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ABSTRACT: In this paper, the transient flow of a dusty viscous incompressible 
electrically conducting non-Newtonian Casson fluid through a circular pipe is studied 
taking the ion slip into consideration. A constant pressure gradient in the axial direction 
and a uniform magnetic field directed perpendicular to the flow direction are applied. 
The particle-phase is assumed to behave as a viscous fluid. A numerical solution for the 
governing equations is obtained using finite differences. 

 
 
 

1. INTRODUCTION 
 

The flow of a dusty and electrically conducting fluid through a circular pipe in the 
presence of a transverse magnetic field has important applications such as magnetohydrody-
namic generators, pumps, accelerators, and flowmeters. The performance and efficiency of 
these devices are influenced by the presence of suspended solid particles in the form of ash or 
soot as a result of the corrosion and wear activities and/or the combustion processes in MHD 
generators and plasma MHD accelerators. When the particle concentration becomes high, 
mutual particle interaction leads to higher particle-phase viscous stresses and can be 
accounted for by endowing the particle phase by the so-called particle-phase viscosity. There 
have been many articles dealing with theoretical modelling and experimental measurements 
of the particle-phase viscosity in a dusty fluid (Soo, 1969; Gidaspow et al., 1989; Grace, 1982; 
Sinclair and Jackson, 1989). 
 The flow of a conducting fluid in a circular pipe has been investigated by many 
authors (Gadiraju et al., 1992; Dube and Sharma, 1975; Ritter and Peddieson, 1977; 
Chamkha, 1994). (Gadiraju et al., 1992) investigated steady two-phase vertical flow in a pipe.  
(Dube and Sharma, 1975) and (Ritter and Peddieson, 1977) reported solutions for unsteady 
dusty-gas flow in a circular pipe in the absence of a magnetic field and particle-phase viscous 
stresses. (Chamkha, 1994) obtained exact solutions which generalize the results reported in 
(Dube and Sharma, 1975; Ritter and Peddieson, 1977) by the inclusion of the magnetic and 
particle-phase viscous effects. The heat transfer characteristics of circular pipe flow was 
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studied by many researchers (Yoon et al., 2002; Kim, 2002; Kim, 2003). It should be noted 
that in the above studies the Hall current as well as the ion slip effects are ignored. In fact, the 
Hall effect is important when the Hall parameter, which is the ratio between the electron-
cyclotron frequency and the electron-atom-collision frequency, is high. This happens when 
the magnetic field is high or when the collision frequency is low (Crammer and Pai, 1973; 
Sutton and Sherman, 1965). Furthermore, the masses of the ions and electrons are different 
and, in turn, their motions will be different. Usually, the diffusion velocity of electrons is 
larger than that of ions and, as a first approximation, the electric current density is determined 
mainly by the diffusion velocity of the electrons. However, when the electromagnetic force is 
very large (such as in the case of strong magnetic field), the diffusion velocity of the ions 
may not be negligible (Crammer and Pai, 1973; Sutton and Sherman, 1965). If we include the 
diffusion velocity of ions as well as that of electrons, we have the phenomena of ion slip.  In 
the above mentioned work, the Hall and ion slip terms were ignored in applying Ohm's law, 
as they have no marked effect for small and moderate values of the magnetic field. However, 
the current trend for the application of magnetohydrodynamics is towards a strong magnetic 
field, so that the influence of the electromagnetic force is noticeable under these conditions, 
and the Hall current as well as the ion slip are important; they have a marked effect on the 
magnitude and direction of the current density and consequently on the magnetic-force term 
(Crammer and Pai, 1973; Sutton and Sherman, 1965). 

A number of industrially important fluids such as molten plastics, polymers, pulps and 
foods exhibit non-Newtonian fluid behavior (Nakayama et al. 1988). Due to the growing use 
of these non-Newtonian materials, in various manufacturing and processing industries, 
considerable efforts have been directed towards understanding their flow characteristics.  
Many of the inelastic non-Newtonian fluids, encountered in chemical engineering processes, 
are known to follow the so-called "power-law model" in which the shear stress varies 
according to a power function of the strain rate (Metzner et al. 1965). It is of interest in this 
paper to study the influence of the magnetic field as well as the non-Newtonian fluid 
characteristics on the dusty fluid flow properties in situations where the particle-phase is 
considered dense enough to include the particulate viscous stresses. 
 In the present study, the unsteady flow of a dusty electrically conducting non-
Newtonian Casson fluid through a circular pipe is investigated considering the ion slip.  The 
carrier fluid is assumed viscous, incompressible and electrically conducting. The particle 
phase is assumed to be incompressible pressureless and electrically non-conducting. The flow 
in the pipe starts from rest through the application of a constant axial pressure gradient. The 
governing momentum equations for both the fluid and particle-phases are solved numerically 
using the finite difference approximations. The effect of the magnetic field, the Hall current, 
the ion slip and the particle-phase viscosity on the velocity distributions of the fluid and 
particle-phases is reported. 
 
 

2. GOVERNING EQUATIONS 
 

Consider the unsteady, laminar, axisymmetric horizontal flow of a dusty conducting 
fluid through an infinitely long pipe of radius d driven by a constant pressure gradient.  A 
uniform magnetic field is applied perpendicular to the flow direction. The Hall current and 
the ion slip are taken into consideration and the magnetic Reynolds number is assumed to be 
very small and consequently the induced magnetic field is neglected (Crammer and Pai, 1973; 
Sutton and Sherman, 1965).  We assume that both phases behave as viscous fluids and that 
the volume fraction of suspended particles is finite and constant (Chamkha, 1994).  Taking 
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into account these and the previously mentioned assumptions, the governing momentum 
equations can be written as 
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where t is the time, r is the distance in the radial direction, V is the fluid-phase velocity, Vp is 
the particle-phase velocity, ρ is the fluid-phase density, ρp is the particle-phase density, ∂P/∂z 
is the fluid pressure gradient, φ is the particle-phase volume fraction, N is a momentum 
transfer coefficient (the reciprocal of the relaxation time, the time needed for the relative 
velocity between the phases to reduce e-1 of its original value (Chamkha 1994), σ is the fluid 
electrical conductivity, Be=σγBo is the Hall parameter, γ is the Hall factor (Crammer and Pai, 
1973; Sutton and Sherman, 1965), Bo is the magnetic induction, Bi is the ion slip parameter, 
µp is the particle-phase viscosity which is assumed constant, and µ is the apparent viscosity of 
the fluid which is given by, 
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where Kc is the coefficient of viscosity of a Casson fluid, τo is the yield stress, and rV ∂∂ /  is 
the magnitude of the velocity gradient which is always positive regardless of the sign of 

rV ∂∂ / . In this work, ρ, ρp, µp, φ, and Bo are all constant. It should be pointed out that the 
particle-phase pressure is assumed negligible and that the particles are being dragged along 
with the fluid-phase. 
 
 The initial and boundary conditions of the problem are given as 
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where d is the pipe radius. 
 
 Equations (1)-(3) constitute an initial-value problem which can be made 
dimensionless by introducing the following dimensionless variables and parameters 
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cKNd /2ρα =  is the inverse Stokes’ number, 

cp K/µβ =  is the viscosity ratio, 

dGooD /ττ =  is the Casson number (dimensionless yield stress), 

coa KdBH /σ=  is the Hartmann number (Sutton et al. 1965). 
 
 By introducing the above dimensionless variables and parameters as well as the 
expression of the fluid viscosity defined above, Eqs. (1)-(3) can be written as (the bars are 
dropped), 
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 The volumetric flow rates and skin-friction coefficients for both the fluid and particle 
phases are defined, respectively, as (Chamkha, 1994) 
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3. RESULTS AND DISCUSSION 
 

Equations (4) and (5) represent a coupled system of nonlinear partial differential 
equations which are solved numerically under the initial and boundary conditions (6), using 
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the finite difference approximations. A linearization technique is first applied to replace the 
nonlinear terms at a linear stage, with the corrections incorporated in subsequent iterative 
steps until convergence is reached. Then the Crank-Nicolson implicit method (Mitchell et al. 
1980 and Evans et al. 2000) is used at two successive time levels.  An iterative scheme is 
used to solve the linearized system of difference equations. The solution at a certain time step 
is chosen as an initial guess for next time step and the iterations are continued till 
convergence, within a prescribed accuracy. Finally, the resulting block tridiagonal system is 
solved using the generalized Thomas algorithm (Mitchell et al. 1980 and Evans et al. 2000). 
Computations have been made for α=1, γ=1, and k=10. Grid-independence studies show that 
the computational domain 0<t<∞ and 0<r<1 can be divided into intervals with step sizes 
∆t=0.0001 and ∆r=0.005 for time and space respectively. It should be mentioned that the 
results obtained herein reduce to those reported by Dube et al. (1975) and Chamkha (1994) 
for the cases of non-magnetic, inviscid particle-phase (B=0), and Newtonian fluid.  These 
comparisons lend confidence in the accuracy and correctness of the solutions. 
 Figures 1a and b present the time evolution of the velocity of the fluid V and dust 
particles Vp at the center of the pipe, respectively, for various values of the ion slip parameter 
Bi and the Hall parameter Be and for Ha=3, τD=0 and B=0.5.  Both V and Vp increase with 
time and V reaches the steady state faster than Vp for all values of Be and Bi.  It is clear from 
the figures that increasing Be or Bi increases both V and Vp while its effect on their steady 
state times can be neglected.  This is due to the decrease in the effective conductivity which 
reduces the damping magnetic force on V.  Figures 2a and b present the time evolution of the 
velocity of the fluid V and dust particles Vp at the center of the pipe, respectively, for various 
values of the ion slip parameter Bi and the Hall parameter Be and for Ha=3, τD=0.05 and 
B=0.5.  It is clear from Figs. 1 and 2 that increasing τD decreases V and Vp for all Be and Bi.  
Also, the effect of Be and Bi on both V and Vp becomes more pronounced for higher values of 
τD.  
 Figures 3a and b present the time evolution of the velocity of the fluid V and dust 
particles Vp at the center of the pipe, respectively, for various values of the ion slip parameter 
Bi and the Hartmann number Ha and for Be=1, τD=0 and B=0.5.  It is clear that increasing Ha 
decreases V and Vp and their steady state times for all values of  Bi due to the increase in the 
damping magnetic force.  The figures indicate also that the effect of Bi on V and Vp becomes 
more pronounced for higher values of Ha.  Figures 4a and b present the time evolution of the 
velocity of the fluid V and dust particles Vp at the center of the pipe, respectively, for various 
values of the ion slip parameter Bi and the Hartmann number Ha and for Be=1, τD=0.05 and 
B=0.5.  It is shown in these figures that increasing τD decreases both V and Vp for all values of 
Bi and Ha. 
 Figures 5a and b present the time evolution of the velocity of the fluid V and dust 
particles Vp at the center of the pipe, respectively, for various values of the ion slip parameter 
Bi and the viscosity ratio B and for Ha=1, Be=1 and τD=0.  The figures indicate that 
increasing B decreases both V and Vp and their steady state times for all values of Bi.  The 
effect of the parameter Bi on V and Vp is more apparent for higher values of the parameter B.  
Figures 6a and b present the time evolution of the velocity of the fluid V and dust particles Vp 
at the center of the pipe, respectively, for various values of the ion slip parameter Bi and the 
viscosity ratio B and for Ha=1, Be=1 and τD=0.05.  It is clear that increasing τD decreases V 
and Vp and their steady state time for all values of B and Bi. Table 1 presents the steady state 
values of the fluid-phase volumetric flow rate Q, the particle-phase volumetric flow rate Qp, 
the fluid-phase skin friction coefficient C, and the particle-phase skin friction coefficient Cp 
for various values of the parameters τD and Bi and for Ha=3, Be=1 and B=0.5.  It is clear that 
increasing the parameter Bi increases Q, Qp, C, and Cp for all values of τD.  It is also shown 
that increasing τD decreases Q, Qp, C, and Cp for all values of Bi.  
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 Table 2 presents the steady state values of the fluid-phase volumetric flow rate Q, the 
particle-phase volumetric flow rate Qp, the fluid-phase skin friction coefficient C, and the 
particle-phase skin friction coefficient Cp for various values of the  parameters Bi and B and 
for Ha=3, Be=1 and τD=1.5.  It is clear that, increasing Bi increases Q, Qp, C, and Cp for all 
values of B and its effect becomes more pronounced for smaller values of B.  Increasing the 
parameter B decreases the quantities Q, Qp, and C, but increases Cp for all values of Bi. 
 
 

4. CONCLUSIONS 
 

The transient MHD flow of a particulate suspension in an electrically conducting non-
Newtonian Casson fluid through a circular pipe is studied considering the ion slip. The 
governing partial differential equations are solved numerically using finite differences. The 
effect of the magnetic field parameter, the Hall parameter, the ion slip parameter, the Casson 
number, and the particle-phase viscosity on the transient behavior of the velocity, volumetric 
flow rates, and skin friction coefficients of both fluid and particle-phases is studied.  It is 
shown that increasing the magnetic field or the viscosity ratio decreases the fluid and particle 
velocities, while increasing the Hall parameter or the ion slip parameter increases both 
velocities. It is found that, the effect of the ion slip on the fluid and particle velocities is more 
apparent for higher values of the magnetic field, the Casson number or the viscosity ratio. 
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Table 1 

 
The steady state values of Q, Qp, C, Cp for various values 

of Bi and n and for Ha=3, Be=1, B=0.5 
 

τD=0 Bi=0 Bi=1 Bi=3 
    Q 0.1361 0.1429 0.1559 

Qp 0.0325 0.0342 0.0374 
C 0.2395 0.2468 0.2606 
Cp 0.1634 0.1715 0.1867 

 
τD=0.025 Bi=0 Bi=1 Bi=3 
    Q 0.1297 0.1361 0.1482 

Qp 0.0309 0.0325 0.0356 
C 0.2275 0.2344 0.2474 
Cp 0.1557 0.1632 0.1774 

 
τD=0.05 Bi=0 Bi=1 Bi=3 
    Q 0.1232 0.1291 0.1402 

Qp 0.0294 0.0309 0.0336 
C 0.2154 0.2219 0.2339 
Cp 0.1479 0.1549 0.1679 

 
 

Table 2 
 

The steady state values of Q, Qp, C, Cp for various values 
of Bi and B and for Ha=3, Be=1, τD=0.05 

 
B=0 Bi=0 Bi=1 Bi=3 

    Q 0.1672 0.1778 0.1986 
Qp 0.1299 0.1373 0.1517 
C 0.2658 0.2770 0.2986 
Cp 0 0 0 

                  
      B=0.5 Bi=0 Bi=1 Bi=3 
    Q 0.1232 0.1291 0.1403 

Qp 0.0294 0.0309 0.0336 
C 0.2154 0.2219 0.2339 
Cp 0.1479 0.1549 0.1679 

                   
  B=1 Bi=0 Bi=1 Bi=3 

    Q 0.1169 0.1222 0.1321 
Qp 0.0159 0.0164 0.0181 
C 0.2093 0.2152 0.2260 
Cp 0.1594 0.1666 0.1799 

 
 


