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ABSTRACT. The energy of a graph G is defined as the sum of the absolute values of the eigenvalues
of G. The graphs with large number of edges are referred as cluster graphs. In this paper we consider
the energy of graphs obtained from complete bipartite graph by deleting the edges.

INTRODUCTION

The graphs with large number of edges are viewed as graph representations of inorganic clusters
in chemistry, so-called cluster graphs [5]. We call the bipartite graphs with large number of edges as
bipartite cluster graphs. In this paper we consider the spectra and energy of some bipartite cluster graphs.

Let G be a simple undirected graph without loops and multiple edges having p vertices and q
edges. If the vertices of G are labeled as vy, vy, . . ., Vv, then its adjacency matrix A(G) is defined as A(G)
= [a;], in which a; = 1 if v; is adjacent to v; and a;; = 0, otherwise. The characteristic polynomial of G is
defined as ¢(G : &) = det(Al — A(G)), where I is unit matrix of order p. The roots of the equation ¢(G : 1) =
0 denoted by A4, Ay, . . ., A, are the eigenvalues of G and their collection is called the spectrum of G [2].
The energy of G is defined [3] as E(G) = Ina |+ 0]+ .. +] xp| . It is a generalization of a formula valid
for the total m-electron energy of a conjugated hydrocarbon as calculated with the Huckel molecular

orbital (HMO) method in quantum chemistry [4].

SOME BIPARTITE CLUSTER GRAPHS

DEFINITION 1: Lete;, i=1,2,...,k 1<k <min{m, n}, be independent edges of the complete bipartite

graph Ky, m, n > 1. The graph Kan, (k) is obtained by deleting e;, i =1, 2, ..., k from K, .. In addition
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Kamyn(o) E Km’n.
DEFINITION 2: Let K s be the complete bipartite graph and let it be a subgraph of the complete bipartite

graph K, 1 <r<m, 1<s<nandm, n> 1. The graph Kbnn(r,s) is obtained by deleting the edges of K¢
from Kp . In addition Kb, 1(0,0) = Kby n(r,0) = Kby n(0,5) = K.

LEMMA 1 [2, p. 62]:
If M is a nonsingular square matrix then we have

M N
= [mM|[Q-PMN|
P Q 0
THEOREM 2:
Form,n>1and 0<k<min{m, n},
O(Kamn(K) : &) =A™ "= %=2(02 _1) 1% - (m =2k +1)A2 + (m - K)(n - K)]. (2.1)
PROOF: Without loss of generality we partition the vertex set of the complete bipartite graph K, into
two disjoint sets A = {ug, Uy, ..., Un}and B = {vy, v, . .., v} such that no two vertices in either sets are
adjacent to each other. Assume that the independent edges e; connect the vertices u;and v;, i=1,2, ..., k.

Then the characteristic polynomial of Kan,(K) is the determinant (2.2).

Vi1 Uk Uks1 UmVa Vk Vs Vn
up |[A 0 O 00..00 -1 -1..-1-1-1..-1
0O A 0. 00..0-1 0-1..-1-1-1..-1
O 0 A .. 00..0-1 -10..-1-1-1..-1
|0 0o 0.. ~»0..0-1 -1-1..0-1-1..1421
U0 O O... OA...O -1 -1 -1..-1-1-1..-1
Uun |0 0 O 0 0 A -1 -1 -1 -1 -1 -1 -1

vi [0 -1 -1 ... -1 -1..-1 (2.2)
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= (2.3)

Where

0O -1 -1...-1 -1...1

-1 -1 0..-1 -1..-1

is a matrix of order n x m in which the last zero appears in the intersection of k™ row and k™ column and
N is the transpose of N.

Applying Lemma 1 [2] to the expression (2.3), we get

A" Ay =N 1 NT
)
=A™ A2, =N NT]. (2.4)
Now

-1-1-1...-1

-1 0-1...-1-1..-1 -1 1.
1 0..-1-1-1..-1

-1-1 0...-1-1...-1] |-

NN'=|1-1-1..0-1..-1||1-1-1..0-1-1...-1

-1-1-1...-1-1..-1
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m1l1 m2 m-2..m2 m1 m-1.. m1
m-2 ml1 m2..m2 m1 m-1.. m-1
m-2 m-2 ml1l..m2 m1 m-1.. m-1

=Im-2 m-2 m-2.. ml m1l m-1 m-1
ml1 ml m-1.. ml m m m
m1l1 m1l1 m1l.. m1 m m m
m1l1 m1l1 m1l.. m1l m m m

It is a square matrix of order n and it has a square submatrix of order (n — k) whose all elements are equal

to m.
Substituting NN in (2.4), we get
A+1l-m 2m 2-m ... 2-m 1-m 1-m .. 1-m
2-m  A®+1-m 2-m ...2-m 1-m 1-m .. 1-m
2-m 2-m  A’+1-m ...2-m 1-m 1-m ... 1-m
A™ 1 2m 2-m  2-m ... A%*1-m 1-m 1m ..1m (2.5)
1-m Im 1m .. 1-m A-m -m ... -m
1-m 1-m 1-m ... 1-m -m A2-m.. -m
1-m 1-m 1m .. 1-m -m  -m .. A2-m

Subtract column (k + 1) from the columns k + 2, k + 3, . . ., n of (2.5) to obtain (2.6).

A+1l-m 2m 2-m ... 2m 1m 0 .. 0
2m  A2+1-m 2-m ... 2m 1m O .. 0
2-m 2m A*+1m ...2m 1m 0 .. 0

A™ | 2-m 2-m 2m ... X*+1-m 1m 0 .. 0 (2.6)
1-m 1-m 1-m ... 1m A2-m A% ... -\
1-m 1-m 1-m ... 1-m -m A0
1-m 1-m 1-m ... 1-m m 0 .. -\
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Addrowsk + 2,k +3,...,nof (2.6) toits (k + 1)™ row to obtain (2.7).

A2+1-m 2-m 2-m 2-m 1-m 0..0
2-m A2+1-m 2-m 2-m 1-m 0..0
2-m 2-m A2+1-m ... 2-m 1-m 0..0
A™ | 2-m 2-m 2-m .. A+1-m 1-m 0..0 |7
(n-k)(1-m) (n-k)(1-m) (n-k)(1-m) ... (n-k)(1-m) A’*-mn+mk O ... O
1-m 1-m 1-m .. 1-m -m A2... 0
1-m 1-m 1-m e 1-m -m 0 ...-A\2
It reduces to (2.8) in which the determinant is of order k + 1.
A2 +1-m 2-m 2-m e 2-m 1-m
2-m A2 +1-m 2-m ... 2-m 1-m
2-m 2-m A2+1-m ... 2-m 1-m
A (A2 . . (2.8)
2-m 2-m 2-m o A%#1-m 1-m
(n-k)(1-m) (n-k)(1-m) (n-k)(1-m) ... (n-k)(1-m) A’—mn+mk
Subtract the first column of (2.8) from all its other columns to obtain (2.9).
AM+l-m o 142 1% L. 142 A2
2-m A1 0 ... 0 -1
2-m 0 A1 .. 0 -1
}bm+n—2k»2 (29)
2-m 0 0 ... A*+1 -1
(n-k)(@-m) 0 0 .. 0 A-n+k
Addrows 2, 3, ..., kof (2.9) to the first row to obtain (2.10).
A2-mk+2k-1 0 0 .. 0 1-k-)?
2-m V-1 0 ..o -1
2-m 0 A1 .. 0 -1
km+n-2k-2 (210)
2-m 0 0 ... A1 -1
(n-k)(1-m) 0 0 .. 0 A-n+k
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Add (A2 + k —=1)/( A2 — n + k) times the (k + 1)™ row of (2.10) to its first row to get (2.11).

A2—mk+2k-1+(n-K)(I-m)(22+k-1) 0 0 ... 0 0
AM-n+k
2-m M1 0 ...0 -1
) 2-m 0 A*-1..0 -1 (2.11)
}bm+n—2 -2
2-m 0 0 ..a%1 -1
(n-k)(1-m) 0 0 0 A*-n+k

Expression (2.11) reduces to (2.12) in which the determinant is of order k.

M1 0 ...0 -1
0 AM-1..0 -1
WA 2 -mk+2k-1+ (n-K)(A-m)(AP+k 1) ] | : (2.12)

A -n+k

0 0 ...A%1 1
0 0 ... 0 A-n+k

= 2122 A2 mK +2k-1+ (0 - K)(L- m)(A2+k =1) ]( 22 -1) T~ n + k)
A -n+k

— xm+n—2k—2(7\‘2_ 1)k—1 [7\.4— (mn -2k +1)7\'2+ (m_ k)(n— k)]

That equation (2.1) holds also for k = 0 is verified by direct calculation.

This completes the proof. U
THEOREM 3:

Form,n>1and 0<r<m, 0<s<n,
O(Kbmn(r,8) 1 1) =A™ "4 [A% = (mn = rs)A? + rs(m — r)(n — 9)]. (2.13)

PROOF: Proceeds in a manner analogous to that of Theorem 2. For completeness we prove this in brief.
Let the vertex set of K, , be partitioned into two disjoint sets {uy, Uy, . .., Uun}and {vi, vo, ...,

Vq} such that no two vertices in either sets are adjacent to each other. Without loss of generality assume

that the edges of K join the vertices u; and v;, forall i=1,2,...,randj=1,2, ...,s. Then the

characteristic polynomial of Kb, q(r,s) is the determinant (2.14).



Uz
u |A 0 ..0
0 A..0
u |0 0 .. A
Uu|0 0 ... 0
0 0..0
Un | 0 0 ... 0
vi |0 0..0
0 0..0
Ve |0 0... 0
Veur|-1 -1... -1
R |
Vp | -1 -1... -1
M, RT
R R
Where
[0 0
0 0
R=|0 o0 ..
I
1-1 ..
1-1 ..

Ur Ur+1

o > o
> O o

-1-1
-1-1
-1-1
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Um Vl

. -1 0
. -1 0
.-1 0

.-1 0 O ..

-1-1..-1

1.1
111
111

-1-1..-1

o O o

Vs Vsi1
0 -1
0 -1
0 -1
-1 -1
-1 -1
L1 -1
.0 O
.0 O
. A~ 0
0 A
0 O
0 O
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(2.14)

(2.15)

is a matrix of order n x m which contains a submatrix of order s x r whose all elements are equa

to zero.

Applying Lemma 1 [2] to the expression (2.15), we get
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;
2™ bl —R Iy R
A
=A"" [A21,-RRT. (2.16)
Now
m-r m-r ... m-r m-r m-r ... mer|
m-r m-r ... m-r m-r m-ro... mer
m-r m-r ... m-r m-r mero... m-r
RR"=|m-r mr ... mr m-r m-r ... mr
mr mor ... mr m m .. m
mr mer ... m-r m m m
mr mer ... mr m m .. m

It is a square matrix of order n in which there is a square submatrix of order (n — s) whose all elements are
equal to m.

Substituting RR" in (2.16), we get

A24r-m r-m ... r-m r-m r-m .. r-m
r-m  A2+r-m ... r-m r-m rm .. r-m
A"l rrm r-m . A%+rm or-m r-m ... r-m (2.17)
r-m rr-m ... rr-m  A’-m -m -m
r-m r-m ... r-m -m  A2-m ... -m
r-m r-m ... r-m -m  -m ... A>-m

Performing following operations on (2.17) we get (2.18).
(1 Subtract the first column from all its other columns
(i) Subtract the (s + 1) column from columnss +2,s+3,...,n.

(iii)  Addrowss+2,s+3,...,ntothe (s+1)" row.
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A4+r-m A2 A2 0..0
r-m AMo...0 0 0 ...0
A™ r-m 0 ... A 0 0..0 (2.18)
(-m)(n-s) 0 .. 0 A%*-r(ns) 0..0
r-m 0 ... 0 r A2 ... 0
r-m 0 ... 0 -r 0 ...\

AHr-m A7 L A2 v%
r-m V... 0 0
= A" (ANt . . (2.19)
r-m 0 ... A 0
(r-m)(n-s) 0 ... 0 A%—r(n-s)

Again performing following operations on the determinant (2.19) we get (2.20).
0] Add rows 2, 3, ..., s to the first row.
(i)  AddA?/(A? —r(n —s)) times the last row to its first row.

AP+s(r-m)+ (rrm)(n-s)x2 0 ... O 0
A% —r(n —s)
r-m o0 0
pmtn-2s-2 . : (2.20)
r-m 0 .. A 0
(r-m)(n-s) 0 ... 0 A%—r(n-s)

= A4 = (min - rs)A% + rs(m = r)(n - $)].

The equation (2.13) holds also for r = 0, s = 0 is verified by direct calculation.

This completes the proof. O

SPECTRA AND ENERGY OF Kamn(K) AND Kbpma(r,s)

From Theorems 2 and 3, it is elementary to obtain the spectra and energy of Kann(k) and
Kbmn(r,s).
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COROLLARY 4:

Form, n>1and 0 <k <min{m, n}, the spectrum of Kap, (k) consists of 0 (m + n— 2k -2 times),

1 (k—-1times), -1 (k-1 times),

+ Jmn—2k+1+\/(mn—2k+1)g—4(m—k)(n—k) and
2
+ [mn—2k+1-V{mn-2k+ DP-4m-KO-K . 0
\ 2
COROLLARY 5:
Form,n>1and 0 <r<m, 0<s<n,the spectrum of Kb, (r,s) consists of 0 (m + n — 4 times),
+ /mn—rs+\/(mn—rs)2— 4rs(m —r)(n — ) and
\ 2
+ /mn—rs—\/(mn—rs)2—4rs(m—r)(n—s) . O
2
COROLLARY 6:

Form,n>1and 0 <k <min{m, n},

E(Kamn(k)) =2k -2 +2 \/mn -2k +1+2Vm-k)(n-Kk).
PROOF: From Theorem 2, the eigenvalues of Kan, (k) are
0(m+n-2k-2times), 1 (k—1times), -1 (k-1 times) and the four roots of the equation

A= (mn -2k + 1A%+ (m-k)(n-k) = 0.

Let these four roots be Ay, Az, A3, A4. Since Kann(K) is a bipartite graph, by spectral property of bipartite
graphs, for every eigenvalue A of a bipartite graph there is -A as its another eigenvalue [1].

Assume that A, = -A4, and Ay = -As.

Now 2 Mik= - (mn-2k+1)
1<i<j<4

M+ A2=mn—2k+1

4

and  IIan=m-Kn-k
i=1



73
22 152 = (M = K)(n = K)
MmA =V (m=K)(n-k)  (Only positive square root, since , and A, are positive)
(A +22)2 = M2 + 2 + 20,
=mn-2k+1+2V(m-k)(n-k)

M+A = \/mn—2k+1+2\/(m—k)(n—k)

~E(Kamn(K) = 10| (m+n=2k=2) +|1](k=1) +|-1] (k=1) +| A [+ 2|+ | ng |+ 24

= k=1+k=1+2(| a4 [+ 22 ]) (since Ay = -Ag and A, = -Ag)

=2k -2+ 2| s | (since Ay, A2 > 0)

=2k-2+2Vmn-2k+1+2vm-k)(n-Kk). 0
COROLLARY 7:

Form,n>1land0<r<m,0<s<n,

E(Kbmna(r,s)) = 2 \/mn —rs+2\rs(m=r)(n-s). 0

Corollary 7 can be proven in a manner analogous to that of Corollary 6.
REMARKS

4.1 If k = 0, then the equation (2.1) reduces to A™*""4(A? - mn) which is the
characlteristic polynomial of the complete bipartite graph Ky, [2, p.72].
4.2 If m = n = k, then the equation (2.1) reduces to(A?— 1)""*[A? - (n — 1)?], which is the

characteristic polynomial of Ka,»(n) [see Figure 1].

Kas3(3) Kay4(4)
Figure 1

4.3 If r =0 or s = 0 or both, then the equation (2.13) reduces to the characteristic polynomial of K, .

4.4 1f r = m and s = n, then the equation (2.13) reduces to A™ * ", the characteristic polynomial of the
complement of K, .
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