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ABSTRACT. Depression is a serious disorder with a large impact on both an individu-

al’s quality of life and society as a whole. This study aimed to evaluate the potential 

involvement of nuclear factor kappa-B (NF-kB) and the Janus activated kinase (JAK) and 

Signal transducer and activator of transcription proteins (STAT) signaling pathway in the 

pathogenesis of genetically predisposed depression in female rats. The obtained results 

showed increased phosphorylation in JAK2 and STAT3, and increased protein levels of 

NF-kB in the hippocampus of Wistar Kyoto rats compared to Wistar rats. These results 

suggest that disturbance in these pathways could have a significant role in the 

pathophysiology of genetically predisposed depression in females.  
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INTRODUCTION 

 

Depression is a serious disorder with a large impact on both an individual’s quality of 

life and society as a whole. The incidence of depression in women is nearly double that in 

men and depressed females typically experience prolonged or recurrent depression more than 

depressed males (KORNSTEIN et al., 2000). The use of animal models of depression has 

contributed to understanding the pathophysiology of depression. Although complex psychi-

atric disorders can never be truly recapitulated in animal models, there is a conservation of 

certain phenotypes throughout species allowing us to measure behavior and neurobiological 

factors that have relevance from animals to humans. Various kinds of animal models of 

depression have been established for the mechanism research on depression susceptibility 

(CZEH et al., 2016). Among these models, the Wistar Kyoto (WKY) rat strain has been 

proposed as a valid animal model with endogenous depression and may be suitable for 

investigations of the genetic factors in depression (ALEKSANDROVA et al., 2019). This strain 

of rats is first used as a normotensive control for the spontaneously hypertensive rats 
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(OKAMOTO and AOKI, 1963). The WKY rat exhibits neurobiological and behavioral 

characteristics that are comparable to those seen in clinical cases of depression and is resistant 

to conventional antidepressants (LÓPEZ-RUBALCAVA and LUCKI, 2000). Additionally, the 

WKY strain demonstrates elevated anxiety and depressive-like behaviors (RITTENHOUSE et 

al., 2002). Sex differences in the WKY model are rarely examined (D'SOUZA and 

SADANANDA, 2017; MILLARD et al., 2019). Most studies are focused on males, even though 

sexual dimorphism is prevalent in the pathophysiology and etiology of depression. 

Considering that depression is more prevalent in women than in men, in the present study, 

female rats were used. Although the exact genetic or molecular mechanisms underlying the 

depressive-like phenotype of WKY rats are still unresolved and published reports are not 

always consistent, various abnormalities in different neurotransmitter and endocrine systems 

have been demonstrated in WKY compared to control outbred rats (SCHOLL et al., 2010; 

BRUZOS-CIDON et al., 2014). 

In the pathogenesis of depression, the hippocampus is closely related to the 

physiological and behavioral responses to stress. A large body of evidence demonstrates that 

chronic stress may affect both the structure and function of the hippocampus (BARCH et al., 

2019; PRICE and DUMAN, 2020; PREVIOUS et al., 2022). The previous studies have 

demonstrated reduced volume in the hippocampus of WKY rats (TIZABI et al., 2010). 

Although emerging evidence has suggested depression as a multi-gene syndrome resulting 

from a complex interaction of biological, psychological, and social factors (BAGOT et al., 

2016), the exact molecular mechanisms underlying the susceptibility to depression are still 

largely unknown and thus require further studies. In addition to neurotransmission theory of 

depression, inflammatory processes and disrupted signaling pathways also play key roles in 

the pathophysiology of depression. Many cytokines and growth hormones use the Janus 

activated kinase (JAK)-Signal transducer and activator of transcription proteins (STAT) 

signaling pathway, an intracellular protein network, to activate the expression of particular 

genes (GAŁECKA et al., 2021). When a ligand binds to a membrane receptor, the associated 

tyrosine kinase (JAK) is activated, which phosphorylates the receptor and causes it to become 

active. The STAT proteins then bind to active domains, which, during the dimerization 

process, separate from them and travel to the cell nucleus, where they link to the proper 

promoter and start the transcription process of the corresponding gene (IMADA and LEONARD 

2000; SCHINDLER and PLUMLEE, 2008; HARRISON, 2012). JAK-STAT system is important in 

all cell types, including neurons (NICOLAS et al., 2013). The importance and participation of 

signaling pathways in the pathogenesis of depression is confirmed by the fact that JAK can 

regulate the expression or function of several neurotransmitter receptors, including gamma-

aminobutyric acid (GABA) (LUND et al., 2008), cholinergic muscarinic (CHIBA et al., 2009), 

N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid 

(AMPA) receptors, which are strongly associated with depressive symptoms (ORELLANA et 

al., 2005; MAHMOUD and GROVER 2006; XU et al., 2008). STAT expression is weaker in the 

CNS, although these proteins may be important in various brain areas, including the cerebral 

cortex, hippocampus, hypothalamus, and cerebellum. The JAK-STAT signaling system is 

activated by the factors produced during inflammation. Concerning the JAK isoforms, it 

seems that JAK1 is more involved in astrocytic differentiation while JAK2, seems essential 

for neural stem cells proliferation (BONNI et al., 1997; KIM et al., 2010). Through a JAK2-

dependent mechanism, oxidative stress and certain cytokines (e.g., IL-6) activate both STAT1 

and STAT3 (PLANAS et al., 2006). We chose JAK2/STAT3 signaling because NICOLAS et al. 

(2012) reported the involvement of both JAK2 and STAT3 in hippocampal synaptic plasticity 

independently of their ability to regulate gene expression. Since NF-kB could interact with a 

bunch of genes involved in inflammation, researchers observed the activation of nuclear 

factor kappa-B (NF-kB) in many inflammatory diseases (MONACO et al., 2004). WANG et al. 

(2018) demonstrated that CUMS induced depressive-like behavior and spatial memory 
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damage, and overexpression of cytokines and NF-κB in the frontal cortex and hippocampus in 

C57BL/6 strain. 

Therefore, the current study was designed to investigate the potential involvement of 

NF-kB and the JAK/STAT signaling pathway in the pathogenesis of genetically predisposed 

depression in female rats.  

 

 

MATERIAL AND METHODS 

 

Subjects 
 

Adult Wistar (WIS) and WKY female rats (9 weeks old, 150-250g) were kept in 

transparent plastic cages size 40×25×15 cm. The cages were placed in room with stable 

environmental conditions (e.g. light/dark cycle, temperature (22 ± 2°C), and humidity (45 ± 

5%)). Food and water were available ad libitum. Care was taken to minimize the pain and 

discomfort of the animals according to the recommendations of the Ethical Committee for the 

use of laboratory animals of the “Vinca” Institute based on Directive 2010/63/EU. All 

procedures with animals were approved by Ethical Committee for the use of laboratory 

animals of the “Vinca” Institute and Ministry of Agriculture and Environmental Protection, 

Authority for Veterinary permission No. 323-07-01498/2022-05. 

The animals were divided into two matched groups: WIS and WKY rats. All female 

rats were housed in groups of three. For further analyses we used only samples from 6 female 

rats per group that were in the diestrus phase at the end of the experiment to avoid the 

influence of sex hormones on the results. At the end of the study, all animals were decapitated 

with a guillotine (Harvard - Apparatus, USA), the hippocampus was quickly removed on ice, 

frozen in liquid nitrogen and stored at -80°C until biochemical analyses.  

 

Western blot analysis 
 

Hippocampal tissue was homogenized in RIPA Lysis Buffer System (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA, sc-24948). After centrifugation (12 000 rpm, 20 mins at 

4 0C), the supernatant was taken and protein concentration was determined by the method of 

LOWRY et al. (1951). 30µg of hippocampal proteins extracts separated by 12% SDS-poly-

acrylamide gel electrophoresis were transferred to a supported PVDF membrane (Immobilon-

P Transfer membrane, Catalog No. UPVH 00010, pore size: 0.45 μm, Merck Millipore Ltd, 

Ireland). The membranes were blocked in 5% non-fat dry milk in Tris-Buffered Saline-Tween 

20 (TBST) for 1h at room temperature. All following washes (three times for 15 mins) and 

antibody incubation (overnight at 4°C for primary antibody and 1h at room temperature for 

secondary antibody) were also performed in TBST at ambient temperature on a shaker. For 

measuring JAK2, pJAK2, STAT, pSTAT3 and NF-kB protein levels anti-JAK2 mouse 

monoclonal primary antibody (C-10): sc-390539, Santa Cruz Biotechnology (dilution 

1:1000); anti-phospho-JAK2 (Tyr1007/1008) rabbit polyclonal primary antibody, Sigma 

Aldrich (dilution 1:1000); anti- STAT3 mouse monoclonal primary antibody (F-2): sc-8019, 

Santa Cruz Biotechnology (dilution 1:1000); anti-p-STAT3 mouse monoclonal primary 

antibody (23G5): sc-56747, Santa Cruz Biotechnology (dilution 1:1000); anti-NF-kB mouse 

monoclonal primary antibody (F-6): sc-8008, Santa Cruz Biotechnology (dilution 1:200), 

were used respectively. Washed membrane was further incubated in the horseradish 

peroxidase conjugated secondary anti-mouse (Goat Anti Mouse IgG (HRP), Catalog No. 

sc2005, dilution 1:5000, Santa Cruz Biotechnology, USA) and anti-rabbit antibody (Goat 

Anti-Rabbit IgG (HRP), Catalog No. ab6721, Abcam, dilution 1:1000, United Kingdom) for 

luminol based detection. The secondary antibody was visualized by Immobilion Western 
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Chemiluminescent HPR Substrate (Catalog No. WBKLS 0100, Millipore Corporation, USA) 

and exposed to Hyperfilm™ ECL™ (GE28-9068-36 hyperfilm ECL, 18x24 cm, 50 sheets, 

Sigma Aldrich) for Western Blot Detection. The relative density of the protein immunoblot 

images was analyzed by ImageJ software (National Institutes of Health, Bethesda, MD, 

USA). Amounts of all analyzed proteins were normalized to β-actin levels (dilution 1:5000, 

Catalog No. sc-47778, Santa Cruz Biotechnology, USA). 

 

Statistical analysis 
 

The results in this paper were presented as a mean ± standard error (S.E.M). The 

significance of the differences in protein content of JAK2, STAT3 and NF-kB in the 

hippocampus of the WIS and WKY group were estimated using the Student’s t-test in Origin 

software, version 9 (Jandel Corporation, USA) and Statistica, version 7 (StatSoft, Inc., Tulsa, 

USA). The level of statistical significance was set at p <0.05.  

 

 

RESULTS 

 

To clarify the possible involvement of JAK2/STAT3 and NF-kB signaling pathways 

in the higher vulnerable WKY to stress we examined the ratio of pJAK2/JAK2 and 

pSTAT3/STAT3 and protein levels of NF-kB in the hippocampus. The results of JAK2 

protein levels in WKY and WIS rats have presented in Fig. 1. Our results indicate increased 

phosphorylation of JAK2 (by 24%, p <0.05) and ratio pJAK2/tJAK2 (by 15%, p <0.05) in the 

hippocampus of WKY in relation of WIS rats.  

 

 
 

Figure 1. Western blot quantification analysis of a) total, b) phosphorylated JAK2 and c) ratio 

pJAK2/tJAK2 levels in hippocampal whole-cell protein extracts obtained from WIS and WKY rats. 

Each column represents the mean ± SEM. The number of animals per experimental group: n=6. β actin 

was used as a loading control. Statistical significance * p <0.05 WIS vs. WKY. d) Representative 

Western blots for phosphorylated and total JAK2 proteins. 
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The results of STAT3 protein levels in WKY and WIS rats were presented in Fig. 2. 

Our results also indicate increased phosphorylation of STAT3 (by 111%, p <0.01) and ratio 

pSTAT3/tSTAT3 (by 77%, p <0.01) in the hippocampus of WKY in relation of WIS rats. 
 

 
 

Figure 2. Western blot quantification analysis of a) total, b) phosphorylated STAT3 and c) 

ratio pSTAT3/tSTAT3 levels in hippocampal whole-cell protein extracts obtained from WIS and 

WKY rats. Each column represents the mean ± SEM. The number of animals per experimental group: 

n=6. β actin was used as a loading control. Statistical significance ** p <0.01 WIS vs. WKY. d) 

Representative Western blots for phosphorylated and total STAT3 proteins. 

 

The data presented in Fig. 3 shows the results of NF-kB protein levels in WKY and 

WIS rats. Nuclear factor NF-kB was significantly increased (by 28%, p <0.05) in WKY 

compared to WIS rats.  

 
 

Figure 3. Western blot quantification analysis of NF-κB protein levels in the nuclear fraction 

of the hippocampal samples obtained from WIS and WKY rats. Results are presented as the means ± 

S.E.M. Statistical significance * p <0.05 WIS vs. WKY. The number of animals per experimental 

group: n=6. β tubulin was used as a loading control.  

b) Representative Western blots for NF-kB protein. 
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DISCUSSION 

 

Previously studies reported behavioral patterns exhibited by WKY rats which are 

consistent with the heightened levels of anxiety, including an exaggerated secretion of stress 

hormones (RITTENHOUSE et al., 2002), reduced time exploring the open field arena and 

increased defecation rates during a trial (O’MALLEY et al., 2010). The stress-sensitive 

behavioral phenotype exhibited by WKY rats may have a molecular basis. The data presented 

in this manuscript illustrates how the genetic make-up of stress-sensitive WKY rats results in 

alterations in JAK2/STAT3 and NF-kB signaling pathways compared to WIS rats. It is well-

known that the JAK/STAT pathway modulates various signals to keep homeostasis in 

inflammatory conditions. The proinflammatory cytokines promote the recruitment of immune 

cells and provide an inflammatory microenvironment for the remodeling of hippocampal 

neurons and the development of mood disorders. Activation of the immune system (with TNF 

and/or IL-6) can promote the activation of an intrinsic cell survival signaling pathway such as 

JAK/STAT. Interleukin-6, as a proinflammatory cytokine, forms a complex with IL-6 

receptor and coreceptor glycoprotein 130 (gp130), which in turn initiates a cascade reaction 

including JAK activation, phosphorylation of STAT3, and subsequent dimer formation, 

nuclear translocation, and gene transcription. There is abundant evidence to show that the 

sustained activation of the JAK/STAT signaling pathway is closely related to mood disorders 

(SHARIQ et al., 2018). Our results show increased JAK2 and STAT3 signaling in the 

hippocampus of WKY female rats. The binding of ligands to its receptors induces the 

phosphorylation of receptor-associated JAK, which in turn leads to STAT phosphorylation. 

Phosphorylated STATs are released from the receptor complex and then form homo-or 

heterodimers and then translocate into the nucleus to regulate the transcription of target genes 

encoding proinflammatory cytokines and chemokine (O'SHEA et al., 2015). The main 

consequence of the activation of this pathway is to promote inflammation-associated gene 

expression. Activated STAT3 accelerated a positive feedback mechanism to produce IL-6 in 

lipopolysaccharide-induced brain inflammation (BEUREL and JOPE, 2009). This amplification 

mechanism for IL-6 expression included STAT3 and NF-κB signaling. In the present study, 

we identified significant upregulation of nuclear NF-kB activation in female WKY rats. There 

are some reports that NF-κB association with STAT3 increased transcription of IL-6 and, 

subsequently, accelerated IL-6–JAK-STAT3 signaling, amplifying the production of IL-6 and 

other chemokines (LAM et al., 2008). MATSUMOTO et al. (2018) reported that an association 

between STAT3 and NF-κB might be involved in the enhancement of TNF-α-stimulated IL-6 

production in pericytes. Sustained STAT3 and NF-κB activation in pericytes could be 

responsible for CNS diseases, by inducing blood brain barrier dysfunction, glial activation 

and neuronal damage. The results of KWON et al. (2017) showed that microglia-specific 

STAT3 knockout mice showed antidepressant-like behavior. There is also evidence that the 

inhibition of specific JAK/STAT pathways, via JAK inhibitors may be a promising novel 

treatment for depression (SHARIQ et al., 2018). 

Our findings have revealed for the first time the existence of increased levels of NF-

kB and JAK2/STAT3 in the hippocampus of WKY female rats compared to WIS female rats. 

These results suggest that disturbance in these pathways could have a significant role in the 

pathophysiology of genetically predisposed depression in females. Given that the occurrence 

of disease is closely linked to the JAK/STAT pathway, therefore, JAK2 and STAT3, are 

likely to be the most effective targets for the treatment of genetically predisposed depression.  

The present data should be interpreted within the limitation. In this study, male WKY 

and WIS rats were not included considering complex issues regarding the relationship 

between sex and depression. Future studies should examine whether genetically predisposed 

depression-like behavior would have a stronger influence on JAK/STAT and NF-kB signaling 

pathways in male WKY rats. We examined the hippocampus only in the current study. 
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However, it is unlikely that the observed changes are limited to the hippocampus. Future 

studies are needed to examine other brain regions such as the prefrontal cortex, amygdala and 

hypothalamus which are affected also in depression. 
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