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ABSTRACT. The survey of buoyancy driven flow of a reactive hydromagnetic 

Poiseuille fluid flowing within porous channel with respect to a heat source produced 

internally is investigated. The coupled differential equations regulating the fluid flow are 

simplified by seeking the use of modified Adomian decomposition method (MADM) 

which is later presented in tables and graphs to show the effects of buoyancy force and 

various parameters included in the flow regime.  
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INTRODUCTION 

 

Significant interest from researchers to investigate the reactive hydromagnetic fluid 

flow has been on the increase due to its broad demands in design engineering and industrial 

phenomenon, such as petroleum industries, chemical engineering, polymer extrusion, etc., as 

mentioned (MAKINDE and BEG, 2010; HASSAN and GBADEYAN, 2014; 2015a,b; HASSAN and 

MARITZ, 2016a,b). Reactive hydromagnetic fluid flow is mainly connected with heat transfer 

in many engineering applications, most especially, when the fluid flows within porous media 

like in the transportation and purification of petroleum products, lubrication, power generators 

and pumps, to mention a few, as expressed in BEAR (1972), BADRUDDIN et al. (2006), ATTIA 

(2007) and HASSAN and MARITZ (2016 b). In many aspects of these studies, various physical 

aspects order the fluid behaviour flowing through a porous medium which measures the 

capacity and ability of the formation to transmit fluid. For instance, HASSAN et al. (2017) 

recently examined the survey of a radiative energy transfer of a reactive hydromagnetic fluid 

flowing in the midst of parallel porous plates with convective boundary status obeying the 

cooling law of Newton. 

Moreover, the combination of different properties of basic heat transfer and fluid flow 

mechanisms show the practical and scientific relevance in hydromagnetic flows and energy 

transfer which has further change significantly in recent years because of numerous essential 

procedures in engineering and industries. In specific conditions, agents dealing with chemical 

compositions and separate fluids, heat sink or source may become necessary which at the 
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same time may be accounted for by adding its effect to the energy equation. In addition to 

that, buoyancy effect can become more stressed in fluid motion and energy transfer over a 

reactive fluid flow due to its nature to either increase the speed of the fluid or a rise in the 

temperature of the fluid emission to the layers.  

Meanwhile, when fluid experiences a gravitational force and variations in density 

caused by temperature gradient in free convective flow, then a buoyancy force is produced 

and cannot be neglected. To show the significant effect of buoyancy force, CHINYOKA and 

MAKINDE (2015) examined the compound reaction of buoyancy force and asymmetric 

convective cooling on unsteady magnetohydrodynamic boundary layer flow and thermal 

energy in a reactive third grade fluid. Also, MAKINDE (2006) analysed the effects of thermal 

buoyancy on the boundary layer flow over a vertical plate with convective surface boundary 

conditions. In addition to that, MALIK et al. (2013) presented the measure of the buoyancy 

driven flow in between a bottom - heated vertical coordinated cylindrical enclosures. Other 

related studies showing the importance of studying the effect of buoyancy force can be found 

in existing literature (EPSTEIN, 1988; COOPER, 1995; INATOMI, 2006; RAPPOLDT et al., 2003; 

MAKINDE and CHINYOKA, 2013; FENUGA et al., 2015). 

Accordingly, the current survey intends to extend the recent work of HASSAN and 

MARITZ (2016a) and HASSAN et al. (2017), in order to analyse the striking effect of buoyancy 

force and porosity on a reactive hydromagnetic heat source of fluid flow with parallel fixed 

plates with respect to Arrhenius chemical kinetics which was not accounted for in the 

previous study. The importance in several engineering and industrial applications has already 

been highlighted above.  The problem is strongly nonlinear with coupled differential 

equations governing the momentum and energy distributions obtained using a rapidly 

convergent modified Adomian decomposition method (MADM).  The proposed modification 

method is seen to be more reliable if analysed with the well-known Adomian decomposition 

method (ADM). The major progress is presented in WAZWAZ (1999), WAZWAZ and SAYED 

(2001), BABOLIAN and BIAZAR (2002) and RAY (2014), as the series converge with fewer 

iterations. The effects of the Grashof number ( Gr ), which is a function of buoyancy force and 

Darcy's porous permeability coefficients on momentum and energy distributions, together 

with entropy production and Bejan number are considered and demonstrated.  

 

 

MATHEMATICAL FORMULATION 
 

 Taking into account the steady flow of an incompressible and electrically 

conducting reactive fluid driven by buoyancy force running through in between parallel 

porous plates located at ay   and ay  as shown in figure 1.  

 

 
 

Figure 1: Schematic diagram of the problem. 
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 Both plates are fixed with a process taking place at constant wall temperature ( 0T ) 

subject to the impact of a transverse magnetic terrain ( 0B ). The internal heat expression is 

assumed to be a linear relation of temperature. Under the foregoing assumptions and ignoring 

the dissipation of the reactant, the governing boundary layer equations as recorded in 

MAKINDE and BEG (2010), HASSAN and GBADEYAN (2014, 2015a) and HASSAN and MARITZ 

(2016) gives on Figure 1. 

 In momentum equation (1) each member corresponds to the following transports: 

pressure, viscous, magnetic, porosity and buoyancy drive while the energy equation (2) 

respectively comprises: heat transfer, viscous dissipation, magnetic, porosity, reactivity and 

internal heat source. 
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The flow is regular about the vertical x – axis with the matching boundary conditions 

along the channel centreline are given as: 
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Furthermore, the regular equation for the entropy production per unit volume 

accompanied with magnetic field strength and porous medium is hereby stated thus:  
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here p  stands for pressure, u  represents the fluid velocity and   stands for fluid viscosity. 

Furthermore,   stands for electrical conductivity,   is the density estimated at the mean 

temperature, where g is the gravitational constant,   denotes the coefficient of thermal 

expansion, k represents the thermal conductivity coefficient, T  is the fluid temperature and Q 

is the heat of the reaction term. Moreover, 0C , A, E, R, 0Q , K and 0T  respectively represent 

the reactant species initial concentration, reaction rate constant, activation energy, the 

universal gas constant, the dimensional heat generation coefficient, the Darcy permeability 

coefficient and the wall temperature. Lastly, mS  represents the entropy generation number in 

non - dimensionless form. Convincingly, let it be known that the last term in equation (1) is 

the additional term to extend the study of HASSAN and MARITZ, 2016 a; in examining the 

impact of buoyancy force as in MAKINDE and CHINYOKA, 2013 and the fourth term in both 

equations (1) and (2) is to analyse the effectiveness of the porosity due to the similar 

modelling done in MAKINDE, 2006 and HASSAN and MARITZ, 2016 b. 
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 Therefore, the dimensionless regulating equations for the momentum and energy 

with appropriate boundary conditions are written as follows: 
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subject to the boundary conditions  

  0
dy

dT

dy

du
 on 0y   and 0Tu on 1y     (8) 

Also, the expression for the entropy production number in dimensionless state using 

the existing dimensionless variables and parameter is given as: 
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here, G stands for pressure gradient and U is the mean velocity. Also, Gr , H, and Br are 

numbers for Grashof, Hartmann and Brinkman. In addition to that , , ,  ,   and   are 

respectively parameters for critical explosion named after Frank-Kamenettski, activation 

energy, viscous heating, heat source, porous medium permeability and  the wall temperature. 

Also, the entropy production rate in dimensionless form is represented with sN . The physical 

significance of the dimensionless parameters and their range of variation of nonlinear terms 

are taken to be very small because of the uniqueness and the nature of flow regime. 

 

 

 

METHOD OF SOLUTION 

 

 The fluid velocity and energy equations are couple equations that need to be 

integrated twice to obtain the following: 
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where 0a  and 0b  are respectively equal to )0(u  and )0(T  to be determined by other 

boundary conditions stated in equation (8). In order to find the solutions of the coupled 

equations (10) and (11), we appropriate an infinite series results in the form of: 
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with the series solution (12) in (10) and (11), we have, 
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where the respective components 0A , 1A , 2A , …, 0B , 1B , 2B , …, and 0C , 1C , 2C , …, are 

called Adomian polynomials. With that, (15) is thereby amplified in a manner that: 

  (16) 

Therefore, the velocity and momentum equations (13) and (14) are reduced to: 
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Then, respective iterative function with the zeroth portion as previously specified in 

WAZWAZ, 1999; WAZWAZ and SAYED, 2001; BABOLIAN and BIAZAR, 2002; RAY, 2014 as:  
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 Equations (19) – (21) are then programmed in the application package to derive the 

approximate solutions adopted and deliberated upon in the subsequent sections as: 
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 However, in order to resolve the entropy production, we let the first term of sN  in 

equation (9) ,that is, 
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entropy production due to the compound consequences of the viscous distribution,  the 

magnetic field and porosity of the flow system. Moreover, the irreversibility dispersion is 

defined as   and is given as: 
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which indicates that energy transfer exercises control over the fluid friction when 10   

and otherwise when ϕ > 1. Importantly, this is used to reach a decision on safety measures 

especially in numerous engineering schemes. Alternatively, another option known to 

determine the irreversibility distribution ratio is named Bejan number Be, which can be stated 

as:  
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RESULTS AND DISCUSSION 

 

This part presents the results of the impact of buoyancy on a reactive hydromagnetic 

fluid flowing in between parallel porous channels with constant wall temperature. The fluid is 

under the influence of internal heat source accompanied with other significant flow variables.  

Interestingly, our new result shall be equivalent to that of HASSAN and MARITZ, 2016 a; 

when the porous medium permeability parameter (  ) and buoyancy effect parameter known 

as Grashof number (Gr ) are both zero to validate the solutions obtained. 
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Table 1 displays the rapid convergence of the series solution for the constants 0a  and 

0b  in equations (10) and (11) which shows the efficiency and reliability of the modified 

ADM. It really signifies that the series converge with sizeable iterations. 

Table 1: Rapid convergence of the series solution for the constants  0a  and 0b   

[ 5.0,1.0,1  GrHG  ] 
 

n  
0a  0b  

0 0. 5 0 

1 0. 321429 0.256657 

2 0.352677 0.381090 

3 0. 356170 0.389705 

4 0. 355650
 

0.386856 

5 0.355642 0.386840 

6 0.355650 0.386899 

7 0.355650 0.386899 

8 0.355650 0.386899 

          

 

 Table 2 indicates the evaluation of numerical results of temperature distributions 

between the previous results in HASSAN and MARITZ, 2016 a, where Adomian 

decomposition method (ADM) and the new result from modified Adomian decomposition 

method (MADM) were used. The buoyancy effect parameter ( Gr ) and porous medium 

permeability parameter ( ) are both zero in the previously obtained result in HASSAN and 

MARITZ, 2016 a, showing the efficiency and the reliability of the new method. The absolute 

error is with average order of 10
 ̶ 3 

which is due to the variations in the number of iterations 

done in both results. 

 
Table 2: Comparison of numerical results of the temperature profile.  

[ 0,5.0,1  rGHG  ] 
 

y  )(yT ADM 

[HASSAN and 

MARITZ, 2016a] 

)(yT MADM Absolute Error 

̶  1 0.0003681026 ̶  1.50704 × 10
 ̶ 17 

3.68103 × 10
 ̶ 4

 

̶  0.75 0.1771365903 0.1757301606 1.40643 × 10
 ̶ 3

 

̶  0.50 0.3046016196 0.3028513826 1.75024 × 10
 ̶ 3

 

̶  0.25 0.3819272135 0.3800505753 1.87664 × 10
 ̶ 3

 

0 0.4078774354
 

0.4059636879 1.91375 × 10
 ̶ 3

 

0.25 0.3819272135 0.3800505753 1.87664 × 10
 ̶ 3

 

0.50 0.3046016196 0.3028513826 1.75024 × 10
 ̶ 3

 

0.75 0.1771365903 0.1757301606 1.40643 × 10
 ̶ 3

 

1 0.0003681026 ̶  1.50704 × 10
 ̶ 17 

3.68103 × 10
 ̶ 4

 

 

 

 Figures 2 and 3 respectively display the buoyancy and porosity effects on the 

velocity distribution. On a general note, the highest limit of velocity is attained at the 

centreline within the plates. The effect of buoyancy is significant on the fluid flow in figure 2, 

as it increases the fluid velocity which implies that, the greater the buoyancy force, the faster 
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the motion of the fluid. While it is clearly noticed in figure 3 that the fluid motion reduces 

with rising values of porous term ( ) which is due to the retarding effects of porosity in 

nature and magnetic force present in the flow channel. 

 

 
  

 The temperature profiles for variations in the Grashof number ( Gr ) and porosity 

permeability term ( ) are respectively depicted in figures 4 and 5. The effect of buoyancy 

force is noticed in figure 4 and it shows that the rising temperature occurs due to increase in 

buoyancy force   in the presence of internal energy produced during fluid interactions while 

on the other hand, in figure 5, the plot clearly shows a reduction in temperature as the porosity 

term increases which is due to the high presence of Darcy permeability content in the fluid 

flow, hence resulting in a reduction in temperature. 
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 Figures 6 and 7 display results for entropy generation rate versus the channel width 

for Grashof number ( Gr ) and porous permeability term ( ). Generally, we note that the 

entropy generation rate is at a minimum value around the core region of the channel and rises 

to a maximum value around the plate surfaces. In figure 6, an increase in ( Gr ) results in an 

increase in the entropy generation rate, while it is observed that an increase in the porous 

permeability term ( ) results in a decrease in the entropy generation rate in figure 7. 

 

 

 
 

 Figures 8 and 9 show the relationship of Bejan number (Be) across parallel plates. 

Notably, the energy transfer is in control at both lower and upper surfaces while the fluid 

friction irreversibility is in control around the core region. The regulatory effects of energy 

transfer irreversibility at the bottom plates reduce with rising values of ( Gr ) in figure 8, while 

an increase is noticed with the increasing values of porous permeability ( ) around the core 

region in figure 9. 

 

 

 

CONCLUSION 

 

 The study investigated the consequence of buoyancy force on a hydromagnetic 

Poiseuille reactive fluid flow within porous plates. The results obtained for the differential 

equations regulating the fluid flow which are strongly nonlinear are acquired employing the 

modification of an infinite series solution (MADM). The speedy convergence of the series 

solution was presented and supported in the comparison of the new result with the formerly 

acquired result. The effects of buoyancy force is noticed to increase the fluid motion and heat 

transfer, while the porosity retards the fluid motion and also reduces the fluid heat within the 

plates.  

 

 

Acknowledgements 

 

The author would like to acknowledge the detailed and constructive comments of the 

anonymous reviewers.  

 

 

 

 



22 

References: 
 

[1] ATTIA, H.A. (2007): On the effectiveness of porosity on unsteady flow and heat 

transfer between parallel porous plates with exponential decaying pressure gradient. 

Journal of Porous Media 10(3): 11 – 16. doi: 10.1615/JPorMedia.v10.i3.80 

[2] BABOLIAN, E., BIAZAR, J. (2002): Solution of nonlinear equations by modified 

Adomian decomposition method. Applied Mathematics and Computation 132(1): 

167–172. doi: 10.1016/S0096-3003(01)00184-9 

[3] BADRUDDIN, I.A., ZAINAL, Z.A, ASWATHA, N.P.A., SEETHARAMU, K.N., SIEW, L.W. 

(2006):  Free convection and radiation for a vertical wall with varying temperature 

embedded in a porous medium. International Journal of Thermal Sciences 45(5): 487– 

493. doi: 10.1016/j.ijthermalsci.2005.05.008 

[4] BEAR, J. (1972): Dynamics of fluids in porous media. American Elsevier, New York, 

USA. 

[5] CHINYOKA, T., MAKINDE, O.D. (2015): Buoyancy effects on unsteady MHD flow of a 

reactive third grade fluid with asymmetric convective cooling. Journal of Applied 

Fluid Mechanics 8(4): 931– 941 doi: 10.18869/acadpub.jafm.67.223.22865 

[6] COOPER, L.Y. (1995): Combined buoyancy and pressure-driven flow through a 

shallow, horizontal, circular vent. Transactions-American Society of Mechanical 

Engineers Journal of Heat Transfer 117(3): 659–659. doi: 10.1115/1.2822627 

[7] EPSTEIN, M. (1988): Buoyancy-driven exchange flow through small openings in 

horizontal partitions. Journal of Heat Transfer 110(4а): 885–893. doi: 10.1115/ 

1.3250589 

[8] FENUGA, O.J., OLANREWAJU, P.O., ADIGUN, J.A., HASSAN, A.R. (2015): Effects of 

buoyancy force and fluid injection/suction on a chemically reactive MHD flow with 

heat and mass transfer over a permeable surface in the presence of heat source/sink. 

International Journal of Scientific and Engineering Research 6(6): 1041–1051. 

[9] HASSAN, A.R., GBADEYAN, J.A. (2014): Thermal Stability of a Reactive 

Hydromagnetic Poiseuille Fluid Flow through a Channel. American Journal of 

Applied Mathematic, 2(1): 14–20. doi: 10.11648/j.ajam.20140201.13 

[10] HASSAN, A.R, GBADEYAN, J.A. (2015a): Entropy generation analysis of a reactive 

hydromagnetic fluid flow through a channel. UPB Scientific Bulletin, Series A: 

Applied Mathematics and Physics 77(2): 285–296. 

[11] HASSAN, A.R, GBADEYAN, J.A. (2015b): A reactive hydromagnetic internal heat 

generating fluid flow through a channel. International Journal of Heat and 

Technology 33(3): 43–50. doi: 10.18280/ijht.330306 

[12] HASSAN, A.R, MARITZ, R. (2016a): The analysis of a reactive hydromagnetic 

internal heat generating Poiseuille fluid flow through a channel. SpringerPlus 5(1): 

1332. doi: 10.1186/s40064-016-2964-0. 

[13] HASSAN, A.R, MARITZ, R. (2016b): The analysis of a reactive hydromagnetic fluid 

flow through porous medium with convective cooling. UPB Scientific Bulletin, Series 

D: Mechanical Engineering 78(4): 43–56. 



23 

[14] HASSAN, A.R,  MARITZ R., GBADEYAN, J.A. (2017): A reactive hydromagnetic heat 

generating fluid flow with thermal radiation within porous channel with symmetrical 

convective cooling. International Journal of Thermal Sciences 122: 248–256. doi: 10. 

1016/j.ijthermalsci.2017.08.022 

[15] INATOMI, Y. (2006): Buoyancy convection in cylindrical conducting melt with low 

grashof number under uniform static magnetic field. International journal of heat and 

mass transfer 49(25-26): 4821–4830. doi: 10.1016/j.ijheatmasstransfer.2006.06.002 

[16] MAKINDE, O.D. (2006): Thermal ignition in a reactive viscous flow through a channel 

filled with a porous medium. Journal of heat transfer 128(6): 601–604. doi: 10.1115/ 

1.2188511 

[17] MAKINDE, O.D., ANWAR BEG, O. (2010): On inherent irreversibility in a reactive 

hydromagnetic channel flow. Journal of Thermal Science 19(1): 72-79. doi: 10.1007/ 

s11630-010-0072-y 

[18] MAKINDE, O.D., CHINYOKA, T. (2013): Numerical investigation of buoyancy effects 

on hydromagnetic unsteady flow through a porous channel with suction/injection. 

Journal of Mechanical Science and Technology 27(5): 1557–1568. doi: 10.1007/ 

s12206-013-0221-9 

[19] MALIK, A.H., KHUSHNOOD S., SHAH A. (2013): Experimental and numerical study of 

buoyancy driven flow within a bottom heated vertical concentric cylindrical enclosure 

Natural Science 5(7): 771 - 782. doi: 10.4236/ns.2013.57093 

[20] RAPPOLDT, C., PIETERS, G.J.M., ADEMA, E.B., BAAIJENS, G.J., GROOTJANS, A.P., VAN 

DUIJN, C.J. (2003): Buoyancy-driven flow in a peat moss layer as a mechanism for 

solute transport. Proceedings of the National Academy of Sciences 100(25): 14937–

14942. doi: 10.1073/pnas.1936122100 

[21] RAY, S.S. (2014): New approach for general convergence of the Adomian 

decomposition method. World Applied Sciences Journal 32(11): 2264–2268. doi: 

10.5829/idosi.wasj.2014.32.11.1317 

[22] WAZWAZ, A.M. (1999): A reliable modification of Adomian's decomposition method. 

Applied Mathematics and Computation 102(1): 77–86.  doi: 10.1016/S0096-3003(98) 

10024-3 

[23] WAZWAZ, A.M., EL-SAYED, S.M. (2001): A new modification of the Adomian 

Decomposition method for linear and nonlinear operators. Applied Mathematics and 

Computation 122(3): 393–405. doi: 10.1016/S0096-3003(00)00060-6 

 

 

 

 

 

 


