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ABSTRACT. The Hosoya polynomial is determined for thorn trees, thorn rods, rings, and
stars, which are special cases of thorn graphs. By this some earlier results by Bonchev and
Klein are generalized. Various distance–based topological indices, namely Wiener index,
hyper–Wiener index, Harary index, and reciprocal Wiener index can thus be computed for
the classes of graphs under consideration.

INTRODUCTION: DISTANCE–BASED MOLECULAR

STRUCTURE–DESCRIPTORS

The Wiener index is a graph invariant of great chemical importance. It is defined

as

W = W (G) =
∑
u<v

d(u, v) (1)

were G is the graph representation of the molecule under consideration and d(u, v) is

the distance between the vertices u and v of G . On the numerous chemical applica-

tions of the Wiener index see the reviews [1–4] and the references quoted therein; on

its mathematical properties see the reviews [5,6].
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Recently several modifications of the Wiener index were put forward, of which we

mention the following:

the hyper–Wiener index [7–10]:

WW = WW (G) =
1

2

∑
u<v

[
d(u, v)2 + d(uv)

]
(2)

the Harary index [1,11,12]:

Ha = Ha(G) =
∑
u<v

1

d(u, v)2
(3)

and the reciprocal Wiener index [13–15]:

RW = RW (G) =
∑
u<v

1

d(u, v)
. (4)

It is worth noting that all the above structure–descriptors are either special cases of,

or are simply related to the graph invariant Wλ , defined as [16–18]

Wλ = Wλ(G) =
∑

k≥1

d(G, k) kλ (5)

where d(G, k) is the number of pairs of vertices of the graph G whose distance is k ,

and where λ is some real (or complex) number. Evidently,

W = W1

WW =
1

2
W2 +

1

2
W1

Ha = W−2

RW = W−1 .

Another related quantity is the Hosoya polynomial. It was first put forward by

Hosoya [19] and eventually attracted due attention by mathematicians and math-

ematical chemists [20–32]. Hosoya called it “the Wiener polynomial”, whereas the

present name appeared for the first time in the paper [24] and was soon accepted by

the majority of scholars involved in its study. With an almost 10-years delay, Sagan

et al. [23] seem to have independently arrived at the very same idea as Hosoya [19].

The Hosoya polynomial is defined as

H(λ) = H(G, λ) =
∑

k≥1

d(G, k) λk (6)
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where the notation is same as in Eq. (5). Comparing (5) and (6) we see that both

Wλ and H(λ) are determined by the numbers d(G, k) , k = 1, 2, . . . . Indeed, from

knowing H(G, λ) one can deduce Wλ(G) and vice versa. Thus, from the Hosoya

polynomial it is possible to calculate a large variety of distance–based molecular

structure–descriptors, e. g. those defined via Eqs. (1)–(4).

The connection between the Hosoya polynomial and the Wiener index is elemen-

tary [19,29]:

W (G) = H ′(G, 1)

where H ′(G, λ) is the first derivative of H(G, λ) . The hyper–Wiener index can be

computed from the first and second derivatives as [32]

WW (G) = H ′(G, 1) +
1

2
H ′′(G, 1) .

INTRODUCTION: THORN GRAPHS

The concept of “thorn graphs” was introduced by one of the present authors

[33,34]. The thorn graph G∗ is obtained from a parent n-vertex graph G by attaching

pi ≥ 0 new pendent vertices (i. e., vertices of degree one) to the i-th vertex of G , for

i = 1, 2, . . . , n . In [33,34] expressions for the Wiener index of various thorn graphs,

including thorn trees, were obtained. Recently Bonchev and Klein [35] reported

additional formulas for the Wiener index of thorn trees, thorn rods, thorn rings, and

thorn stars. In this paper we obtain analogous results for the respective Hosoya

polynomials.

Following the terminology proposed by Bonchev and Klein [35], if the parent graph

is a tree, then we speak of “thorn trees”. In this paper we consider the case when

the parent tree is a path. Then the respective thorn tree is the familiar “caterpillar”

[36,37]. Under “thorn rod” is understood a caterpillar obtained so that new vertices

are attached only to the two terminal vertices of the underlying path.

Another thorn tree is the “thorn star”, obtained by attaching pendent vertices to

the vertices of a star, except to its central vertex.

If the parent graph is a cycle, then we speak of “thorn cycles”.

Further details as well as examples can be found elsewhere [35].
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THE MAIN RESULTS

By T (b1, b2, . . . , b`) we denote a caterpillar obtained from a path on ` + 2 ver-

tices labelled consecutively as u1, u2, . . . , u`−1, u`, u`+1, u`+2 , by attaching bi pendent

vertices to the vertex ui+1 , i = 1, 2, . . . , ` .

Theorem 1. For a thorn tree T = T (b1, b2, . . . , b`) , the Hosoya polynomial is of the

form

H(T, λ) = a1 λ + a2 λ2 + · · ·+ a`+1 λ`+1

where

a1 =
∑̀

i=1

bi + (` + 1)

a2 =
∑̀

i=1

(
bi

2

)
+ 2

∑̀

i=1

bi + `

a3 =
`−1∑

i=1

bi bi+1 +
`−1∑

i=1

bi +
∑̀

i=2

bi + (`− 1)

a4 =
`−2∑

i=1

bi bi+2 +
`−2∑

i=1

bi +
∑̀

i=3

bi + (`− 2)

...
...

...

ak =
`−k+2∑

i=1

bi bi+k−2 +
`−k+2∑

i=1

bi +
∑̀

i=k−1

bi + (`− k + 2)

...
...

...

a`−1 =
3∑

i=1

bi bi+`−3 +
3∑

i=1

bi +
∑̀

i=`−2

bi + 3

a` =
2∑

i=1

bi bi+`−2 +
2∑

i=1

bi +
∑̀

i=`−1

bi + 2

a`+1 = b1 b`−1 + b1 + b` + 1 .

Proof. Let A = {u1, u2, . . . , u`+1, u`+2} , Bi = {vi1, vi2, . . . , vibi−1
} for

i = 2, 3, . . . , ` + 1 , and

B =
`+1⋃

i=2

Bi .
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In order to demonstrate the validity of the theorem, we adopt the following notation:

dA(G, k) = number of pairs of vertices in the set A , at a distance k ,

dB(G, k) = number of pairs of vertices in the set B , at a distance k , and

dAB(G, k) = number of pairs of vertices, of which one is in the set A and the other

in the set B .

One can easily observe that

ak = dA(G, k) + dB(G, k) + dAB(G, k) .

Computing these three terms in the above expression, we get the expressions for the

coefficient ai’s as in the statement of the theorem.

Corollary 1.1. By taking ` = b and bi = a − 2 for i = 1, 2, . . . , ` , we get the thorn

tree T (a, b) as defined in [35]. For it,

H(T (a, b), λ) = (ab− b + 1) λ +
1

2
ab(a− 1) λ2 +

b+1∑

k=3

(b− k + 2)(a− 1)2 λk .

The thorn rod is, by definition, a caterpillar with code (b1, 0, 0, . . . , 0, b`) . If this

sequence is of length p + 1 , and if b1 = b` = t− 2 , then we get the rod Pp,t from the

paper [35]. For it we have:

Corollary 1.2. The Hosoya polynomial of Pp,t is

H(Pp,t, λ) = (2t + p− 3) λ + (t3 − 3t + 2p) λ2 + (2t + p− 5) λ3

+ (2t + p− 6) λ4 + · · ·+ (2t + p− k + 2) λk + · · ·
+ (2t− 1) λp−1 + (2t− 2) λp + (2t− 3) λp+1 .

The thorn star K∗
1,n with code (b1, b2, . . . , bn) is the graph obtained by adding

bi pendent vertices to the i-th pendent vertex of the star K1,n . Then by a similar

counting method as used in the proof of the previous theorem we obtain:

Theorem 2. The Hosoya polynomial of the thorn star K∗
1,n with code (b1, b2, . . . , bn)

is

H(K∗
1,n, λ) = a1 λ + a2 λ2 + a3 λ3 + a4 λ4
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where

a1 =
n∑

i=1

bi + n

a2 =
n∑

i=1

(
bi+1

2

)
+

(
n

2

)

a3 = (n− 1)
n∑

i=1

bi

a4 = b1

n∑

i=2

bi + b2

n∑

i=3

bi + bn−1 bn .

In [35] the thorn star Sk,t was considered, the code of which is the k-tuple

(t− 1, t− 1, · · · , t− 1) .

Corollary 2.1.

H(Sk,t, λ) = k t λ+
k

2
[t(t− 1)+ (k− 1)] λ2 +k(k− 1)(t− 1) λ3 +

1

2
k(k− 1)(t− 1)2 λ4 .

If Cn is the n-vertex cycle, then the thorn ring C∗
n with code (b1, b2, . . . , bn) is

obtained by adding bi pendent vertices to the i-th vertex of Cn , i = 1, 2, . . . , n .

Theorem 3. For a thorn ring C∗
n with code (b1, b2, . . . , bn) , the Hosoya polynomial

is of the form

H(λ) = a1 λ + a2 λ2 + a3 λ3 + · · ·+ abn/2c+2 λbn/2c+2 (7)

where

a1 =
n∑

i=1

bi + n ; a2 =
n∑

i=1

(
bi+2

2

)

for 3 ≤ k ≤ bn/2c ,

ak =
n∑

i=1

bi bi+k−2 + 2
n∑

i=1

bi + d(Cn, k)

and

abn/2c+1 =
n∑

i=1

bi bi+k−2 +
n∑

i=1

bi .

In addition, if n is even, then

an/2+2 =
n/2∑

i=1

bi bi+n/2 . (8)
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In the above expressions the subscripts i + k − 2 are assumed to take the values

modulo n .

Proof. The method of the proof is analogous to that of Theorem 1: we separately

consider distances between pairs of vertices of Cn , between pairs of pendent vertices

of C∗
n , and between pairs of vertices of which one belongs to Cn and the other is

pendent.

For the case when n is even, for k = n/2 , k = n/2 + 1 , and k = n/2 + 2, we have

an/2 =
n∑

i=1

bi bi+n/2−2 + 2
n∑

i=1

bi +
n

2

an/2+1 =
n∑

i=1

bi bi+n/2−1 +
n∑

i=1

bi

and formula (8), because of the symmetric nature of even cycles.

For the special case of thorn cycles C∗
n,t , considered in [35], for which the code is

(t− 2, t− 2, . . . , t− 2) , we have:

Corollary 3.1. For the thorn cycle C∗
n,t , obtained from Cn by attaching to each

of its vertices t − 2 pendent vertices, the coefficients of the Hosoya polynomial, as

specified in Eq. (7), are

a1 = n(t− 2) + n ; a2 = n

(
t

2

)

ak = n(t− 1)2

for k ≥ 3 and odd n , whereas for n being even,

ak = n(t− 1)2 for 3 ≤ k ≤ n

2

an/2+1 = n t(t− 2) ; an/2+2 = n(t− 2)2 .

DISCUSSION

By means of the above results we extended the results for the Wiener indices,

obtained by Bonchev and Klein, to the Hosoya polynomials. The Bonchev–Klein
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results are now obtained from ours, as simple special cases. Our results, in turn,

make it possible to compute not only the Wiener indices, but also the hyper–Wiener,

Harary, and reciprocal Wiener indices of the thorn graphs considered, as well as their

general Wλ-index.
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[32] G. Cash, S. Klavžar, M. Petkovšek, Three methods for calculation of the hyper–

Wiener index of molecular graphs , J. Chem. Inf. Comput. Sci. 43 (2002) 571–576.

[33] I. Gutman, Distance in thorny graph, Publ. Inst. Math. (Beograd) 63 (1998)

31–36.
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