
 67

Kragujevac J. Sci. 27 (2005) 67-74. 
 
 
 
 

 
EQUIENERGETIC  COMPLEMENT  GRAPHS 

 
 

Harishchandra S. Ramanea, Ivan Gutmanb, Hanumappa B. Walikarc and 
Sabeena B. Halkarnic 

 
 

aDepartment of Mathematics, Gogte Institute of Technology, Udyambag, 
Belgaum – 590008, India, 

bFaculty of Science, P. O. Box 60, 34000,Kragujevac, Serbia & Montenegro, 
cDepartment of Mathematics, Karnatak University, Dharwad – 580003, India. 

 
 

(Received August 3, 2004) 
 
 

ABSTRACT. The energy of a graph G is the sum of the absolute values of its eigenvalues. 
Two graphs are said to be equienergetic if their energies are equal. In this paper we show that 
if G is a regular graph on n vertices and of degree r ≥ 3, then E( )(2 GL ) = (nr – 4)(2r – 3) – 2. 
This leads to the construction of infinitely many equienergetic graphs, which are of the same 
order and noncospectral. 
 

INTRODUCTION 

 The concept of graph energy was introduced by one of the present authors [8], 

motivated by results obtained by applying graph spectral theory to molecular orbital theory 

[7,14]. For recent mathematical work on the energy of a graph see [1,9,12,819-23,26,29-33] 

whereas for recent chemical studies see [2,3,5,6,10,11,13,15-17,27,28]. 

 Let G be an undirected graph without loops and multiple edges on n vertices. The 

eigenvalues of the adjacency matrix of G are said to be the eigenvalues of G and they are 

denoted by 1λ , 2λ , … , nλ  and are labeled so that 1λ  ≥ 2λ  ≥ …≥ nλ . These eigenvalues 

form the spectrum of G [4].  Two graphs are said to be cospectral if they have the same 

spectra.  
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 The energy of a graph G is defined as [8], E(G) = ∑
=

n

i
i

1
λ . Two graphs 1G  and 2G  are 

said to be equienergetic if E( 1G ) = E( 2G ). Cospectral graphs are equienergetic. If Ok is the k-

vertex graph without edges and G any graph, then G and G U Ok are equienergeti. These two 

trivial cases of equienergeticity are, of course, of no interest. Quite recently classes of non-

cospectral equienergetic graphs were designed [1,3,23,26], among which also pairs of 

equienergetic chemical trees [3].  In this paper we point out further classes of equienergetic 

graphs. 

 Let G be a graph and )(1 GL = L(G) be its  line  graph  [18].  Further, let )(GLk =  

L( )(1 GLk− ), k ≥ 2, be the iterated line graphs of G. A graph G is said be regular of degree r if 

all its vertices have same degree, equal to r. If G is a regular graph on n vertices and of 

degree r, then L(G) is a regular graph on  

                                                    1n  = nr/2                                                                    (1)  

vertices and of degree  

                                                 1r  = 2r – 2.                                                                    (2) 

 Consequently all iterated line graphs )(GLk  of a regular graph G are regular [18]. In 

particular, if G is a regular graph on n vertices, of degree r then by Eqs. (1) and (2), )(2 GL  is 

a regular graph on 2n  = 1n 1r /2 = nr(r – 1)/2 vertices and of degree 2r  = 2 1r  – 2 = 4r – 6. For 

more details on line graphs see elsewhere [18]. 

Theorem 1 [4]. If G is a regular graph on n vertices and of degree r, then its largest 

eigenvalue is 1λ  = r. 

Theorem 2 [25]. If 1λ , 2λ ,…, nλ  are the eigenvalues of a regular graph G on n vertices and 

of degree r,  then the  eigenvalues  of L(G) are iλ  + r – 2,  i = 1, 2, … , n, and  –2,  n(r – 2)/2 

times. 
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Theorem 3 [24]. If 1λ , 2λ ,…, nλ  are the eigenvalues of a regular graph G of order n and of 

degree r,  then the   eigenvalues   of G ,  the  complement of G, are n – r – 1  and – iλ  – 1,  i 

= 2, 3, … , n. 

Theorem 4 [23]. If G is a regular graph of order n and of degree r ≥ 3, then 

                                      E( )(2 GL ) = 2nr(r – 2).                                                             (3) 

Corollary 5 [23]. Let 1G  and 2G  be two regular graphs, both on n vertices, both of degree r 

≥ 3. Then for any k ≥ 2, )( 1GLk  and )( 2GLk  are equienergetic. 

 

EQUIENERGETIC COMPLEMENT GRAPHS 

Theorem 6. If G is a regular graph of order n and of degree r ≥ 3, then 

                              E( )(2 GL ) = (nr – 4)(2r – 3) – 2.                                                     (4) 

Proof. Let G be a regular graph on n vertices and of degree r ≥ 3. Let its eigenvalues be 

1λ , 2λ ,… , nλ . Then by Theorem 2, the eigenvalues of L(G) are 

                                       iλ  + r – 2 ,          i = 1, 2, … , n   
                                                                                                                                       (5) 
                      and             – 2 ,                 n(r – 2)/2 times 

In view of that fact that L(G) is a regular graph on nr/2 vertices and of degree 2r – 2, from 

Eqs. (5) the eigenvalues of )(2 GL  are 
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                                    iλ  + 3r – 6,          i = 1, 2, … , n   

                                      2r – 6,              n(r – 2)/ times                                                  (6) 

                      and          – 2 ,                 nr(r – 2)/2 times 

Because )(2 GL  is a regular graph on nr(r – 1)/2 vertices and of degree 4r – 6, from Theorem 

3 and Eqs. (6), the eigenvalues of )(2 GL  are  

                                – iλ  – 3r + 5,                          i = 2, 3, … , n   

                                 – 2r + 5,                               n(r – 2)/2 times  
                                                                                                                                       (7) 
                                   1,                                       nr(r – 2)/2 times 

           and               (nr(r – 1)/2) – 4r + 5  

 If maxd  is the greatest vertex degree of a graph, then all its eigenvalues belong to the 

interval [– maxd , maxd ] [4]. In particular the eigenvalues of a regular graph of degree r, satisfy 

the condition  – r ≤ iλ  ≤ r, i = 1,2,…,n. If r ≥ 3 then iλ  + 3r – 5 > 0, 2r – 5 > 0 and (nr(r – 

1)/ 2) – 4r + 5 > 0. Therefore the energy of )(2 GL  is computed from (7) as 

E( )(2 GL ) = ∑
=

+−
n

i
i r

2
53λ-  + ⏐ – 2r + 5⏐

2
)2( −rn  + ⏐1⏐

2
)2( −rnr  

                                        + 54
2

)1(
+−

− rrnr  

                 =∑
=

n

i
i

2
λ  + (3r – 5)(n – 1) + (2r – 5)

2
)2( −rn  + 

2
)2( −rnr  + 

2
)1( −rnr  – 4r + 5 

                 = (nr – 4)(2r – 3) – 2 ,                       since   ∑
=

n

i
i

2
λ =  – r . 
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Corollary 7. Let 1G  and 2G  be two regular graphs on n vertices and of degree r ≥ 3. Then 

)( 1
2 GL  and )( 2

2 GL  are equienergetic. 

Proof. Corollary 7 directly follows from Eq. (4). 

Corollary 8. Let 1G  and 2G  be two regular graphs on n vertices and of degree r ≥ 3. Then 

for any k ≥ 2, E( )( 1GLk ) = E( )( 2GLk ). 

Proof. By repeated application of Eqs. (1) and (2), the graphs )( 1
2 GLk−  and )( 2

2 GLk−  have 

same number of vertices. Because )( 1
2 GLk−  and )( 2

2 GLk−  are regular graphs of same degree, 

with equal number of vertices, by Corollary 7, )( 1GLk  = ))(( 1
22 GLL k−  and )( 2GLk  = 

))(( 2
22 GLL k−  are equienergetic. 

Corollary 9. Let 1G  and 2G  be two non-cospectral regular graphs on n vertices, of degree r 

≥ 3. Then for any k ≥ 2, both )( 1GLk  and )( 2GLk  are regular, non-cospectral, possessing 

same number of vertices, same number of edges and equienergetic. 

Proof. All iterated line graphs )(GLk  of regular graphs are regular and the complement of a 

regular graph is also regular. Therefore )( 1GLk  and )( 2GLk  are regular graphs. From Eqs. 

(5), (6), and (7), if 1G  and 2G  are not cospectral then )( 1GLk  and )( 2GLk  are not cospectral, 

for any k ≥ 1. By repeated application of Eqs. (1) and (2), we conclude that )( 1GLk  and 

)( 2GLk  possess equal number of vertices and from Corollary 8, that )( 1GLk  and )( 2GLk  are 

equienergetic. 

 

 From Eqs. (3) and (4), we arrive at the following: 

Corollary 10. If G is a regular graph on n vertices and of degree r ≥ 3, then E( )(2 GL ) = 

E( )(2 GL ) – r(n – 8) – 10. 



 72 

Corollary 11. Let G be a regular graph on n vertices and of degree r ≥ 3. Then E( )(2 GL ) = 

E( )(2 GL ) if and only if G = K6. 

Proof. If G = K6, then G is a regular graph on 6 vertices and of degree 5. Then from (3) and 

(4), E( )(2 GL ) = E( )(2 GL ) = 180. 

Conversely, assume that E( )(2 GL ) = E( )(2 GL ) 

Then  r(n – 8) + 10 = 0. Bearing in mind that r ≥ 3, the latter condition is satisfied for n = 7, r 

= 10 and n = 6, r = 5. There is no graph with n = 7 and r = 10. Hence the case that remains is 

n = 6 and r  = 5, which is K6. 
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