s have expansions of the form (9b). 
 The usual procedure of substituting and equating the coefficients of is 
carried out. It leads to the following relations between the coefficients of the expansions, 
that guarantee satisfaction of the governing Eqs. (14) and the conditions as .   
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The satisfaction of the conditions at n=0 gives the following relations. 
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For every i, starting with i=0, we perform the following calculations, in the given 
order, noting that each calculation uses values obtained in previous ones. 
(a) Calculate  using Eqs. (16). is
(b) Perform the following iterative scheme to calculate ,  and  for j=1 to j=J 
where J is a cutoff limit on the number of  j-terms that is chosen high enough in order not 
to affect the accuracy. 

jih , jif , jig ,

1. Guess starting values for  and  then calculate the starting value for  using 
Eqs. (19). 

1,if 1,ig 1,ih
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2. For every j, starting with j=2, calculate  using Eqs. (13) and  using Eqs. (18), 

then  using Eqs. (19). 
jif , jig ,

jih ,

3. Calculate new values for , , and so as to satisfy Eqs. (18), using the 
following relations that are obtained by manipulating Eqs. (13), (15), and (18). Note that 
the values of , , and appearing in the right-hand sides are old values. 
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4. Check for convergence: i) if reached, go to (c) else go to 2. 
(c) Calculate  using Eqs. (20). ic

Calculations based on the numerical procedure described above were performed in 
double precision arithmetic. A value of 50 was used for the cutoff number J, for all values 
of i considered. The starting values for ( , ) were taken to be (1,1) when i=0 and (0,0) 
when . Convergence was considered reached when the variation in each of , and 

 in two consecutive iterations did not exceed 10

1,if 1,ig
1≥i 1,if

1,ig -7.  
 Figures 2-4 show the variation of the velocity components with the vertical 
coordinate ζ  for different small values of β . Three-term expansion in powers of β  has 
been calculated and the results agree with those obtained by the numerical solution. The 
figures show the stabilizing effect of the magnetic field. It is seen that asβ  increases the 
flow becomes more rigid with the velocity components diminishing over most of the 
domain. The region close to the disk where fast changes take place also contracts in size 
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asβ  grows. In addition, comparison between the figures shows that for the same step of 
increase in β , the reduction in the vertical velocity component H is higher than that in the 
radial component F and much higher than that in the azimuthal component G. This is due 
to the fact that, the centrifugal effect is the source of the radial motion which is the source 
of the vertical motion.  Hence the reduction in the azimuthal velocity affects the radial 
velocity which in turn affects the vertical velocity. In addition, Figs. (2) and (3) show that 
the azimuthal and radial velocity components reach the far field conditions at a finite 
distance from the disk that decreases with increasing β . Also, Fig. (4) shows that the 
vertical velocity component reaches a saturated value at a finite distance from the disk. 
 Figures 5-7 show the variation of the azimuthal wall shear γ, radial wall shearτ ,  
and the vertical velocity component at infinity ∞H  in the range 10 ≤≤ β . Comparison 
between the numerical solution, the two-term and the three-term expansions is shown.  The 
figures show that the three solutions are very close to each other for small β  which proves 
the validity of the extrapolated numerical solution. It shows also that the two-term 
expansion is sufficient to obtain accurate solution within that range of β . As β  increases 
differences between the three solutions appear and addition of new terms of the expansions 
prove necessary.  Comparison with the numerical solution shows the validity of the three-
term expansion up to values ofβ  close to unity. Better accuracy can be obtained by adding 
new terms using the numerical procedure discussed before. The three solutions are closer 
to each other in Fig. 5 than they are in Figs. 6 and 7. This can be attributed to the fact that 
the flow velocity in the azimuthal direction and the corresponding flow variables (as the 
azimuthal wall shear) do not vary greatly with changes in β  as the radial and vertical 
velocities are doing (see Figs. 2-4). It should be noted that the coincidence of the two-term 
expansion and the extrapolated numerical solution shown in Fig. (5) is obviously 
accidentally and may be explained by the weak dependence of the azimuthal wall shear 
onβ . The addition of the third term moves the series solution away from the numerical 
solution. In Fig. (7), the two-term expansion leads to positive vertical velocity component 
for values of β  near unity which is physically unacceptable. Three-term expansion does 
not face this problem.   
 Figure 5 shows that the increase in the value of β  leads to an increase in the 
magnitude of the azimuthal wall shear γ. Thus as β  increases the applied torque required 
for prescribed steady state velocity distribution is increased. Figure 6 indicates that, the 
increase in β  leads to a decrease in the vertical velocity component at infinity. These 
results are due to the rigidity acquired by the fluid as a result of the influence of the 
magnetic field. 
 

4. Asymptotic solution for large β  
 
 To determine the asymptotic solution of the flow as β goes to infinity, we first scale 
the flow variables with β in a suitable way that expresses their correct limiting behavior 
described above. The fact that G assumes a value of unity at the surface irrespective of β, 
guarantees that . A quick study of Eq. (6c) shows that for the diffusion term 

 to balance the porous force term

)( 0βOG =

G ′′ Gβ , the coordinateζ would have to be . 
The two corresponding terms

)(
2/1−

βO
F ′′  and Fβ  in Eq. (6b) have the same order )( FO β . However, 

since the radial motion is driven by the centrifugal effect expressed by , it is expected 2G
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that , leading to . Further, , for the two terms of 
the continuity Eq. (6a) to be of the same order.  Finally, Eq. (6d) implies . 

)( 2GOF =β )( 1−= βOF )( 2/3−= βOH
)( 1−= βOQ

 

 We introduce new variables , ζ~ F~ , , G~ H~ , Q  defined as follows  ~

 

QQHHGGFF ~,~,~,~,~ 12/312/1 −−−− ===== βββζβζ                                                 (24) 
 
in terms of which the flow equations and boundary conditions become 
 

,02 =+′ FH                                                                                                                 (25a) 
 

),( 222 FFHGFF +′+−=+′′ −β                                                                               (25b) 
 

),2(2 FGGHGG +′=+′′ −β                                                                                         (25c) 
 

,2 HHHHQ −′−′′=′ −β                                                                                               (25d) 
 

0,0,0: →→→∞→ QGFζ                                                                                 (26a,b,c) 
 

0)0(,1)0(,0)0( === HGF                                                                                      (27a,b,c) 
 

where the tildes have been dropped. This suggests straightforward expansions for F~ , G , ~

H~ ,  that proceed in powers of . However, these expansions are found to contain 
secular terms; e.g., the expansion for  is 

Q~ 2−β
G~

 

{ } .....24/)exp(4)3exp()exp()exp(~ 2 +−−−−−+−= − ζζζζβζG                           (28) 
 

Terms of the form )exp( ζζ −  have secular behavior as ∞→ζ . To avoid this behavior 
and to obtain uniformly valid expansions we use the method of strained coordinates 
(NAYFEH, 1973). We introduce a strained coordinate 
 

ζDT =                                                                                                                        (29) 

and choose the straining function D that eliminates the secular terms. The following two-
term expansions are obtained. (The expansions for Q  can be deduced from that for ~ H~ ). 
 

6/1 2−+≈ βD                                                                                                            (30a) 

{ } 24/~ 32 EEEG −+≈ −β                                                                                           (30b) 

{ } { } 1080/24510533/~ 43222 EEEEEEF +++−+−≈ −β                                      (30c) 

{ } { } 1080/30702261273/21~ 43222 EEEEEEH +++−+−+−≈ −β                    (30d) 

where . )exp( TE −=
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 Determination of further terms becomes more and more complicated. However, 
from the first few terms, we can detect general forms for the expansions that can help 
determine as many terms as we need with the aid of the computer. These forms are 
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with the requirements 
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where m1δ  is the Kronicker delta. These requirements guarantee the satisfaction of the 
surface conditions (27). The conditions (26) valid as ∞→T  ( )∞→ζ  are satisfied 
automatically on account of the exponentials appearing in the expansions. Substituting the 
expansions (31) in Eqs. (25), and equating the coefficients of like terms, we obtain 
algebraic equations whose solutions for the d, g, f, h’s are given in Appendix A. When 
expansions (25) are used to calculate F, G, and H, the results are found to coincide, within 
plotting accuracy, with the numerical solutions for β as low as 1. 
 

CONCLUSIONS 

 The limiting behaviour of the hydromagnetic flow due to a rotating disk as the 
magnetic parameterβ  tends to zero or infinity has been established and the expansions of 

the flow variables have been found to proceed in powers of β  or in powers of , 
respectively.  Straining of coordinates was used to remove a secular behavior and lead to a 
systematic determination of the expansion coefficients. Then, it becomes possible to 
produce the expansion to any order. Comparison with an exact numerical solution for the 
governing equations proved the validity of the expansions even for moderate values of

2−β

β . 
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Appendix A 

 The expressions for the d, g, f, h’s are  

0.11 =d                                                                                                                       (A1d) 

0.111 =g                                                                                                                      (A1g) 

3/1,3/1 2111 −== ff                                                                                                  (A1f) 

3/1,3/2,3/1 211101 −==−= hhh                                                                               (A1h) 

 
For m=2,3,…. 
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