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ABSTRACT. The time varying Hartmann flow of an electrically conducting viscous 
incompressible non-Newtonian power-law fluid between two parallel horizontal non-
conducting porous plates is studied with heat transfer under constant pressure gradient.  An 
external uniform magnetic field that is perpendicular to the plates and uniform suction and 
injection through the surface of the plates are applied.  The two plates are kept at different but 
constant temperatures while the Joule and viscous dissipations are taken into consideration.  
Numerical solutions for the governing nonlinear momentum and energy equations are obtained 
using finite difference approximations. The effect of the magnetic field, the parameter 
describing the non-Newtonian behavior, and the velocity of suction and injection on both the 
velocity and temperature distributions as well as the dissipation terms are examined. 
 
 

 
1. INTRODUCTION 

 
The study of the rectangular channel flow of an electrically conducting viscous 

fluid under the action of a transversely applied magnetic field, known as Hartmann flow, 
has immediate applications in many devices such as magnetohydrodynamic (MHD) power 
generators, MHD pumps, accelarators, aerodynamics heating, electrostatic precipitation, 
polymer-technology, petroleum-industry, purification of crude oil and fluid droplets-
sprays.  Channel flows of a Newtonian fluid with heat transfer have been studied, with or 
without Hall currents, by many authors (Tao 1960), (Nigam et al. 1960), (Alpher 1961), 
(Tani 1962), (Sutton et al. 1965), (Soundalgekar et al. 1979), (Soundalgekar et al. 1986), 
(Attia et al. 1996) and (Attia, 1998). These results are important for the design of the duct 
wall and the cooling arrangements.  

A number of industrially important fluids such as multon plastics, polymers, pulps 
and foods exhibits non-Newtonian fluid behavior (Nakayama 1988). Due to the growing 
use of these non-Newtonian materials, in various manufacturing and processing industries, 
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considerable efforts have been directed towards understanding their flow and heat transfer 
characteristics.  Many of the inelastic non-Newtonian fluids, encountered in chemical 
engineering processes, are known to follow the so-called “power-law model” in which the 
shear stress varies according to a power function of the strain rate (Metzner 1965).  The 
power-law fluid flows, within parallel plate ducts and rectangular ducts, have been 
considered by many authors (Tien 1962), (Gao et al. 1992), (Patel 1994) and (Ibrahim et 
al. 1994).  

In the present study, the unsteady Hartmann flow of a conducting non-Newtonian 
power-law fully developed fluid between two infinite non-conducting horizontal parallel 
and porous plates is studied.  The flow starts from rest through the application of a uniform 
and constant pressure gradient and a uniform suction from above and a uniform injection 
from below and is subjected to a uniform magnetic field perpendicular to the plates.  The 
induced magnetic field is neglected by assuming a very small magnetic Reynolds number 
(Sutton et al. 1965).  The two plates are kept at two different but constant temperatures.  
The Joule and viscous dissipations are taken into consideration in the energy equation.  
The governing nonlinear momentum and energy equations are solved numerically using 
the finite difference approximations.  The inclusion of the magnetic field, the suction and 
injection, and the non-Newtonian fluid characteristics leads to some interesting effects, on 
both the velocity and temperature fields. 

 
 

2. FORMULATION OF THE PROBLEM 
 

The fluid is assumed to be laminar viscous incompressible and obeying the power-
law model and flows between two infinite horizontal parallel non-conducting plates 
located at the y = ± h planes and extend from x =-∞ to ∞ and from z =-∞ to ∞.  The upper 
and lower plates are kept at two constant temperatures T2 and T1 respectively, with T2 > T1.   
The flow is driven by a uniform and constant pressure gradient dp/dx in the x-direction, 
and a uniform suction from the above and injection from below which are applied at t = 0.  
A uniform magnetic field with magnetic flux density vector B0 is applied in the positive y-
direction.  The uniform suction implies that the y-component of the velocity is constant 
and is taken equal to vo. Thus, the velocity vector of the fluid is given by 
 jityutyv o

rrr v),(),( +=         
The fluid motion starts from rest at t = 0, and the no-slip condition at the plates 

implies that the fluid velocity has neither z nor an x-component at y = ± h.  The initial 
temperature of the fluid is assumed to be equal to T1.   
 The flow of the fluid is governed by the Navier-Stokes equation (Schlichting 1986) 
and (Kakac et al. 1987) 

 ( ) oBJpv
Dt

vD rrrrrrr

×+∇−∇⋅∇= µρ                                (1) 

where ρ  is the density of the fluid and µ is the apparent viscosity of the model and is 
given by  
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where K is the consistency index, n is the flow behavior index which corresponds to the 
type of the fluid (n less than, equal to, and greater than 1 gives pseudoplastic, Newtonian 
and dilatant fluids respectively), Bo is the magnetic field, which is assumed to be also the 
total magnetic field, as the induced magnetic field is neglected by assuming a very small 
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magnetic Reynolds number (Sutton et al. 1965). Using Ohm’s law (Sutton et al. 1965), the 
Navier-Stokes Eq. (1) read 
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The energy equation with viscous and Joule dissipations is given by        
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where σ, cp and k are, respectively, the electrical conductivity, specific heat capacity at 
constant volume and the thermal conductivity of the fluid. The second and third terms on 
the right-hand side represent the viscous and Joule dissipations respectively. The viscous 
dissipation term may often be neglected for Newtonian fluids, however, depending on the 
duct geometry and relative volumetric flow rate, viscous dissipation may have a dramatic 
effect on the thermal flow field in non-Newtonian fluids (Gingrich et al. 1992). 

The initial and boundary conditions of the problem are given by 
    0=u at  t ≤ 0,  and     0=u at  y = ± h for  t > 0,                            (5) 
 T = T1  at  t ≤ 0,  T = T1  at  y =- h and  T = T2  at y =-h for  t > 0              (6) 

It is expedient to write the above equations in the non-dimensional form.  To do 
this, we introduce the following non-dimensional quantities 
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,/Re rohu µρ=  is the Reynolds number, 
,/ rohvS µρ=  is the suction parameter, 

,/Pr khuc opρ=  is the Prandtl number, 

)),(/( 12 TThcuEc pro −= ρµ  is the Eckert number, 
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ro hBHa µσ=  is the Hartmann number squared,  

,/ 11 nn
or hKu −−=µ  is the generalized reference viscosity,   

where Cxdpd =/ , where C is a constant.  The generalized reference viscosity is chosen 
so that when n = 1 (Newtonian fluid), the viscosity becomes constant (Attia 1998) and 
(Kakac et al. 1987). Here ou  is the characteristic velocity which is arbitrarily chosen such 
that Re=1.   Also, in terms of the above non-dimensional variables and parameters Eqs. 
(3)-(4) are written as (where the bars are dropped for convenience); 
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where 
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The initial and boundary conditions for the velocity and temperature in the dimensionless 
form are written as 
  0,>for   1  = at   0  and  0   at  0 tyutu ±=≤=                                    (10)  
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 0for    1 = at  1=  ,1 at  0=  and  0 at  0= >−=≤ ty TyTtT            (11) 
 
 

3. NUMERICAL SOLUTION 
 

Equations (7)-(9) represent a coupled system of non-linear partial differential 
equations which can not be solved analytically. Therefore, they are integrated numerically 
under the initial and boundary conditions (10), using central differences for the derivatives 
and Thomas algorithm for the solution of the set of discretized equations. A linearization 
technique is first applied to replace the nonlinear terms at a linear stage, with the 
corrections incorporated in subsequent iterative steps until convergence is reached. Then 
the Crank-Nicolson implicit method (Mitchell et al. 1980) is used at two successive time 
levels.  An iterative scheme is used to solve the linearized system of difference equations. 
The solution at a certain time step is chosen as an initial guess for next time step and the 
iterations are continued till convergence, within a prescribed accuracy. Finally, the 
resulting block tridiagonal system is solved using the generalized Thomas-algorithm 
(Mitchell et al. 1980). The energy Eq. (8) is a linear inhomogeneous second-order ordinary 
differential equation whose right-hand side is known from the solutions of the flow Eqs. 
(7), (9) and (10). The values of the velocity u and its gradient are substituted in the right-
hand side of Eq. (8) which is solved numerically with the initial and boundary conditions 
(11) using central differences for the derivatives and Thomas-algorithm for the solution of 
the set of discritized equations.  Finite difference equations relating the variables are 
obtained by writing the equations at the mid point of the computational cell and then 
replacing the different terms by their second order central difference approximations in the 
y-direction. The diffusion terms are replaced by the average of the central differences at 
two successive time-levels. The computational domain is divided into meshes each  of 
dimension ∆t and  ∆y in time and space, respectively.  We define the variables 

 ,/  ,/ yTHyuv ∂∂=∂∂= to reduce the second order differential Eqs. (7) and (8) to first 
order differential equations. The finite difference representations for the resulting first 
order differential take the form  
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The variables with bars are given initial guesses from the previous time steps and an 
iterative scheme is used at every time to solve the linearized system of difference 
equations. Then the finite difference form for the first-order form of the energy Eq. (8) can 
be written as 
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where DISP represents the Joule and viscous dissipation terms which are known from the 
solution of the momentum equations and can be evaluated at the mid point (i,j) of the 
computational cell. Computations have been made for C=-5, Pr = 1, and Ec = 0.2.  Grid-
independence studies show that the computational domain 0 < t < ∞  and –1 < y < 1 can be 
divided into intervals with step sizes ∆t = 0.0001 and ∆y = 0.005 for time and space,  
respectively as shown in Fig. 2. Smaller step sizes do not show any significant change in 
the results.  Convergence of the scheme is assumed when every one of  u, v, T  and H  for 
the last two approximations differ from unity by less than 10-6 for all values of y in –1<y<1 
at every time step.  Less than 7 approximations are required to satisfy this convergence 
criteria for all ranges of the parameters studied here. In order to examine the accuracy and 
correctness of the solutions, the results obtained here are tested and compared with the 
results for the Newtonian case reported by Attia [9] (n=1). The comparison shows a 
complete agreement between the results of both solutions. While comparisons with 
previously published theoretical work on this problem were performed, no comparisons 
with experimental data were done because, as far as the author is aware, such data are 
lacking at the present time. 
 
 

4. RESULTS AND DISCUSSION 
 

Figures 3 and 4 show the time development of the profile of the velocity u and the 
temperature T, respectively, for various values of time t and for n= 0.5, 1, and 1.5.  The 
figures are evaluated for Ha = 3 and S = 1.  As shown in Fig. 3, the profiles of u are 
asymmetric about the y = 0 plane because of the suction. Figure 3 shows that the velocity u 
increases with time and reaches its steady state monotonically. It is clear from Fig. 3 that 
the effect of the flow index n on u depends upon y. Increasing n decreases u for all y apart 
from the central region due to the increase in viscosity resulting from the large velocity 
gradient in this area. However near the center, u decreases with increasing n but increasing 
n more increases u due to the overall decrease in velocity and its gradient which decreases 
viscosity.  Figure 3a indicates that small values of n affect the parabolic shape of the 
velocity profile and lead to the suppression of the peaks.  Figure 4 shows that the 
temperature profile reachs its steady state monotonically. Figure 4 shows also, that the 
effect of n on the temperature depends on y. For small y (near the lower plate), increasing 
n decreases T, but for large y (near the upper plate) increasing n increases T. This is due to 
the effect of n in increasing or decreasing u which affects the dissipations.    

 
Figures 5 and 6 show the effect of the Hartmann number Ha on the time 

development of u and T at y = 0 with time, respectively, for various values of Hartmann 
number Ha and for n = 0.5, 1, and 1.5. In these figures S=0. Figure 5 shows that increasing 
Ha decreases u as it increases the damping force on u. It is also clear from Fig. 5 that the 
effect of n on u depends on Ha and t. For small values of Ha, increasing n increases u for 
small and moderate time, but decreases u for large time. For large values of Ha, increasing 
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n increases u for all t.  This is due to the decrease in u and its gradient with increasing Ha 
or with time progression and both results in decreasing the viscosity with increasing n. 
Figure 6 shows that the effect of Ha on the temperature T depends on t. For small values of 
t, increasing Ha increases T since the velocity u is small and increasing Ha, although it 
decreases u and its gradient, increases the Joule dissipation and then increases T. However, 
for large values of t increasing Ha decreases T due to the corresponding reduction in the 
Joule and viscous dissipations. It is also observed from Fig. 6 that the effect of n on T 
depends on Ha and t. For small values of Ha, increasing n increases T for small and 
moderate time, but decreases T for large time. For large values of Ha, increasing n always 
increase T due to the increase in Joule dissipations.   

Figures 7 and 8 show the effect of the suction parameter S on the time development 
of u and T at y = 0 with time respectively for various values of the suction parameter S and 
for n = 0.5, 1, and 1.5. In these figures Ha = 2.  Figure 7 shows that u at the centre 
decreases with increasing S for all values of n due to the convection of the fluid from 
regions in the lower half to the centre, which has higher fluid speed. It is clear from Fig. 7 
that the influence of S on u is more pronounced for the case of large n. Figure 8 indicates 
that increasing S decreases the temperature at the centre of the channel for all values of n.  
This is due to the influence of the convection in pumping the fluid from the cold lower half 
towards the centre of the channel.  The parameter S has a marked effect of the temperature 
for all values of n. 
 
 

5. CONCLUSIONS 
 

The transient Hartmann flow of a power-law non-Newtonian fluid under the 
influence of an applied uniform magnetic field is studied with heat transfer. The effects of 
the non-Newtonian fluid behavior (flow index n), the magnetic field (Hartmann number 
Ha), and the suction or injection velocity (suction parameter S) are studied.  It was found 
that the effect of the flow index on the velocity depends on the magnetic field, time and the 
coordinate y. Also, the effect of the flow index on the temperature T depends on the 
magnetic field and time. The effect of the suction velocity on u is more pronounced for 
large values of the flow index, while it has a marked effect on the temperature for all 
values of the flow index. 
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