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ABSTRACT. The unsteady magnetohydrodynamic MHD Couette-Poiseulle flow and heat 
transfer of an electrically conducting fluid is studied in the presence of a transverse uniform 
magnetic field with temperature dependent viscosity and thermal conductivity.  The fluid is 
subjected to a constant pressure gradient and an external uniform magnetic field perpendicular to 
the plates which are kept at different but constant temperatures.  The effect of the magnetic field, 
the temperature dependent viscosity and thermal conductivity on both the velocity and 
temperature fields is reported. 
 

 
List of Symbols: 

 
a: viscosity parameter, 
b: thermal conductivity parameter, 
Bo: magnetic induction, 
cp: specific heat at constant pressure, 
Ec: Eckert number, 
Ha: Hartmann number, 
J: current density, 
k: thermal conductivity, 
P: pressure gradient, 
Pr: Prandtl number, 

T: temperature of the fluid, 
T1: temperature of the lower plate, 
T2: temperature of the upper plate, 
u: velocity component if the x-direction, 
Uo: velocity of the upper plate, 
x: axial direction, 
y: distance in the vertical direction, 
µ: viscosity of the fluid, 
ρ: density of the fluid, 
σ: electrical conductivity of the fluid 

 
 

INTRODUCTION 
 

The flow with heat transfer of a viscous incompressible electrically conducting fluid between 
two parallel plates is a classical problem that has important applications in 
magnetohydrodynamic (MHD) power generators and pumps, accelerators, aerodynamics 
heating, electrostatic precipitation, polymer technology, petroleum industry.  This problem 
has been considered by many researchers under different physical effects [1-5]. Most of these 
studies are based on constant physical properties, although some physical properties are 
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varying with temperature and assuming constant properties is a good approximation as long 
as small differences in temperature are involved [6].  More accurate prediction for the flow 
and heat transfer can be achieved by considering the variation of these physical properties 
with temperature.  Klemp et al. [7] studied the effect of temperature dependent viscosity on 
the entrance flow in a channel in the hydrodynamic case.  The MHD fully developed flow 
and heat transfer of an electrically conducting fluid between two parallel plates with 
temperature dependent viscosity is studied in [8,9] without taking the Hall effect into 
consideration. 

In the present work, the Transient Couette-Poiseulle flow of a viscous incompressible 
electrically conducting fluid with heat transfer between two electrically insulating plates is 
studied in the presence of uniform magnetic field.  The upper plate is moving with a constant 
speed and the lower plate is kept stationary while the fluid is acted upon by a constant 
pressure gradient and an external uniform magnetic field is applied perpendicular to the 
plates.  The magnetic Reynolds number is assumed small so that the induced magnetic field is 
neglected [1,5].  The two plates are kept at two constant but different temperatures while the 
viscosity and thermal conductivity of the fluid are assumed to vary with temperature.  Thus, 
the coupled set of the nonlinear equations of motion and the energy equation including the 
viscous and Joule dissipations terms is solved numerically using finite differences to obtain 
the velocity and temperature distributions at any instant of time. 
 
 

FORMULATION OF THE PROBLEM 
 

The fluid is assumed to be flowing between two infinite horizontal plates located at the 
y=±h planes.  The upper plate moves with a uniform velocity Uo while the lower plate is 
stationary.  The two plates are assumed to be electrically insulating and kept at two constant 
temperatures T1 for the lower plate and T2 for the upper plate with T2>T1.  A constant 
pressure gradient dP/dx is applied in the x-direction.  A uniform magnetic field Bo is applied 
in the positive y-direction which is the only magnetic field in the problem as the induced 
magnetic field is neglected by assuming a very small magnetic Reynolds number [1,5].  The 
viscosity of the fluid is assumed to vary exponentially with temperature while the thermal 
conductivity is assumed to depend linearly on temperature.  The viscous and Joule 
dissipations are taken into consideration.  The flow of the fluid is governed by the Navier-
Stokes equation which has the form [1,5], 
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where ρ is the density of the fluid, µ is the viscosity of the fluid, σ is the electric conductivity 
of the fluid, and u=u(y,t) is the velocity component of the fluid in the x-direction.  It is 
assumed that the pressure gradient is applied at t=0 and the fluid starts its motion from rest.  
Thus 
 
t=0: u=0                                                                                                                    (2a) 
 
For t>0, the no-slip condition at the plates that 
 
y=-h: u=0, y=h: u=Uo                                                                                               (2b) 
 
The energy equation describing the temperature distribution for the fluid is given by [1,10] 
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where T is the temperature of the fluid, cp is the specific heat at constant pressure of the fluid, 
and k is the thermal conductivity of the fluid.  The last two terms in the left-hand side of Eq. 
(3) represent, respectively, the viscous and Joule dissipations.  The temperature of the fluid 
must satisfy the boundary conditions, 
 
t=0: T=T1                                                                                                                 (4a) 
 
t>0: T=T1, y=-h, T=T2, y=h                                                                                     (4b) 
 
 The viscosity of the fluid is assumed to vary with temperature and is defined as, 
µ=µof1(T) and µo is the viscosity of the fluid at T=T1.  By assuming the viscosity to vary 
exponentially with temperature, the function f1(T) takes the form [7], f1(T)=exp(-a1(T-T1)), a1 
is a constant takes positive or negative values [10]. In some cases a1 may be negative, i.e. the 
coefficient of viscosity increases with temperature [8,9]. Also, the thermal conductivity of the 
fluid is assumed to vary with temperature as k=kof2(T) and ko is the thermal conductivity of 
the fluid at T=T1.  We assume linear dependence for the thermal conductivity upon 
temperature in the form k=ko[1+b1(T-T1)] [10], where the parameter b1 may be positive or 
negative [10]. 

 
 The problem is simplified by writing the equations in the non-dimensional form.  To 
achieve this, we define the following non-dimensional quantities, 
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1̂f (θ) = exp(-a1(T2-T1)Ө) = exp(-aθ), “a” is the viscosity exponent,  

2f̂ (θ) = 1+b1(T2-T1) θ = 1+bθ, “b” is the thermal conductivity parameter, 

Rr=ρUoh/µo, is the Reynolds number, 

Ha2 =σBo
2h2/µo,   Ha is the Hartmann number, 

Pr=µocp/ko  is the Prandtl number, 

Ec=Uo
2/cp(T2-T1)    is the Eckert number, 

NuL=(∂θ/∂ ŷ ) ŷ =-1  is the Nusselt number at the lower plate, 

NuU = (∂θ/∂ ŷ ) ŷ =1  is the Nusselt number at the upper plate. 
 

In terms of the above non-dimensional quantities Eqs. (1) to (4) read (the hats are 
dropped for convenience) 
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t=0: u=0                                                                                                                (6a) 
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t>0:  u=0, y=-1,  u=0, y=1                                                                                    (6b) 
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t=0: θ=0                                                                                                                (8a) 
 
t>0: θ=0, y=-1, θ=1, y=1                                                                                      (8b) 
 

Equations (5) and (7) represent coupled system of non-linear partial differential 
equations which are solved numerically under the initial and boundary conditions (6) and (8) 
using the finite difference approximations.  A linearization technique is first applied to 
replace the nonlinear terms at a linear stage, with the corrections incorporated in subsequent 
iterative steps until convergence is reached. Then the Crank-Nicolson implicit method is used 
at two successive time levels [11].  An iterative scheme is used to solve the linearized system 
of difference equations.  The solution at a certain time step is chosen as an initial guess for 
next time step and the iterations are continued till convergence, within a prescribed accuracy.  
Finally, the resulting block tridiagonal system is solved using the generalized Thomas-
algorithm [11].  Finite difference equations relating the variables are obtained by writing the 
equations at the mid point of the computational cell and then replacing the different terms by 
their second order central difference approximations in the y-direction.  The diffusion terms 
are replaced by the average of the central differences at two successive time-levels. The 
computational domain is divided into meshes each of dimension ∆t and ∆y in time and space, 
respectively.  We define the variables  / yuv ∂∂= and  / yH ∂∂= θ to reduce the second 
order differential Eqs. (5) and (7) to first order differential equations. The finite difference 
representations for the resulting first order differential Eqs. (5) and (7) take the form 
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The variables with bars are given initial guesses from the previous time steps and an iterative 

scheme is used at every time to solve the linearized system of difference equations.  Computations 
have been made for G=5, Re=1, Pr=1 and Ec=0.2.  Grid-independence studies show that the 
computational domain 0<t<∞  and –1<y<1 can be divided into intervals with step sizes ∆t=0.0001 and 
∆y=0.005 for time and space respectively.  Smaller step sizes do not show any significant change in 
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the results.  Convergence of the scheme is assumed when all of the unknowns u, v, θ and H  for the 
last two approximations differ from unity by less than 10-6 for all values of y in –1<y<1 at every time 
step.  Less than 7 approximations are required to satisfy this convergence criteria for all ranges of the 
parameters studied here.  
 
 

RESULTS AND DISCUSSION 
 

Figures 1a and b present the velocity and temperature distributions as functions of y for 
various values of time t starting from t=0 up to the steady-state.  The figures are evaluated for Ha =1, 
a=0.5, and b=0.5. The velocity component u reaches the steady state faster than θ.  This is expected as 
u is the source of θ.  Figure 1b shows that the temperature θ inside the fluid may exceed the value 1, 
which is the temperature of the hot plate, especially at large times.  This is due to the Joule and 
viscous dissipations. 

Figures 2a and b present the time development of the velocity component u at the center of 
the channel (y=0), for various values of the parameters “a” and Ha and for b=0.  Figures 2 show that 
increasing the parameter “a” decreases u for all values of Ha.  It is also shown that the steady state 
time of u is not greatly affected by changing “a”.  Comparing Figs. 1a and b indicates the damping 
effect  of the magnetic field which decreases u for all values of “a”.  Figures 3a and b present the time 
development of the temperature θ at the center of the channel (y=0), for various values of the 
parameters “a” and Ha and for b=0.  The figures show that increasing “a” decreases θ for all values of 
Ha  as a result of decreasing the velocity u and its gradient the function f1 which decreases the viscous 
and Joule dissipations.  It is also shown that the steady state value of θ is not greatly affected by 
changing “a”.  The comparison between Figs. 2a and b shows that increasing Ha increases θ, for all 
values of a, due to the increase in the Joule dissipations. 

Figures 4a and b present the time development of the temperature θ at the center of the 
channel (y=0), for various values of the parameters “b” and Ha and for a=0.  The figures show that the 
variation of the temperature θ with the parameter “b” depends on t where a crossover in θ-t charts 
occurs. The effect of “b” on θ depends on t and increasing “b” increases θ at small times, but 
decreases θ when t is large.  This occurs because, at low times, the center of the channel acquires heat 
by conduction from the hot plate, but after large time, when u is large, the Joule dissipation is large at 
the center and center looses heat by conduction.  It is noticed that the parameter “b” has no significant 
effect on u in spite of the coupling between the momentum and energy equations.  It is also shown in 
the figures that increasing the parameter “b” decreases the steady state time of θ.  Figure 3b indicates 
that increasing Ha increases θ as the Joule dissipation increases and decreases the time at which the 
crossover in θ-t charts occurs. 

Tables 1a and 1b present the variation of the steady state Nusselt numbers at both 
walls, LNu  and UNu , respectively,  with the parameters “a” and “b” for Ha =1.  Increasing 
“a” increases LNu  and the magnitude of UNu for all values of “b”.  However, increasing “b” 
decreases the magnitude of UNu for all “a”.  For small values of “a”, increasing “b” 
decreases LNu  and increasing “b” more increases LNu .  On the other hand, for moderate 
and higher values of “a”, increasing “b” increases LNu  steadily. 

 

Table 1a Variation of the steady state Nusselt number at the lower plate LNu  for various values of  
“a” and “b” (Ha=1) 

LNu  a=-0.5 a=-0.1 a=0.0 a=0.1 a=0.5 
b=-0.5 1.7357 1.8706 1.9067 1.9429 2.0566 
b=-0.1 1.7309 1.8817 1.9236 1.9674 2.1571 
b=0.0 1.7347 1.8863 1.9282 1.9721 2.1640 
b=0.1 1.7397 1.8918 1.9337 1.9776 2.1704 
b=0.5 1.7645 1.9178 1.9595 2.0030 2.1949 
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Table 1b Variation of the steady state Nusselt number at the upper plate UNu  
for various values of  “a” and “b” (Ha=1) 
 

UNu  a=-0.5 a=-0.1 a=0.0 a=0.1 a=0.5 
b=-0.5 -0.8129 -1.1897 -1.2915 -1.3936 -1.6899 
b=-0.1 -0.4381 -0.6731 -0.7407 -0.8127 -1.1479 
b=0.0 -0.3959 -0.6079 -0.6687 -0.7333 -1.0345 
b=0.1 -0.3629 -0.5558 -0.6109 -0.6694 -0.9417 
b=0.5 -0.2844 -0.4255 -0.4652 -0.5071 -0.7004 

 
 
 

CONCLUSIONS 
 

The transient Couette-Poiseulle flow of a conducting fluid under the influence of an 
applied uniform magnetic field has been studied with temperature dependent viscosity and 
thermal conductivity in the presence of an external uniform magnetic field. It was found that 
the magnetic field or the viscosity exponent has a damping effect on the velocity component 
u while the effect of the parameter “b” on u can be entirely neglected. It is also shown that 
increasing the magnetic field increases the temperature θ, however, increasing the viscosity 
exponent decreases θ. It is of interest to find that the effect of the parameter “b” on the 
temperature θ depends on time. 
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Fig. 1 Time development of the profile of: (a) u; (b) θ. (Ha =1, a=0.5, b=0.5) 
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Fig. 2 Time development of u at y=0 for various values of “a”: (a) Ha =0; (b) Ha =1. (b=0) 
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Fig. 3 Time development of θ at y=0 for various values of “a”: (a) Ha =0; (b) Ha =1. (b=0) 
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Fig. 4 Time development of θ at y=0 for various values of “b”: (a) Ha =0; (b) Ha =1. (a=0) 

 


