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ABSTRACT. The unsteady Couette flow of an electrically conducting incompressible non-
Newtonian viscoelastic fluid between two parallel horizontal non-conducting porous plates is 
studied with heat transfer considering the Hall effect. A sudden uniform and constant pressure 
gradient, an external uniform magnetic field that is perpendicular to the plates and uniform suction 
and injection through the surface of the plates are applied. The two plates are kept at different but 
constant temperatures while the Joule and viscous dissipations are taken into consideration.  
Numerical solutions for the governing momentum and energy equations are obtained using finite 
difference approximations. The effect of the Hall term, the parameter describing the non-
Newtonian behavior, and the velocity of suction and injection on both the velocity and 
temperature distributions is examined.  

 
 
 

INTRODUCTION 
 

The flow of an electrically conducting viscous fluid between two parallel plates in the 
presence of a transversely applied magnetic field has applications in many devices such as 
magnetohydrodynamic (MHD) power generators, MHD pumps, accelarators, aerodynamics 
heating, electrostatic precipitation, polymer technology, petroleum industry, purification of 
molten metals from non-metallic inclusions and fluid droplets-sprays.  Hartmann flow of a 
Newtonian fluid with heat transfer, subjected to different physical effects, have been studied 
by many authors [1-9]. These results are important for the design of the duct wall and the 
cooling arrangements. The rectangular channel problem has later been extended also to fluids 
obeying non-Newtonian constitutive equations. The hydrodynamic flow of a viscoelastic 
fluid has attracted the attention of many authors [10-13] due to its important industerial 
applications [11].  In most cases the Hall term was ignored in applying Ohm's law as it has no 
marked effect for small and moderate values of the magnetic field.  However, the current 
trend for the application of magnetohydrodynamics is towards a strong magnetic field, so that 
the influence of electromagnetic force is noticeable [4]. Under these conditions, the Hall 
current is important and it has a marked effect on the magnitude and direction of the current 
density and consequently on the magnetic force term. 
 Attia [8] has studied the influence of the Hall current on the velocity and temperature 
fields of an unsteady flow of a conducting Newtonian fluid between two infinite non-



 6 

conducting horizontal parallel stationary and porous plates.  This problem is extended here to 
the case of a non-Newtonian viscoelastic fluid where the upper plate is moving with a 
uniform velocity.  The flow is subjected to a uniform and constant pressure gradient, a 
uniform suction from above and a uniform injection from below, and an external uniform 
magnetic field perpendicular to the plates.  The Hall current is taken into consideration while 
the induced magnetic field is neglected by assuming a very small magnetic Reynolds number 
[4].  The two plates are kept at two different but constant temperatures.  This configuration is 
a good approximation of some practical situations such as heat exchangers and flow meters.  
The Joule and viscous dissipations are taken into consideration in the energy equation.  The 
governing momentum and energy equations are solved numerically using the finite difference 
approximations.  The inclusion of the Hall current as well as the non-Newtonian fluid 
characteristics leads to some interesting effects, on both the velocity and temperature fields. 
 
 

FORMULATION OF THE PROBLEM 
 

The geometry of the problem is shown in Fig. 1. The fluid is assumed to be incompressible, 

viscoelastic and flows between two infinite horizontal parallel non-conducting plates located 

at the y=±h planes and extend from x=-∞ to ∞ and from z=-∞ to ∞.  The upper plate is 

moving with a uniform velocity Uo.  The lower and upper plates are kept at two constant 

temperatures T1 and T2 respectively, with T2>T1.  The flow is driven by a uniform and 

constant pressure gradient dP/dx in the x-direction, and a uniform suction from the above and 

injection from below which are applied at t=0.  A uniform magnetic field with magnetic flux 

density vector Bo is applied in the positive y-direction which is assumed to be also the total 

magnetic field, as the induced magnetic field is neglected by assuming a very small magnetic 

Reynolds number [4].  The Hall effect is taken into consideration and consequently a z-

component for the velocity is expected to arise.  The plates are assumed to be infinite in the x 

and z- directions which makes the physical quantities do not change in these directions.  

Thus, the velocity vector of the fluid, in general, is given by 

 
ktywjtyvityutyv
rrrr ),(),(),(),( ++=   

 
It is because of the conservation of mass, i.e., 0. =∇ vr  and due to the uniform suction the 

velocity component ),( tyv  is assumed to have a constant value vo. 

 The fluid motion starts from rest at t=0, that is u=w=0 for t≤0. The no-slip condition 

at the plates implies that u=Uo, w=0 at y=h and u=0, w=0 at y=-h.  It is also assumed that the 

initial temperature of the fluid is T1, thus the initial and boundary conditions of temperature 

are T=T1 at t=0, T=T1 at y=-h, t>0 and T=T2 at y=h, t>0.  If the Hall term is retained, the 

current density J
r

 is given by 
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where σ is the electric conductivity of the fluid and β is the Hall factor [4].  Equation (1) may 
be solved in J

r
 to yield Lorentz force vector in the form 
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where m=σβBo is the Hall parameter.  The fluid motion is governed by the momentum 
equations [14] 
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where ρ is the density of the fluid, xyτ  and zyτ  are  the components of the shear stress of the 

viscoelastic fluid given respectively as [10] 
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where µ is the coefficient of viscosity and α is the modulus of rigidity.  In the limit α tends to 

infinity or at steady state, the fluid behaves like a viscous fluid without elasticity. Solving 

Eqs. (5a) and (5b) for xyτ  and zyτ  in terms of the velocity components u and w we obtain 
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where the two terms ))(()/1( 2
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proportional to )/1( 2α   have been neglected.  Substituting Eqs. (6a) and (6b) in the 

momentum Eqs. (3) and (4) yields 
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 The temperature distribution is governed by the energy equation [16] 
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where cp and k are, respectively, the specific heat capacity at constant pressure and the 

thermal conductivity of the fluid.  The second and third terms on the right-hand side represent 

the Joule and viscous dissipations respectively. Equations (7), (8) and (9) can be made 

dimensionless by introducing the following dimensionless variables 
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We also define the following dimensionless parameters, 
 

o

o
U
v

=$ , the suction parameter, 

 

µ
ρhUo=Re , is the Reynolds number, 

µσ /hBHa o= , the Hartmann number, 
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=Pr , the Prandtl number, 
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In terms of these dimensionless quantities, Eqs. (7), (8) and (9) may be written, after 

dropping all hats for convenience, as 
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The initial and boundary conditions for the velocity and temperature in the dimensionless 

form are written as 
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 Equations (10)-(12) represent a system of partial differential equations which is 

solved numerically under the initial and boundary conditions (13) and (14), using  the  finite 

difference approximation.  The Crank-Nicolson implicit method [15] is used at two 

successive time levels.  Finite difference equations relating the variables are obtained by 

writing the equations at the mid point of the computational cell and then replacing the 

different terms by their second order central difference approximation in the y-direction.  The 

diffusion terms are replaced by the average of the central differences at two successive time-

levels.  Finally, the resulting block tri-diagonal system is solved using the generalized 

Thomas-algorithm [15].  Grid-independence studies show that the computational domain 

0<t<∞ and -1<y<1 can be divided into intervals with step sizes ∆t=0.0001 and ∆y=0.005 for 

time and space, respectively.  Smaller step sizes do not show any significant change in the 

results.  Convergence of the scheme is assumed when any one of u, w, T, and their gradients 

for the last two approximations differs from unity by less than 10-6 for all values of y in -

1<y<1 at every time step.  Computations have been made for dp/dx=5, Re=1, Pr=1, and 

Ec=0.2.  In order to examine the accuracy and correctness of the solutions, the results for the 

non-magnetic and Newtonian cases are compared and shown to have complete agreement 

with those reported by Attia [8]. 
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RESULTS AND DISCUSSION 
 

Figures 2-4 show the time development of the profiles of the velocity components u 
and w and the temperature T respectively for various values of time t and for K=0, 0.5, and 1.  
The figures are evaluated for Ha=3, m=3, and $=1.  Figures 2 and 3 and tables 1 and 2 
indicate that the parameter K has an apparent effect on the growth of u and w with time and 
that, for all K, u and w increase for a period of time and then decreases as time develops for 
all y.  The time at which u and w start decreasing increases for all values of K. Also, the time 
at which u starts decreasing is larger than that of w.  Figures 2 and 3 and tables 1 and 2 show 
that, for small t, increasing K decreases u and w for all y.  For large t, increasing K increases 
u and w for all y.   Figure 4 and table 3 show that the temperature profile reaches its steady 
state monotonically. In general, increasing K decreases T for all y and t. However, for large 
values of t, increasing K decreases T for all y.  Also, for the upper half region at small time, 
increasing K increases T slightly.  It is observed also that the velocity component u reaches 
the steady state faster than w which, in turn, reaches the steady state faster than T.  This is 
expected as u is the source of w as a result of the inclusion of the Hall current, while both u 
and w act as sources for T.  It is noticed that the effect of K on u and w and their steady state 
times is more pronounced than its effect on the temperature T. 
 Figures 5-7 show the effect of the Hall parameter m on the time development of u, w 
and T at the centre of the channel (y=0) respectively for various values of the Hall parameter 
m and for K=0, 0.5, and 1.  In these figures Ha=3 and $=1.  Figure 5 shows that u increases 
with increasing m for all values of K as the effective conductivity (σ/(1+m2)) decreases with 
increasing m which reduces the magnetic damping force on u.  In Fig. 6, at large times, the 
velocity component w increases with increasing m as w is a result of the Hall effect.  On the 
other hand, at small times, w decreases when m increases.  This happens due to the fact that, 
at small times w is very small and then the source term of w is proportional to (mu/(1+m2)) 
which decreases with increasing m (m>1).  This accounts for the crossing of the curves of w 
with t for all values of K.  An interesting phenomenon is observed in Figs. 5 and 6, which is 
that, when m has a nonzero value the component u and, sometimes, w overshoot.  For some 
times they exceed their steady state values and then go down towards steady state. The time 
at which overshooting occurs increases greatly with increasing K.  It is also shown in Fig. 5 
and 6 that the time at which u and w each reaches the steady state increases as m or K 
increases.  As shown in Fig. 7, increasing m decreases T at small times and increases it at 
large times.  This is due to the fact that, for small times, u and w are small and an increase in 
m increases u but decreases w.  Then, the Joule dissipation which is also proportional to 
(1/(1+m2)) decreases.  For large times, increasing m increases both u and w and, in turn, 
increases the Joule and  viscous dissipations.  This accounts for the crossing of the curves of 
T with time for all values of K. The time at which the crossing occurs increases with the 
increase in K.  It is also observed that increasing K decreases T for all values of m and this 
effect becomes more pronounced for small t and large m.  This is because, when t is small, 
increasing K decreases both u and w and their gradients which decreases the Joule and 
viscous dissipations. The figure shows also that the time at which T reaches its steady state 
value increases with increasing m or K. 
 Figures 8-10 show the effect of the Hartmann number Ha on the time development of 
u, w and T at y=0 with time respectively for various values of Hartmann number Ha and for 
K=0, 0.5, and 1.  In these figures m=3 and $=1.  Figure 8 shows that increasing Ha decreases 
u as it increases the damping force on u.  On the other hand, Fig. 9 indicates that, unless Ha is 
large (Ha=5), increasing Ha increases w as it increases the source term of w which is 



 11

proportional to (Ha2u) for various values of K.  Figure 9 presents an interesting phenomenon 
which is the appearance of the crossing of w curves with time for large values of Ha and all 
values of K.  Increasing Ha increases w for small t and decreases w for large t.  This is 
because for small t, w is small and increasing Ha increases the source term of w and then 
increases w for all values of K.  Small values of K increases w more, then with the progress 
of time, the resulting large increase in w decreases u more as it increases the damping force 
on u.  Hence, the large decrease in u as well as the large increase in w decrease greatly the 
source term of w which reduces w more and results in the crossing appears in the figure.  It is 
also clear from Figs. 8 and 9 that u and w overshoot for large values of Ha while the Hall 
effect is considered (m=3).  The overshooting in u and w decreases with increasing K due to 
the decrease in both u and w for small t.  It should be pointed out that although the Hall effect 
is considered (m=3), the overshooting in u and w appears only when Ha is large (Ha=3).  
This emphasizes the fact that the Hall effect becomes more pronounced in case the magnetic 
field is high. Figure 10 shows that the effect of Ha on the temperature T depends on t. If Ha is 
small (0<Ha<1), then increasing Ha increases T for all values of t as a result of increasing the 
Joule dissipation.  In case of large Ha, for small values of t, the velocity components u and w 
are small and increasing Ha, although it decreases u and w and their gradients, increases the 
Joule dissipations and then increases T.  However, for large values of t increasing Ha 
decreases T due to the reduction in the Joule and viscous dissipations.   The figure also shows 
that the influence of Ha on T becomes more pronounced for the case of small K due to the 
increase in the velocity components and their gradients which results in increasing the Joule 
and viscous dissipations. 
 Figures 11-13 show the effect of the suction parameter $ on the time development of 
u, w and T at y=0 with time, respectively, for various values of the suction parameter $ and 
for K=0, 0.5, and 1.  In these figures Ha=3 and m=3.  Figure 11 shows that u at the centre 
decreases with increasing $ for all values of K due to the convection of the fluid from regions 
in the lower half to the centre, which has higher fluid speed.  Figure 12 shows that w 
decreases with increasing $ for all values of K as a result of decreasing u which affects the 
source term of w.  The figure presents also the influence of $ on the reduction of the 
overshooting in w for all values of K.  Figure 13 indicates that increasing $ decreases the 
temperature at the centre of the channel for all values of K.  This is due to the influence of the 
convection in pumping the fluid from the cold lower half towards the centre of the channel. 
 
 

CONCLUSIONS 

 

The unsteady Couette flow of a viscoelastic fluid under the influence of an applied 

uniform magnetic field is studied considering the Hall effect.  The effects of the non-

Newtonian fluid behavior (the parameter K), the magnetic field (Hartmann number Ha), the 

Hall effect (Hall parameter m), and the suction and injection velocity (suction parameter $) 

are studied.  The Hall term affects the main velocity component u in the x-direction and gives 

rise to another velocity component w in the z-direction.  An overshooting in the velocity 

components u and w with time due to the Hall effect is observed for all values of K and high 

values of the magnetic field.  The non-Newtonian fluid characteristics have an apparent effect 

in controlling the overshooting in u or w and the time at which it occurs.  The results show 
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that the influence of the parameter K on u and w depends on time and the Hall current. When 

t is small, increasing K decreases u and w for all values of m, but when t is large, the 

parameter K has a significant effect on u and w only when m is large. It is found also that the 

effect of the Hall term on w depends on time and the non-Newtonian fluid characteristics. 

Unless K is large, increasing m decreases w when t is small but increases  it when t is large.  

However, for large values of K and m, increasing m decreases w for all values of t. It is 

detected also that the behavior of T for different values of m or Ha depends on t. When t is 

small, T decreases with increasing m, but when t is large, it increases with increasing m.  On 

the other hand, unless Ha is small, increasing the magnetic field increases T for small t and 

decreases it for large t.  The effect of the Hall term or the magnetic field on T depends on the 

characteristics of the non-Newtonian fluid and becomes more pronounced in case of small K. 
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