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ABSTRACT. The behavior of axially-symmetric waves traveling on plasma filled screened helical 
coil is comprehensively studied in [1], where all analytical expressions are derived in the full-wave 
theory, but the diagrams are computed in the quasistatic approximation. In this paper we have 
overcome this limitation by means of the fixed-point method. We have proved that the first-order 
approximant is sufficient to improve defects which are known as immanent to the quasistatic ap-
proximation. There is no need for use of second or higher order approximants, because the relative 
difference between any two adjacent (higher than fist) approximants is practically negligible in 
analyzed domain of wavenumbers. The improvements in dispersion graphs are essential 
for 0.5aβ < . The exact solution experiences a threshold which depends on plasma density. The 
first-approximant can reproduce this feature. For 1aβ >  the relative difference cannot exceed 5%  
(in most cases an unessential correction). We have developed programs, relying on the fixed-point 
method which may also be apply in more complex numerical manipulations. A couple of numbers 
( ) could be deduced (with a required error) from the dispersion equation in closed form and 
automatically used in subsequent steps of computations. 
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1.  INTRODUCTION 
 
 The problem of the propagation of electromagnetic waves along a wire coil sur-
rounded by a highly conductive screen has been treated in several papers [e.g. 5, 6] and with 
electron plasma present in the coil interior thoroughly investigated in [1]. The author suc-
ceeded in obtaining a dispersion relation in finite form. This dispersion relation was proved as 
correct in limiting cases a) when the coil is removed and b) when the plasma is non-existent. 
The wave on such a guiding structure is always faster then the plasma or coil wave taken 
separately.  
 The numerical results in [1] are obtained under the reasonable approximation which 
starts from the fact that guided waves are much slower then the speed of light (so-called the 
quasistatic approximation). We have argued in the paper [4] that the fixed-point method often 
could be with benefit applied in many guided wave propagation problems. In this connection, 
the fixed-point method was completely tested through-out the all captures of the book [2]. We 
have developed software packets which avoid any starting approximations and successfully 
calculate expressions in its full-electromagnetic formulations. Our task is to show here that 
the problem of electromagnetic waves on a helix with a plasma core could be an appropriate 
example that the existing results based on the quasistatic approximation can be improved by 
means of the fixed-point technique.  
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 We plan to arrange this paper as follows. In Section 2 we repeat (in an abridged form) 
the derivation of main expressions which will be later analyzed. In Section 3 the reader can 
find the necessary review on the fixed point method, in an extent which seems to be here ap-
propriate. Section 4 deals with numerical treatment of expressions derived in Section 2. Fi-
nally, in Section 5 we give a brief conclusion with comparisons and comments. 
 

2.  SEARCHING FOR DISPERSION RELATION 
 
 2.1 Structure of the line 
 The presentation in this Section will follow the course adopted in [1], with the excep-
tion of several designations which shall be on time explained. In Fig. 1 we see the model of 
the physical guiding structure under consideration.  
 

b

a

 
 

Fig. 1.  Guiding structure under consideration; cylindrical metal sheet at r b= ; wire coil at r ; coil interior 
filled with homogeneous cold plasma; region between coil and cylinder: classical dielectric 

a=

 
 The central part of the line consists of a coil, the interior of which is filled with homo-
geneous plasma. The coil is surrounded with a metal cylinder. Of course, one could imagine 
plasma is suspended in a glass tube; but we shall treat the glass wall as a very thin one. The 
region between coil and cylinder is a dielectric characterized with permittivity rε (in the case 
of a coil in air, r 1ε ≈ ). The coil we imagine as a tape helix which is a infinitely thin anisot-
ropic sheet of current flowing obliquely to the coil axis, on the r a= c drical surface. The 
radius of the conductive screen is r b=

ylin
. 

 
 2.2 Features of the field 
 Now we shall consider the character of the field which could develop in these circum-
stances. We restrict ourselves only to the treatment of an axially symmetric mode, which is 
well known [4] in the theory of electron space charge waves (often called simply as 

mode). 0n =
 The adequate coordinate system here is a cylindrical system ( , ,r zϕ ); the -axis coin-
cides with the axis of the guide, whereas  and 

z
r ϕ  are corresponding radius and angle in the 

perpendicular plane. Therefore, the components of the electric field vector are ( ) E
r

r z, ,E E Eϕ
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and the magnetic field vector H
r

 are ( ). So-called r , ,H H Hϕ z H  (or TE) field is composed of 
the group  and an  (or TM) field has the components .  r, ,E H Hϕ z E r z, ,H E Eϕ

 A) The H  field in the plasma, as it emerges from Maxwell’s equations, is as follows: 
 
     ( )1 1 1E C I h rϕ =      (1) 
 

     (r 1 1
0

k )1H C I h r
ω µ

= −     (2) 

  

     (1
z 1 0

0

ih )1H C I h r
ω µ

= −     (3) 

 
Here, νI  stands for the modified Bessel function of the first kind of order . Our abbreviation 

means 
ν

1h

     
2

p2
1 2

0

h k
c

ω ε
= −     (4) 

 
Above,  is the wavenumber, k ω  is the radian frequency of a continuous wave signal propa-
gating along the guide, pω  is the radian plasma frequency and  is the velocity of light. The 
plasma permittivity is, within the frame of a cold, homogeneous ionized medium 

0c

 

     
2
p

p 21
ω

ε
ω

= − .     (5) 

 
 In the space between coil and metal sheet the expressions are of the form 
 
     ( ) ( )2 1 2 3 1 2E C K h r C I h rϕ = +    (6) 
 

    ( ) ( )r 2 1 2 3 1
0

k
2H C K h r C I h r

ω µ
= − +⎡ ⎤⎣ ⎦    (7) 

 

    ( ) ( )1
z 2 0 2 3 0

0

ih
2H C K h r C I h r

ω µ
= − +⎡ ⎤⎣ ⎦    (8) 

 
 B) Let us now quote expressions valid for  field. Within the coil the components 
are: 

E

 
     ( )

1

E
1 1H C I h rϕ = ,    (9) 

 

     (
1

E
r 1

0

ikE C I
ω ε

= − )1h r ,    (10) 

 

     (
1

E1
z 0

0

ih
E C I h

ω ε
= )1r .    (11) 

 
The  field in the space between coil and lining is as follows: E
 
     ( ) ( )E E

2 1 2 3 1 2H C K h r C I h rϕ = + ,   (12) 
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    ( ) ( )E E
r 2 1 2 3 1

0 r

kE C K h r C I h
ω ε ε 2r⎡ ⎤= +⎣ ⎦ ,   (13) 

 

    ( ) ( )E E2
z 2 0 2 3 0

0 r

ih
E C K h r C I

ω ε ε 2h r⎡ ⎤= − − +⎣ ⎦ .   (14) 

 
Here νK  stands for the modified Bessel functions of the second kind of order  and ν
 

     
2

2 r
2 2

0

h k
c

ω ε
= − .    (15) 

 
It is known that in the limit of large wavenumbers k  the field is concentrated close to the 
plasma boundary (and coil too); at small wavenumbers, on the contrary, the wave fills the 
whole of the guide space. 
 
 2.3 Boundary conditions 
 Let us impose the boundary conditions on the obtained components of field. The tan-
gential components of the electric field vanish at the surface of the highly conductive screen, 
i.e. for . At the surface separating plasma from outer dielectric continuity of the tangen-
tial electric fields must be satisfied. At the same time, there the tangential components of the 
magnetic field are discontinuous, because a surface current flows over the cylinder at .  

r b=

r a=
 On the other hand, the field along the wire must vanish (the helix wire is made of a 
highly conductive material). The total electric field must be normal to the wire. We accept 
therefore a fictitious current sheet model and demand the condition 
 

    ( )
( )z

tan
2

E a p
E a a
ϕ

π
Ψ = − = ,     (16) 

 
where  is the pitch and p Ψ  is the pitch angle of the helix. Through this condition, as seen, 
waves on our structure become hybrid mode waves, containing all field components. 
 
 2.4 Dispersion relation of waves on a plasma loaded screened coil 
 Using the mentioned boundary conditions we can eliminate the constants appearing in 
the field expressions ( ). This treatment gives the dispersion relation of 
waves on the composite plasma-coil-dielectric-screen guide in the form 

E E E
1 2 3 1 2 2, , , , ,C C C C C C

 

    
2 2

p2 2

0 0

tan
aa P H

c c
ωω⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 Ψ     (17) 

 
The normalized radian wave frequency 0/a cω  and the normalized radian plasma frequency 

p 0/a cω  are mutually connected by means of two functions of frequency and wavenumber P  
and H  which are defined as follows: 
 

     ( )
( )

1/ 2

1

1 2,
E h

P
D h h
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

;    (18) 
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( ) ( ) ( )

0.5

2
1 2 1

1 1
,

H
D h h E h

F h
⎧ ⎫⎡ ⎤⎪ ⎪= +⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
.   (19) 

 
Here we have abbreviated  

     ( ) ( )
( )

1 1
1

1 0 1

1 I h a
E h

h a I h a
= ,    (20) 

 
    ( ) ( ) ( )1 2 1 r 2,D h h E h G hε= + .    (21) 
 
In these expressions appear the functions ( )2F h  and ( )2G h  defined by 
 

   ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 0 2 0 2 1 2
2 2

1 2 1 2 1 2 1 2

I h b K h a I h a K h b
F h h a

I h b K h a I h a K h b
+

=
−

,   (22) 

 

   ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 2 1 2 1 2 0 2
2

2 0 2 0 2 0 2 0 2

1 I h b K h a I h a K h b
G h

h a I h b K h a I h a K h b
+

=
−

.  (23) 

 
 The correctness of the equation (17) can be tested in two limited cases. a) For small 
helix pitch  and tan 0Ψ ≈ p/ Pω ω = , which coincides with the expression for the dispersion re-
lation for plasma surface waves on a plasma of radius  within a shield of radius b  [4]. b) 
When no plasma is present in the coil must be 

a

p 0ω =  and ( )0/ cota c Hω Ψ = , which is really the 
dispersion relation of waves on a wire coil originally published in [5].  
 In the paper [1] the author computed the dispersion relation in the quasistatic ap-
proximation which involves the inequality 0/k cω� . As we have already stressed, our task is 
to compute the dispersion relation applying the fixed-point method, without the degradation 
of eq. (17) to the quasistatic level. According to plan we shall first in brief explain the mean 
of the method.  
 

3.  FIXED-POINT METHOD 
 
 As we explained in the paper [4], dispersion relations of surface waves in various 
combinations of media containing plasma may be put in a form which immediately refers to 
the existence of a guiding surface: 
 
     ( )p r ,f X Y Xε ε− = ⎡ ⎤⎣ ⎦ .    (24) 
 
This equation could simultaneously serve as a definition of the corresponding form factor  
which we shall name the surface function of a guiding structure. The surface function satisfies 
the next condition: 

f

 
     ( )lim , 1

X
f X Y X

→∞
=⎡ ⎤⎣ ⎦ .    (25) 

 
The wavenumber β  appears in the normalized quantity X aβ=  (  represent a suitable radius 
or another corresponding normalizing length). The quantity Y  represents the angular wave 
frequency normalized with the angular plasma frequency, i.e. 

a

-1
pY . In the important case ω ω=
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that the plasma permittivity is as in eq. (5), dielectrics are homogeneous and mutually in con-
tact in accordance to the model of a sharp boundary, the dispersion relation takes the form 
 

     
r

1
1

Y
fε

=
+

.     (26) 

 
 Let us  be the zero approximant (derived from the equivalent dielectric method 
[3], or merely in the quasistatic treatment). Putting that value in the right-hand-side of eq. (26) 
we get formally the first-approximant solution: 

( )0Y X

 
     ( )( )1 0,Y f X Y X= .    (27) 
 
Continuing now this iterative procedure, we can use the first-order approximant as a new 
starting result in the right-hand-side of (26) and deduce , the second-order approximant: 2Y
 
     ( )( )( )2 , ,Y f X f X Y X= 1 .   (28) 
 
In the same manner one could get any approximant of a order ; the expression is  2i >
 
     ( )( )( )1, ,i iY f X f X Y X−= .   (29) 
 
We proved in [4] that this iteration converges very fast and in most standard cases the solution 

 is quit satisfactorily. Now we are ready to apply this method in the case of waves on 
plasma loaded helix. 

1Y

 
4.  IMPROVED NUMERICAL RESULTS 

 
 4.1 Formula preparing  
 Starting from the equation (17) of our section 2 one can (in a somewhat tiresome but 
otherwise straightforward mathematical manipulations) obtain the following expression: 
 

     
r coil

1
1

Y
fε

=
+

,    (30) 

 
Where the loaded helix surface function (in a sense of the definition (24)) reads 
 

    
( )
( )

2 2
1 0 1

coil
1 12 2

r 0
1 0 1

cot

cot

D p G
f

I h a
p

h a I h a
ε

Ψ −
=

Ψ
.    (31) 

 
The understanding of this expression goes over the next set of subsequent definitions: 
 

    

( )
( )

( )
( )

( )
( )

( )
( )

1 2 1 2

0 2 0 2r
1

0 2 0 22

0 2 0 2

K h a I h a
K h b I h b

D
K h a I h ah a
K h b I h b

ε
+

=
−

;    (32) 
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   ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

0 2 0 2

1 0 1 1 2 1 2
1 2

1 2 1 21 1

1 2 1 2

K h a I h a
h a I h a K h b I h b

G h a
K h a I h aI h a
K h b I h b

+
= +

−
;   (33) 

 
   0

p 0

; ; ;aX a Y p d
c

ω ωβ
ω

= = =
b
a

= ;    (34) 

 
    2 2

1h a X p0 pε= − ;     (35) 
 

    2 2
2h a X p0 rε= − ;     (36) 

 

    2 2 p 2

1; 1h b d h a
Y

ε= = − .    (37) 
 
The zero or quasistatic approximation could be easily deduced from eq. (30) because it turns 
into the explicit form  after the reduction( )Y F X= 1 2h a h a X aβ≈ ≈ = . A search for the next and 
higher approximants is described in section 3. 
 
 4.2 ’Mathematica 4.0’ graphics  
 We have developed a program which is capable, in frame of Mathematica 4.0 pack-
age, to efficiently compute and plot the main features of the above dispersion relation. A list-
ing of the program is delivered as an Appendix at the end of this paper. In this section let us 
see only figures we obtained in various cases when running the program.  
 Fig. 2 shows the dispersion relation, eq. (17), for 0 0.1p = , 5 cma = ,  and 3d = r 4.8ε =  
(Pyrex glass). The pitch of the helix is chosen to be 0.001p = , giving . The upper 
curve is the quasistatic solution and the lower curve is the first approximant. We see that the 
frequency monotonically grows in the range 

cot 31.416Ψ =

( )0, 2X ∈ . The fixed-point first approximant is 
always below the zero approximant. The difference 0Y Y1−  diminishes when the wavenumber 
grows. Below the value  the quasistatic solution obviously failed; the exact solution 
does not run from the origin – the curve has a threshold point. The  solution regularly tends 
toward a finite value in the limit . 

0.05Y ≈

1Y
0Y →
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Fig. 2.  Comparison of two solutions; upper curve – quasistatic solution; lower curve – fixed-point first approxi-
mant.  

Parameters: , , 0 0.1p = 5 cma = 3d = , r 4.8ε = , 0.001p =  ( cot 31.416Ψ = ) 
 
 Fig. 3 shows the dispersion relation when the parameter  vary (i.e. for several  
quotients). The sensitivity 

d /b a
/s Y dδ δ=  could reach quit large values. For a given wavenumber 

the frequency goes down when the quotient falls. All curves start from the same threshold. 
The six curves are with and , respectively (up to down direction). The pa-
rameters have the same values as in Fig. 2. 

10, 3, 2, 1.5, 1.2d = 1

0.5 1.0 1.5 2.0

0.1

0.2

0.3

X

Y

 
 

Fig. 3.  Dispersion curve and its -sensitivity (fixed-point first approximant); up to down: 
; Parameters: 

d
10, 3, 2, 1.5, 1.2, 1.01d = 0 0.1p = , 5 cma = , r 4.8ε = , 0.001p =  ( ) cot 31.416Ψ =

 
 Fig. 4 clears up the impact of the plasma density factor on the dispersion equation. 
Four curves are presented and these are for 

0p

0 0.1, 0.08, 0.06, 0.04p =  (from below to above). As 
expected, the curves have not the same threshold, and exactly the smallest threshold belongs 
to the smallest plasma density factor. In the central part of the diagram the dependence ( )0Y p  
is but little. However, in the region 2X �  we see huge differences; for small  the frequency 0p
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takes a fast raising trend. Once again, the other parameters in this figure are the same as in Fig 
2. 
 

0.5 1.0 1.5 2.0

0.6

0.8

0.4

0.2

X

Y

 
 

Fig. 4.  Impact of plasma density factor on dispersion curve (fixed-point first approximant); 
(from above to below). Parameters: 0 0.1, 0.08, 0.06, 0.04p = 3d = , 5 cma = , r 4.8ε = ,  

(
0.001p =

cot 31.416Ψ = ) 
 
 

5.  CONCLUSIONS AND COMMENTS 
 

 The behavior of axially-symmetric waves traveling on plasma filled screened helical 
coil is studied in [1], where all analytical expressions are derived in the full-wave theory. 
However, the diagrams are computed in the quasistatic approximation. In this paper we have 
overcome this limitation by means of the fixed-point method. The method secures a fast-
convergent procedure [4]. We have proved here that the first-order approximant  is suffi-
cient to improve defects which are known as immanent to the quasistatic approximation. 
There is no need for use of second ( ) or higher order approximants. The relative error 

1Y

2Y

( )1 2 /Y Y Y− 1  is practically negligible in analyzed domains of wavenumbers.  
 The improvements are essential for 0.5aβ < . The exact solution experiences a thresh-
old which is dependent on plasma density parameter . The approximant  can reproduce 
this feature. The threshold tends to the diagrams origin when . Consequently, the qua-
sistatic solution has an intrinsic error for . For 

0p 1Y

0 0p →

0X → 1aβ >  the relative difference ( )0 1 /Y Y Y− 0  
cannot exceed 5%  which is in most cases an unessential correction. 
 The programs we have developed and here activated, relying on the fixed-point 
method, may also be apply in more complex numerical manipulations. A couple of numbers 
( ) could be deduced (with a required error) from the dispersion equation in closed form 
and automatically used in subsequent steps of computations. 
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APPENDIX 
 

Fixed-point method program. General listing features  
 
Remove["Global`*"] 
xx = x*x; yy = y*y; z = d*x; pp = par*par; ep = 1. - 1./yy; 
 
I0x = BesselI[0, x]; I1x = BesselI[1, x];  
K0x = BesselK[0, x]; K1x = BesselK[1, x]; 
I0z = BesselI[0, z]; I1z = BesselI[1, z];  
K0z = BesselK[0, z]; K1z = BesselK[1, z]; 
Dgore = K1x/K0z + I1x/I0z; Ddole = K0x/K0z - I0x/I0z; 
De = (eg/x)*(Dgore/Ddole); Ggore = K0x/K1z + I0x/I1z;  
Gdole = K1x/K1z - I1x/I1z; 
Ge = x*(I0x/I1x) + x*(Ggore/Gdole); 
y0gore = Ge - pp*ctgpsi*ctgpsi*De; y0dole = pp*ctgpsi*ctgpsi*(1./x)*(I1x/I0x); 
y0 = Sqrt[1./(1. - y0gore/y0dole)]; 
 
h1a = Sqrt[xx - pp*ep]; h2a = Sqrt[xx - pp*eg]; h2b = d*h2a; 
I0h1a = BesselI[0, h1a]; I1h1a = BesselI[1, h1a]; I0h2a = BesselI[0, h2a]; 
I1h2a = BesselI[1, h2a]; K0h2a = BesselK[0, h2a]; K1h2a = BesselK[1, h2a]; 
K1h2b = BesselK[1, h2b]; K0h2b = BesselK[0, h2b]; I1h2b = BesselI[1, h2b]; 
I0h2b = BesselI[0, h2b]; 
Dgore1 = K1h2a/K0h2b + I1h2a/I0h2b; Ddole1 = K0h2a/K0h2b - I0h2a/I0h2b; 
De1 = (eg/h2a)*(Dgore1/Ddole1); 
Ggore1 = K0h2a/K1h2b + I0h2a/I1h2b; Gdole1 = K1h2a/K1h2b - I1h2a/I1h2b; 
Ge1 = h1a*(I0h1a/I1h1a) + h2a*(Ggore1/Gdole1); 
y1gore = Ge1 - pp*ctgpsi*ctgpsi*De1; y1dole =  
  pp*ctgpsi*ctgpsi*(1./h1a)*(I1h1a/I0h1a); 
y = Sqrt[1./(1. - y1gore/y1dole)]; 
f = Sqrt[1./(1. - y1gore/y1dole)]; 
Y[y_] := f; 
 
a = 0.005; korak = 0.001; par = 0.02; d = 3.; eg = 4.8; ctgpsi = 2.*Pi*a/korak; 
x = 0.1; Label[ovde]; 
yaN = FixedPoint[Y, y0, N]; 
 
Print[{x, yaN}]; 
x += 0.01; If[x < 1, Goto[ovde]] 


