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ABSTRACT. The energy E(G) of a graph G is the sum of absolute values of the eigenvalues

of G . Two graphs G1 and G2 are equienergetic if E(G1) = E(G2) . Since 2004, when the

concept of equienergetic graphs was introduced, a large number of results on this matter

has been obtained. In this paper we briefly outline these results, and give emphasis on the

following. If L(G) = L1(G) is the line graph of a graph G , then the iterated line graphs of

G are defined as Lk(G) = L(Lk−1(G)) for k = 2, 3, . . . . Let G denote the complement of

the graph G . If G is a regular graph on n vertices, of degree r ≥ 3 , then E(Lk(G)) and

E(Lk(G)) , k ≥ 2 , depend only on the parameters n and r . This result enables construction

of pairs of non-cospectral, equienergetic graphs of same order and of same size.
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INTRODUCTION

Let G be a graph of order n . The eigenvalues of the adjacency matrix of G ,

denoted by λ1, λ2, . . . , λn , are said to be the eigenvalues of G , and they form the

spectrum of G . Two nonisomorphic graphs of same order are said to be cospectral if

their spectra coincide [1]. The energy of a graph G is defined as

E(G) =
n
∑

i=1

|λi| . (1)

This graph–energy–concept was introduced by one of the present authors in 1978 [2],

motivated by chemical applications [3–5]. Studies of graph energy are currently very

active in both mathematical and chemical literature (see [6–9], the references quoted

therein, as well as the references quoted below).

Two graphs G1 and G2 are said to be equienergetic if E(G1) = E(G2) . Equiener-

getic graphs were first time considered in 2004, independently in [10] and [11].

Evidently, if two graphs are cospectral, they are also equienergetic. Therefore, we

are always interested in non-cospectral equienergetic graphs.

Constructing non-cospectral equienergetic graphs is extremely simple. If G is any

graph with spectrum λ1, λ2, . . . , λn , and G′ is the graph obtained by adding to G an

isolated vertex, then the spectrum of G′ consists of the numbers λ1, λ2, . . . , λn, λn+1 =

0 . Thus G and G′ are not cospectral, but E(G) = E(G′) .

Also if we additionally require that isolated vertices are not present, equienergetic

graphs are easily found. A triple of mutually non-cospectral and mutually equiener-

getic graphs with not more than 4 vertices is depicted in Fig. 1.

The example shown in Fig. 1 hints towards two further restrictions, namely that

the graphs should have equal number of vertices, and be connected. However, pairs

of non-cospectral connected graph with equal number of vertices are also not difficult

to find. The smallest such pair is shown in Fig. 2.

The graphs in Fig. 2 have different size (different number of edges). Therefore,

the next requirement aimed at reducing the triviality of the problem should be that

the graphs we are looking for be of equal size. The finding of such graphs is somewhat

less easy.
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Figure 1. Three graphs with small number of vertices. Their spectra are {2,−1,−1} ,
{1, 1,−1,−1} , and {2, 0, 0,−2} , respectively. Hence these graphs are mutually non-
cospectral and all have energy equal to 4.

Figure 2. Two connected 5-vertex graphs with different spectra, but equal energy.

From now on we are interested in graphs that are

• non-cospectral

• connected

• with equal number of vertices

• with equal number of edges, and

• equienergetic.

EQUIENERGETIC TREES

Brankov et al. [10] performed a systematic computer–aided search for non-co-

spectral equienergetic trees. First, by means of numerical calculation, pairs of trees

were identified whose spectra differ, but whose E-values coincide on the first few

decimal places. This, of course, is not sufficient to establish equienergeticity. In order

to complete the proof a detailed examination is needed.
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For instance, let T1 and T2 be the first two trees, depicted in Fig. 3. By known

methods [1,4,5] their characteristic polynomials are computed and found to be of the

form:

φ(T1, λ) = λ (λ2 − 1)(λ2 − 4)(λ4 − 3 λ2 + 1)

φ(T2, λ) = λ (λ2 − 1)3 (λ2 − 5) .

The spectra of T1 and T2 are now readily obtained:
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respectively. Showing that in both cases the sum of the absolute values of these

eigenvalues is equal to 6 + 2
√

5 is now an easy exercise from algebra.

The 9-vertex trees T1 and T2 happen to be the smallest pair of equienergetic trees.

For greater values of n many other equienergetic pairs, triplets, etc. were discovered.

Those that are molecular graphs are displayed in Fig. 3. Verifying that these trees are

indeed equienergetic (by a procedure explained above on the example of T1 and T2)

is outstandingly tedious; for n > 18 such a verification probably becomes completely

infeasible.

It should be noted that until now no systematic method is known for constructing

(arbitrarily many) pairs of equienergetic trees.

EQUIENERGETIC GRAPH PRODUCTS

Balakrishnan [11] observed that for any two graphs G1 and G2 ,

E(G1 ⊗ G2) = E(G1) E(G2) (2)

where ⊗ denotes the strong product (see [12]). Eventually, the same result was

reported also in [13]. The formula (2) is obtained directly from (1) by bearing in

mind that the eigenvalues of G1 ⊗ G2 are just the products of the eigenvalues of G1

and G2 [1].
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Figure 3. All equienergetic pairs and one triplet of non-cospectral chemical trees
with 18 and fewer vertices [10]. The second and third tree in the 18-vertex triplet are
cospectral, but have a different spectrum than the first tree.

By means of Eq. (2) one can construct infinitely many pairs of equienergetic

graphs. Indeed, if Ga , Gb is such a pair, then for any graph G , also the pair

Ga ⊗ G , Gb ⊗ G is equienergetic.

Another result of this kind was obtained by Indulal and Vijayakumar [14]:

Let G1�G2 denote the Cartesian product of the graphs G1 and G2 (see [12]). Let

` and k be positive integers, such that ` ≥ 2k . Let K` be the complete graph on `

vertices. Let G be an n-vertex graph whose spectrum lies in the interval [−k , +k] .

Then

E
(

(K`)
k � G

)

= 2nk (` − 1)k . (3)

Because the right–hand side of Eq. (3) depends only on the parameters n, k, ` , for

any equienergetic Ga , Gb , and for any k, ` , satisfying the above stated requirements,

also the pairs (K`)
k � Ga , (K`)

k � Gb are equienergetic.
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Two of the present authors [15] proved that

E(G1∇G2) = E(G1) + E(G2) +
√

(r1 + r2)2 + 4 (n1 n2 − r1 r2) − (r1 + r2) (4)

where G1∇G2 denotes the complete product of the graphs G1 and G2 (see [12]).

Formula (4) holds if for i = 1, 2 , the graph Gi is regular of degree ri and has ni

vertices. A special case of this result (for r2 = 0) was recently independently obtained

by Liu and Liu [16].

By means of Eq. (4) one can construct (in the above described manner) pairs of

n-vertex equienergetic graphs for all n ≥ 9 .

EQUIENERGETIC LINE GRAPHS

In this section we outline in a systematic and somewhat simplified manner our

own results, first communicated in [17–21].

Let, as usual, L(G) denote the line graph of the graph G . For k = 1, 2, . . . , the

k-th iterated line graph of G is defined as Lk(G) = L(Lk−1(G)) , where L0(G) = G

and L1(G) = L(G) .

The line graph of a regular graph G of order n0 and of degree r0 is a regular graph

of order n1 = (n0 r0)/2 and of degree r1 = 2 r0 − 2 . Consequently, the order and

degree of Lk(G) are [22,23]:

nk =
1

2
rk−1 nk−1 and rk = 2 rk−1 − 2

where ni and ri stand for the order and degree of Li(G) , i = 0, 1, 2, . . . . Therefore,

rk = 2k r0 − 2k+1 + 2 (5)

nk =
n0

2k

k−1
∏

i=0

ri =
n0

2k

k−1
∏

i=0

(

2i r0 − 2i+1 + 2
)

. (6)

If λ1, λ2, . . . , λn are the eigenvalues of a regular graph G of order n and of degree

r , then the eigenvalues of L(G) are

λi + r − 2 i = 1, 2, . . . , n and

−2 n(r − 2)/2 times







. (7)
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Formula (7) was first reported by Sachs [24]. In view of the fact that L(G) is also

a regular graph of order nr/2 and of degree 2r− 2 , from (7) the eigenvalues of L2(G)

are easily calculated as:

λi + 3r − 6 i = 1, 2, . . . , n and

2r − 6 n(r − 2)/2 times and

−2 nr(r − 2)/2 times























. (8)

If G is a regular graph of order n and of degree r , and if λ1 = r, λ2, . . . , λn are its

eigenvalues, then the eigenvalues of G , the complement of G , are

−λi − 1 i = 2, 3, . . . , n and

n − r − 1







. (9)

Formula (9) was also obtained by Sachs [25].

Now, if G is regular of order n and of degree r , then L2(G) is a regular graph

of order nr(r − 1)/2 and of degree 4r − 6 . Therefore, from (8) and (9) we get the

eigenvalues of L2(G) as follows:

−λi − 3r + 5 i = 2, 3, . . . , n and

−2r + 5 n(r − 2)/2 times and

1 nr(r − 2)/2 times and

nr(r − 1)/2 − 4r + 5







































. (10)

Theorem 1. If G is a regular graph of order n and of degree r ≥ 3 , then among the

positive eigenvalues of L2(G) one is equal to the degree of L2(G) , whereas all other

are equal to 1.

Proof. All eigenvalues of a regular graph of degree r satisfy the condition −r ≤ λi ≤
r , i = 1, 2, . . . , n [1]. Therefore if r ≥ 3 , then −λi − 3r + 5 < 0 and −2r + 5 < 0 .

Theorem 1 follows from (10).

Corollary 1.1. If G is a regular graph of degree r ≥ 3 , then for k ≥ 2 , among the

positive eigenvalues of Lk(G) , one is equal to the degree of Lk(G) , whereas all other

are equal to 1.

Theorem 2. If G is a regular graph of order n and of degree r ≥ 3 , then

E(L2(G)) = (nr − 4)(2r − 3) − 2 . (11)
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Proof. It is easy to see that E(G) = 2
∑

+

λi , where
∑

+

indicates summation over

positive eigenvalues. Then from Theorem 1 and (10),

E(L2(G)) = 2

[(

nr(r − 1)

2
− 4r + 5

)

+
nr(r − 2)

2
× 1

]

= 2n r2 − 3nr − 8r + 10

which straightforwardly leads to Eq. (11).

Corollary 2.1. Let G be a regular graph of order n0 and of degree r0 ≥ 3 . Let nk

and rk be the order and degree, respectively, of the k-th iterated line graph Lk(G) ,

k ≥ 2 . Then

E(Lk(G)) = (nk−2 rk−2 − 4)(2 rk−2 − 3) − 2

= (2 nk−1 − 4)(rk−1 − 1) − 2 .

Corollary 2.2. If G is a regular graph of order n0 and of degree r0 ≥ 3 , then in the

notation specified in Corollary 2.1, for any k ≥ 2 ,

E(Lk(G)) =
4 nk rk

2 + rk

− 2(rk + 1) .

Corollary 2.3. If G is a regular graph of order n0 and of degree r0 ≥ 3 , then in the

notation specified in Corollary 2.1, for any k ≥ 2 ,

E(Lk(G)) =

[

n0

2k−2

k−2
∏

i=0

(

2i r0 − 2i+1 + 2
)

− 4

]

(

2k−1 r0 − 2k + 1
)

− 2 .

From Corollary 2.3 we see that the energy of the complement of any second and

higher iterated line graph of a regular graph G of degree greater than two, is fully

determined by the order n0 and degree r0 of G .

Lemma 3. Let G1 and G2 be two regular graphs of the same order and of the same

degree. Then for any k ≥ 1 , the following holds: (a) Lk(G1) and Lk(G2) are of the

same order and of the same size. (b) Lk(G1) and Lk(G2) are cospectral if and only if

G1 and G2 are cospectral.
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Proof. Statement (a) follows from Eqs. (5) and (6), and the fact that the number of

edges of Lk(G) is equal to the number of vertices of Lk+1(G) . Statement (b) follows

from (7), applied a sufficient number of times.

Combining Lemma 3 with Corollary 2.2 we arrive at:

Theorem 4. Let G1 and G2 be two non-cospectral regular graphs of the same order

and of the same degree r ≥ 3 . Then for any k ≥ 2 the iterated line graphs Lk(G1)

and Lk(G2) form a pair of non-cospectral equienergetic graphs of equal order and of

equal size. If, in addition, G1 and G2 are chosen to be connected, then also Lk(G1)

and Lk(G2) are connected.

It is now easy to generate large families of equienergetic graphs, satisfying the

requirements given in Theorem 4. For instance, there are 2, 5, 19, and 85 connected

regular graphs of degree 3 of order 6, 8, 10, and 12, respectively. No two of these are

cospectral (see [1], pp. 268–269). Their second and higher iterated line graphs form

families consisting of 2, 5, 19, 85, . . . , equienergetic graphs.

MISCELLANEOUS EQUIENERGETIC GRAPHS

In the mathematical and mathematico–chemical literature a number of other con-

structions of equienergetic graphs has been reported [26–30].

In [26] pairs of equienergetic graphs were constructed for n = 6, 14, 18 and n ≥ 20 .

As already mentioned, in the meantime a stronger result was obtained, covering all

n ≥ 9 [15]. In [27] Xu and Hou reported a method for obtaining infinitely many pairs

of bipartite equienergetic graphs. In [28] López and Rada extended the definition of

graph energy to digraphs and constructed equienergetic digraphs. In [30] graphs

having equal Laplacian energies [31,32] are designed.

CONCLUDING REMARKS AND OPEN PROBLEMS

Based on the numerous results obtained so far, the problem of equienergetic graphs

can be considered as basically solved. It is known that such graphs are relatively easy
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to find. Several general methods for constructing infinitely many pairs or multiples

of such graphs are elaborated. The equienergetic graphs thus obtained satisfy all

additional conditions specified in the introduction.

What is not known?

We already mentioned that it is not known how to construct equienergetic trees.

The same applies to other classes of (connected) graphs with relatively small number

of edges, such as unicyclic, bicyclic, . . . .

The graph energy concept has its origin in theoretical chemistry [3–5,8,9] and

therefore it is not without interest to find equienergetic molecular graphs. Except the

chemical trees from [10], and a few trivially simple examples, no pairs of equienergetic

molecular graphs are known. It would be of particular value to find a method for a

systematic construction of equienergetic molecular graphs, preferably infinitely many

of them. To recall [4,5], pairs of graphs that would be of chemical interest need to be

• non-cospectral

• connected

• with equal number of vertices

• with equal number of edges

• without vertices of degree greater than four, and

• equienergetic.
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[9] M. Perić, I. Gutman, J. Radić–Perić, The Hückel total π-electron energy puzzle,

J. Serb. Chem. Soc. 71 (2006) 771–783.
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