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ABSTRACT. The unsteady Couette flow through a porous medium of a viscous, 
incompressible fluid bounded by two parallel porous plates is studied with heat 
transfer. A uniform suction and injection are applied perpendicular to the plates while 
the fluid motion is subjected to an exponential decaying pressure gradient. The two 
plates are kept at different but constant temperatures while the viscous dissipation is 
included in the energy equation. The effect of the porosity and the uniform suction 
and injection on both the velocity and temperature distributions is examined. 

 
 
 

1. INTRODUCTION 
 

The flow between two parallel plates is a classical problem that has many 
applications in accelerators, aerodynamic heating, electrostatic precipitation, polymer 
technology, petroleum industry, purification of crude oil, fluid droplets and sprays, 
magnetohydrodynamic (MHD) power generators and MHD pumps. Hartmann and Lazarus 
[1] studied the influence of a transverse uniform magnetic field on the flow of a 
conducting fluid between two infinite parallel, stationary, and insulated plates. Then, a lot 
of research work concerning the Hartmann flow has been obtained under different physical 
effects [2-10]. 
 In the present study, the unsteady Couette flow and heat transfer in a porous 
medium of an incompressible, viscous, fluid between two infinite horizontal porous plates 
are studied.    The fluid is acted upon by an exponential decaying pressure gradient, and a 
uniform suction and injection perpendicular to the plates. The upper plate is moving with a 
constant velocity while the lower plate is kept stationary.  The flow in the porous media 
deals with the analysis in which the differential equation governing the fluid motion is 
based on the Darcy’s law which accounts for the drag exerted by the porous medium [11-
13]. The two plates are maintained at two different but constant temperatures. This 
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configuration is a good approximation of some practical situations such as heat exchangers, 
flow meters, and pipes that connect system components.  The cooling of these devices can 
be achieved by utilizing a porous surface through which a coolant, either a liquid or gas, is 
forced. Therefore, the results obtained here are important for the design of the wall and the 
cooling arrangements of these devices. The governing equations are solved numerically 
taking the viscous dissipation into consideration. The effect of the porosity and the suction 
and injection on both the velocity and temperature distributions is studied. 
 
 

2. DESCRIPTION OF THE PROBLEM 
 

The two non-conducting plates are located at the y=±h planes and extend from x=-
∞ to ∞ and z=-∞ to ∞ . The lower and upper plates are kept at the two constant 
temperatures T1  and T2, respectively, where T2>T1.  The fluid flows between the two 
plates under the influence of an exponential decaying pressure gradient dP/dx in the x-
direction, and a uniform suction from above and injection from below which are applied at 
t=0. The upper plate is moving with a constant velocity Uo while the lower plate is kept 
stationary. The flow is through a porous medium where the Darcy model is assumed [13]. 
From the geometry of the problem, it is evident that ∂/∂x=∂/∂z=0 for all quantities. The 
velocity vector of the fluid is 
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with the initial and boundary conditions u=0 at t≤0, and u=0 at y=-h, and u=Uo at y=h for 
t>0.  The temperature T(y,t) at any point in the fluid satisfies both the initial and boundary 
conditions T=T1 at t≤0, T=T2 at y=+h, and T=T1 at y=-h for t>0.  The fluid flow is governed 
by the momentum equation 
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where ρ  andµ  are, respectively, the density and the coefficient of viscosity and K  is the 
Darcy permeability [11-13].  To find the temperature distribution inside the fluid we use 
the energy equation [14] 
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where c and k are, respectively, the specific heat capacity and the thermal conductivity of 
the fluid.  The second term on the right-hand side represents the viscous dissipation. 
 The problem is simplified by writing the equations in the non-dimensional form.  
We define the following non-dimensional quantities 
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µρ /Re ohU= , is the Reynolds number, 
,/ oo UvS =  is the suction parameter, 
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kc /Pr µ=  is the Prandtl number, 
)(/ 12

2 TTcUEc o −=   is the Eckert number, 
KhM /2=  is the porosity parameter. 

 

 In terms of the above non-dimensional variables and parameters, the basic Eqs. (1)-
(2) are written as (the "hats" will be dropped for convenience) 
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The initial and boundary conditions for the velocity become 
 

1,1,1,0:0,0:0 ==−==>=≤ yuyutut                                                           (5) 
 
and the initial and boundary conditions for the temperature are given by 
 

.1,0,1,1:0,0:0 −==+==>=≤ yTyTtTt                                                      (6) 
 

where the pressure gradient is assumed in the form tCedxdP α−=/ . 
 
 

3. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS 
 
Equations (3) and (4) are solved numerically using finite differences [15] under the initial 
and boundary conditions (5) and (6) to determine the velocity and temperature 
distributions for different values of the parameters M and S. The Crank-Nicolson implicit 
method is applied.  The finite difference equations are written at the mid-point of the 
computational cell and the different terms are replaced by their second-order central 
difference approximations in the y-direction.  The diffusion term is replaced by the average 
of the central differences at two successive time levels.  Finally, the block tri-diagonal 
system is solved using Thomas' algorithm.  All calculations have been carried out for  C=-
5, α=1, Pr=1 and Ec=0.2.  
 

 
4. RESULTS AND DISCUSSION 

 
Figure 1 presents the velocity and temperature distributions as functions of y for 

different values of the time starting from t=0 to the steady state.  Figures 1a and 1b are 
evaluated for M=1 and S=1.  It is observed that the velocity component u and temperature 
T  do not reach the steady state monotonically.  They increase with time up to a maximum 
value and then decrease as time develops up till their steady state values.  
 
 Figure 2 shows the effect of the porosity parameter M on the time development of 
the velocity u and temperature T at the centre of the channel (y=0). In this figure, S=0 
(suction suppressed). It is clear from Fig. 2a that increasing the parameter M decreases u 
and its steady state time. This is due to increasing the porosity damping force on u. Figure 
2b indicates that increasing M decreases T and its steady state time. This can be attributed 
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to the fact that increasing M decreases u and, in turn, decreases the viscous dissipation 
which decreases T.  
 Figure 3 shows the effect of the suction parameter on the time development of the 
velocity u and temperature T at the centre of the channel (y=0). In this figure, M=0. In Fig. 
3a, it is observed that increasing the suction decreases the velocity u at the center and its 
steady state time due to the convection of fluid from regions in the lower half to the center, 
which has higher fluid speed. In Fig. 3b, the temperature at the center is affected more by 
the convection term, which pumps the fluid from the cold lower half towards the centre.   
 
 

5. CONCLUSION 
 

The unsteady Couette flow through a porous medium of a viscous incompressible fluid has 
been studied in the presence of uniform suction and injection. The effect of the porosity 
and the suction and injection velocity on the velocity and temperature distributions has 
been investigated. It is found that both the porosity and suction or injection velocity has a 
marked effect on both the velocity and temperature distributions.   
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