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ABSTRACT. Total π-electron energy E (as computed within the Hückel molecular orbital 
approximation) is a quantum chemical characteristic of unsaturated conjugated compounds 
whose dependence on molecular structure can be deduced and analyzed by means of algebraic 
graph theory. It is shown that E depends - in a perplexed, but mathematically well-defined 
manner - on a large number of molecular structural features. The mathematical representations of 
these structural features are the so-called Sachs graphs. Some of these Sachs graphs correspond 
to familiar chemical notions: bonds, rings, Kekulé structures. Most of them, however, represent 
structural features whose chemical significance was not anticipated by chemists. Thus we are 
faced with a case of structure-property relation that could not be deduced and rationalized 
without the use of modern mathematical methods. In the article are outlined the basic results 
achieved along these lines, illustrated with concrete chemical applications. 
 
 
INTRODUCTION 
 
Most chemists are of the opinion that mathematics is of little importance and of almost no value 
in their science, including "theoretical chemistry". The undeniable fact is that most chemist can 
successfully do their work or conduct their research (up to winning a Nobel prize) without 
utilizing any form of mathematics that goes beyond simplest calculus. As a consequence, being 
chemist often means being ignorant in mathematics.  
 
The aim of this article is to demonstrate that, in some cases at least, the lack of mathematical way 
of reasoning makes chemists blind to certain aspects of their work. We are aiming at one of the 
central objectives of chemistry: finding connections between molecular structure and molecular 
properties. 
 
It is one of the paradigms of chemistry that molecular structure determines the (physical, 
chemical, pharmacological, ...) properties of the corresponding substance, provided, of course, 
that this substance consists of molecules. Thus, from the known molecular structure, the 
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properties of substances should be predictable. Although much success along these lines has 
been achieved and much knowledge accumulated, we are still very far from the complete 
solution of the problem. [In contemporary chemical literature two acronyms are often 
encountered: QSPR = Quantitative Structure Property Relations and QSAR = Quantitative 
Structure Activity Relations. Under "property" are meant the physical and chemical properties, 
whereas "activity" refers to pharmacological, biological, medicinal and similar properties.] 
 
In this article we consider a special problem in QSPR research, namely the finding of the 
(quantitative) connection between the structure of a polycyclic conjugated hydrocarbon and its 
total π-electron energy E. Although E cannot be directly measured, it is known to be reasonably 
well related to the experimentally accessible thermodynamic data (Gutman, 1992, Gutman and 
Polansky, 1986, Schaad and Hess, 1972, 2001). 
 
The total π-electron energy considered here is computed by means of the tight-binding Hückel 
molecular orbital (HMO) approximation and, as usual, expressed in the units of the carbon-
carbon resonance integral β. Details of HMO theory are found, e. g., in the books (Coulson et al., 
1978, Yates, 1978). Within the HMO model it is possible to employ the mathematical apparatus 
of graph spectral theory; for applications of graph spectral theory in molecular orbital theory see 
the books (Dias, 1993, Graovac et al., 1977) and the articles (Dias, 1987, 1992, Gutman, 2003, 
Gutman and Trinajstić, 1973).  
 
For the present considerations the actual value of the parameter β is not important, except that its 
value is negative. We nevertheless mention that for thermochemical purposes the recommended 
value of β is -137.00 kJ/mol and that the heats of atomization computed by the HMO method are 
accurate to 0.1%, implying that E is accurate up to ±0.005 β units (Schaad and Hess, 1972). 
Thus, the greater is E, the higher is the thermodynamic stability of the respective compound; 
structural factors increasing (resp. decreasing) the value of E increase (resp. decrease) the 
thermodynamic stability. 
 
 
 

GRAPH THEORETICAL PREPARATIONS 
 
In order to be able to present the results on the structure-dependence of E, we must specify a few 
basic notions of graph theory and graph spectral theory. More details can be found in the books 
(Graovac et al., 1977, Gutman, 2003a , Gutman and Polansky, 1986). 
 
A conjugated hydrocarbon is represented by its molecular graph. The construction of such a 
graph should be evident from the example shown in Fig. 1.  
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Figure 1. The structural formula of biphenylene and the corresponding molecular graph G1. The 
graph G1 has n=12 vertices and 14 edges. The vertices of G1 represent the carbon atoms, whereas 
its edges represent the carbon-carbon bonds of biphenylene. 

 
 

The number of vertices of a molecular graph G is denoted by n. Two vertices connected by an 
edge are said to be adjacent. 
 
If the vertices of the graph G are labeled by v1, v2,..., vn, then the structure of G can be 
represented by the adjacency matrix A = A(G) = ||Aij||. This is a square matrix of order n, whose 
elements Aij are defined so that Aij=Aji=1 if the vertices vi and vj  are adjacent, and Aij=0 
otherwise. For an example see Fig. 2. 
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Figure 2. A graph G2 and its adjacency matrix A(G2). It can be computed (but not easily) that the 
characteristic polynomial of G2 is Φ(G2,x) = x5 - 5 x3 + 2 x . The solutions of the equation  x5 - 5 
x3 + 2 x = 0   are   x1=[(5 + √17)/2]1/2 = 2.13578,   x2=[(5 - √17)/2]1/2 = 0.66215,   x3=0,   x4=-[(5 
- √17)/2]1/2 = -0.66215   and   x5=-[(5 + √17)/2]1/2 = -2.13578. These five numbers are the 
eigenvalues of the graph G2 and form the spectrum of G2. 
 

 
The characteristic polynomial of the graph G, denoted by Φ(G,x) is equal to the determinant 
det(xI-A) where I is the unit matrix. It can be shown that Φ(G,x) is a polynomial in the variable 
x, of degree n. For an example see Fig. 2. 
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The numbers x1, x2,...,xn, obtained by solving the equation Φ(G,x)=0, are the eigenvalues of the 
graph G. These eigenvalues form the spectrum of G. For an example see Fig. 2.  
 
 

SOME RESULTS FROM THE THEORY OF TOTAL π-ELECTRON ENERGY 
 
Anticipating that the majority of the readers of this article will not be interested in the perplexed 
mathematical details of the theory of total π-electron energy, and will not be willing to spend 
time on apprehending them, in what follows we give only a few master formulae that the non-
interested reader may skip and go straight to the next section. Those who are interested to learn 
the entire theory should, first of all, consult chapter 8 of the book (Gutman and Polansky, 1986). 
 
It can be shown (Graovac et al., 1977, Gutman and Trinajstić, 1973) that, in the majority of 
chemically interesting cases, the total π-electron energy is related to the eigenvalues of the 
molecular graph as 
 
 ∑= ixE 2           (1) 
 
where the summation goes over the positive-valued eigenvalues of the molecular graph. Another 
neat way in which Eq. (1) can be written is 
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where now the summation embraces all graph eigenvalues. 
 
Thanks to the symmetric form of Eq. (2), the HMO total π-electron energy E is particularly 
suitable for mathematics-based investigations. The first significant result in this area was 
obtained by the British mathematician and theoretical chemist Charles Coulson, good 30 years 
before other chemists started to use graph spectral theory (Coulson, 1940). Coulson found a 
connection between E and the characteristic polynomial of the molecular graph, an expression 
that may look frightening to chemists: 
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In formula (3), Φ' stands for the first derivative of the characteristic polynomial, and i for the 
imaginary unit, i=√-1. 
 
A quarter of century later, the German mathematician Horst Sachs discovered the way in which 
the characteristic polynomial of a graph depends on its structure. His result, nowadays referred to 
as the Sachs theorem (Gutman, 2003b), reads as follows: 
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where the summation goes over all so-called Sachs graphs of the graph G. These Sachs graphs, 
essential for the present considerations, are defined as follows. 
 
By K2 is denoted the graph consisting of two vertices, connected by an edge. By Cn is denoted 
the cycle possessing n vertices, n=3,4,5,..., see Fig. 3. 
 
 
 

 
 

 
Figure 3. Components of the Sachs graphs. Any Sachs graph consists of components that are K2 
and/or C3 and/or C4 and/or ...  , see Fig. 4. 
 
 
 
A graph in which each component is K2 or C3 or C4 or C5 or ... is called a Sachs graph. Some of 
these Sachs graphs are contained in the molecular graph; examples are found in Fig. 4. 
 
In formula (4), p(S), c(S) and n(S) are the number of components, cyclic components and 
vertices, respectively, of the Sachs graph S. For instance, the Sachs graphs S1, S4, S7 and S9 
(depicted in Fig. 4), have, respectively, 1, 6, 3 and 2 components, 0, 0, 1 and 2 cyclic 
components, and 2, 12, 10 and 12 vertices. 
 
When formulae (3) and (4) are combined, one arrives at an explicit expression, connecting the 
total π-electron energy with molecular structure (Gutman, 1977, Gutman and Trinajstić, 1976): 
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Figure 4. Examples of Sachs graphs (indicated by tick lines) contained in the biphenylene graph 
G1. The biphenylene graph contains a total of 514 Sachs graphs. Each of these graphs can be 
understood as representing a structural feature of the respective molecule. 
 
 

THE CHEMICAL SIGNIFICANCE OF FORMULA (5) 
 
Each Sachs graph can be understood as representing a particular structural detail of the 
underlying molecule. Some of these structural details are those familiar to every chemist. For 
instance, S1 and S2 in Fig. 4 pertain to two distinct carbon-carbon bonds of biphenylene, S6 
corresponds to one of its six-membered rings, S4 and S6 can be viewed as representing two of its 
Kekulé structural formulae. However, most Sachs graphs have no usual chemical interpretation. 
For instance, hardly any non-mathematical chemist has ever thought of structural details such as 
S3 (three mutually non-touching carbon-carbon bonds) or S7 (a six-membered ring and two non-
touching carbon-carbon bonds, not belonging to this ring), etc. etc. Yet, all such structural details 
play role in determining the magnitude of the total π-electron energy, and thus are responsible for 
the thermodynamic stability of the respective molecule. 
 
Formula (5) is really awkward, but it represents the mathematically complete solution of the 
structure-dependence problem of a molecular property, in this particular case - of the  
HMO total π-electron energy. There exist very few QSPR results of this kind. 
 
What can we learn from formula (5)? 
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First: The relation between total π-electron energy and molecular structure is extremely 
complicated. [In our opinion, the true relation between any molecular property and molecular 
structure is extremely complicated, only usually we are not aware of this fact.] 
 
Second: Formula (5) precisely identifies all structural details that influence the total π-electron 
energy. As already mentioned, some of these are familiar: bonds, rings, Kekulé structures. Most 
of them are exotic, never anticipated by "intuitively thinking" chemists. Formula (5) reveals the 
plenitude of (relevant) information contained in a molecular structure, most of which chemist 
would never recognize without utilizing graph spectral theory. 
 
Third: Formula (5) shows the precise mathematical form in which each structural feature 
influences the value of E. Thus from it we could make quantitative inferences. The effect of 
various structural details on E is far from being linear (what chemist prefer because of the 
simplicity of the linear mathematical expressions).  
 
Fourth: In principle, any question concerning the structure-dependence of E can be answered by 
means of formula (5). In reality, we encounter serious mathematical difficulties. Therefore, 
research in the theory of total π-electron energy continues until the present days (Gutman et al., 
2004, Zhou, 2004) and will, most probably, go on also in the foreseen future. One particular 
problem that has been completely resolved is the effect of cycles on E (Gutman, 1984, Gutman 
and Bosanac, 1977, Gutman et al., 1993, Gutman and Polansky, 1981). We outline the details of 
this topic in the subsequent section. 
 
 
Applications: Effects of Cyclic Conjugation 
 
Long time ago chemists have recognized that cyclic π-electron systems exhibit very large 
stabilization or destabilization relative to their acyclic analogs. The pairs benzene vs. hexatriene 
(stabilization) and cyclobutadiene vs. butadiene (destabilization) are textbook examples. Already 
in the 1930s Hückel formulated his 4m+2 rule, claiming that monocyclic conjugated systems are 
stable if they possess 4m+2 (i. e., 2, 6, 10, 14, ...) π-electrons, and are unstable if the number of 
π-electrons is 4m (i. e., 4, 8, 12, ...). That this is an energy-based effect was demonstrated in the 
1960s (Breslow and Mohácsi, 1963). 
 
Extending the Hückel rule to polycyclic conjugated molecules became possible only after graph 
theory was applied in molecular orbital theory, more precisely: after Eq. (5) was discovered.  
 
Using the fortunate fact that the total π-electron energy depends on Sachs-graph-type structural 
features, and that (some) Sachs graphs consist of cycles, it was possible to express the effect of a 
particular cycle C, contained in the molecular graph G, on the respective E-value (Gutman, 1984, 
Gutman and Bosanac, 1977, Gutman et al., 1993, Gutman and Polansky, 1981): 
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In Eq. (6) G-C denotes the subgraph obtained by deleting the cycle C from the graph G. 
Whenever ef(G,C) is positive, the cycle C stabilizes the molecule; negative ef-values imply 
destabilization.  
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In Fig. 5 are given the energy-effects of two typical polycyclic conjugated systems.  
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Figure 5. The energy-effects of the cycles of phenanthrene and biphenylene, expressed in the 
units of the HMO resonance integral β. 
 
 
The examples shown in Fig. 5 illustrate some basic properties of cyclic conjugation, which - 
again - would not be recognized without use of mathematics. 
 
(a) Not only rings, but also larger cycles (often ignored by chemists) have their energy 
contributions.  
 
(b) The energy-effect usually decreases with increasing size of the cycle, but has a non-
negligible value also for cycles of larger size. 
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(c) Cycles of the same size may have significantly different energy-effects. 
 
(d) In the examples shown in Fig. 5, the 6-, 10- and 14-membered cycles have a stabilizing 
effect, and the 4-, 8- and 12-membered cycles a destabilizing effect. This is in full agreement 
with the Hückel 4m+2 rule. 
 
(e) However, contrary to what chemists may expect based on their "intuition", the Hückel 4m+2 
is not generally obeyed. Surprisingly, only the following result could be rigorously proven 
(Gutman, 1979): 
 
(f) In all alternant polycyclic conjugated hydrocarbons, cycles of size 4, 8, 12, 16, ... always have 
a negative ef-value and thus always destabilize the respective molecule. (This is just one half of 
the Hückel 4m+2 rule.) 
 
(g) In the majority of cases, cycles of size 6, 10, 14, 18, ... have a stabilizing effect. However, 
there exist exceptions, namely alternant polycyclic conjugated hydrocarbons in which some of 
the (4m+2)-membered cycles have a destabilizing energy-effect and thus violate the Hückel 
4m+2 rule (Gutman and Stanković, 1994).  
 

*   *   * 
 
Although the results (f) and (g) can be stated and made understandable without any mathematical 
formalism, they hardly could have been deduced without use of mathematical reasoning. These 
results could be viewed as examples of what chemistry may gain from mathematics:  
 
Over half a century, chemists believed that a certain regularity holds and is generally valid. Only 
a couple of years after a couple of mathematical chemists started to apply graph theory, it could 
be shown that one half of the regularity is generally valid (and is thus a law on Nature), whereas 
the other half is not. 
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