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ABSTRACT. In this paper, some inequalities between the Wiener, hyper-Wiener, first
Zagreb, second Zagreb, first reformulated Zagreb, second reformulated Zagreb and the
general Zagreb indices of a simple graph are given. Our results improve some earlier bonds
between these graph invariants.
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INTRODUCTION

A graph is a pair G = (V,E) in which V is a non-empty set and E € P,(V) =
{{x,y}|x # x € V}. If each element of V has at most four mates in V, then the graph G is
called a molecular graph. Topological indices are maps from molecular graphs into real
numbers, such that this mapping is invariant under graph isomorphisms. These indices are
widely used in chemistry for relationship between molecular structures and molecular
properties of a given complex (DeVILLERS and BALABAN, 2000). The Wiener index (WIENER,
1947) and Zagreb group indices (GUTMAN and TRINAJSTIC, 1972; GUTMAN and FURTULA,
2003) are some of the most studied topological indices both by chemists and mathematicians. In
a similar way as Zagreb group indices, the first and second reformulated Zagreb indices were
defined (ILiC and ZHou, 2012). In addition if « is an arbitrary real number except from 0 and
1, then (LI and ZHENG, 2005) introduced the general Zagreb index of a graph. The most
important generalization of Wiener index is the hyper-Wiener index (KLEIN et al., 1995). We
will define these graph invariant later.

Let G = (V,E) be a simple connected graph and u,v € V. The distance between u
and v, d;(u,v), is defined as the minimum length of a shortest path connecting them. A graph
invariant is said to be distance-based if it can be defined by distance function d;(—,—). The
Wiener and hyper-Wiener indices of G are defined as follows:
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W(G) = Xuvieve) de(u, v),
1
ww () = 5 [W(G) + Z{u,v}cV(G) de(u, v)z]'
These are the most important distance-based topological indices of a graph.

Suppose G is asimple graph and v € V(G). The notation deg(v) used for the degree
of v in G. A topological index is said to be degree-based if it can be defined as the function
deg(—). The Zagreb and reformulated Zagreb group indices are most important degree-based
topological indices of G. These topological indices, as well as, the general Zagreb index of G
are defined as follows:

My (G) = Yvev(e) dege (V)*&M3(G) = Yuver(s) degs(W)deges (v),
EM;(G) = Yeer) degc(e)*&EM,(G) = Y.y degg(e)degs(f),
MF(G) = ZuEV(G) dege(w)®.

Here, e~f means that the edges e and f have a common vertex, the notation
deg;(u) is used for the degree of vertex v in G and for an edge e = uv, degg(e) =
deg;(u) + degg(v) — 2 denotes the degree of the edge e. It is easy to prove that M;(G) =

Yuver(c) [degs(u) + degg (v)].

It is clear that MZ(G) = M;(G). The graph invariant M3 (G) is called the forgotten
topological index and denoted by F(G); F(G) = Yyev(c) dege(u)® (FURTULA and GUTMAN,
2015). We encourage the interested readers to consult papers (GUTMAN et al., 1997; KLAVZAR
et al., 2000; NIKOLIC et al., 2003; XING et al., 2011) for more information on this topic.

It is natural to try to establish relations between the degree-based and distance-based
topological indices. (ZHou and GUTMAN, 2004) obtained some bounds on Wiener and
hyper-Wiener indices, in terms of the first Zagreb index for molecular graphs with girth greater
than four. BEHTOI et al. (2011) deduced inequalities for Wiener and hyper-Wiener indices, in
terms of M;, M, and the number of hexagons. DAs et al. (2015) continued the previous works
by considering Szeged, PI, and Wiener polarity indices, as distance-based indices, and the first
and second Zagreb indices.

The aim of this paper is to bring new inequalities, relating W, WW, M,, M,, EM;,
EM,, F and M{. In addition our results correct some minor errors in previous works.

PRELIMINARIES

Let G = (V(G),E(G)) be a simple connected graph with n vertices and m edges,
respectively. The diameter of G, denoted by diam(G), is defined as the largest distance
between vertices of G. The length of a shortest cycle in G is called the girth of G, denoted by
g(G). If G does not contain a cycles, then we set g(G) = . Let k be a nonnegative integer.
Then d(G,k) denotes the number of pairs of vertices in G with distance k. Note that
d(G,k) = 0, forevery k > diam(G), and d(G,1) = m. It is easy to check that

Yie1 d(G, k) = (5)&W(G) = Yy»1 kd (G, k),
WW(G) =5 Tk k(k +1)d(G, k).



39

ZHo and GUTMAN (2004) showed that the equality d(G,2) = %Ml(G) — m holds for

graphs that do not contain triangles and/or quadrangles; in fact g(G) > 4. We may extend this
result as:

Lemma 2.1 Let G be a graph with s squares, m edges and g(G) = 4. Then d(G,2) =
M, (G) —m — 2s.

Proof. Since g(G) = 4, for each square in G there are exactly two pairs of vertices of distance
two and hence two distinct paths of length two in G. It follows that

d (v)-1 1
d(6,2) = Tuwpex 1= 25 = Tyev(e) dege() 22— =25 = 2My(G) —m - 2s,
as desired.

BeEHTO!I et al. (2011) explained that if g(G) >4 and G has h hexagons, then
d(G,3) = M,(G) — M,(G) + m — 3h. Suppose G is a cycle with 5 vertices, then g(G) =5
and d(G,3) =0, but M,(G)—M(G)+m—3h = 10—-10+5-3%x0 = 5. In fact,
d(G,3) = M,(G) —M,(G)+m—3h holds when g(G) =6, since we conclude from
g(G) = 6 that each hexagon in G has exactly three pairs of vertices of distance three and so
two distinct paths of size three in G. Hence,

d(G,3) = Lw~u~v~x 1 = 3h
= Yu~v (degg(u) —1)(degs(v) — 1) — 3h
= Yu~v [dege(W)dege(v) — (degs(w) + degg(v)) + 1] — 3h
= My(G) — M;(G) + m — 3h.
This observation yields the following lemma;

Lemma 2.2 |If G is a graph with h hexagons, m edges and g(G) = 6, then d(G,3) =
M,(G) — M;(G) + m — 3h.

We are now ready to extend this result to the case that G has exactly ¢ octagons and
g(G) = 8.

Lemma 2.3 Let G be a graph with ¢ octagons, n vertices and m edges. If A(G) =
Ye~fe=uv,f=vx (dege(v) —1)(degs(e) +degs(f)) and g(G) =8, then d(G,4) =
EM,(G) — A(G) + 5 M(G) — 2F(G) +> My (G) —m — 4c.

Proof. Since g(G) = 8, for each octagon in G there are exactly four pairs of vertices of
distance four and hence two distinct paths of length four in G. Therefore,
dG,4) = Yw~u~v~x~z 1 —4C

= Yu-v-x (dege(w) — 1)(degs(x) — 1) — 4c

= Yenfre=uvf=vx (degs(e) — (dege(v) — 1))(degs(f) — (degs(v) — 1)) — 4c
= Ye~fe=uns=vx [degc(e)degs(f) — degg(e)(degs(v) — 1)

—(degs(v) — Ddegs(f) + (degs(v) — 1)*] — 4c

= Ye~fre=uv,f=vx degs(e)degs(f) + Ler.e=unf=vx (degg(v) —1)* —4c
— Ye~fre=uv,f=vx (degc(v) — 1)(degs(e) + deggs(f)).
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So, by definition,

d(G,4) = EM,(G) — Ze~f,e=uv,f=vx (dege(v) — 1)(degg(e) + degs(f))
+ Tvevi (%) (dege(v) — 1)* —
= EM,(G) — Xe~fe=uvr=vx (dege(v) — 1)(degg(e) + dege(f))
+§Zvevm> [degg(v) — 3degi (v) + 3degé(v) — degs(v)] —
= EM3(G) — Xe~fe=uv,r=vx (degc(v) — 1)(degg(e) + degq(f))
+=MF(G) = 2F(G) + My (G) —m — 4c
= EM,(G) — A(G) + M} (6) — 2 F(G) +> My (G) —m — 4c.

This completes the proof.

From the previous lemma, we conclude that:

Corollary 2.4 Let G be agraph with ¢ octagons, n vertices, m edgesand g(G) = 8. Then
Skes A(G, k) =2 — [My(G) + My(G) + EM,(G) — A(G) + 3 MH(G) — 2F(G) — 4c].

MAIN RESULTS

Suppose G is a connected simple graph with n vertices and m edges. Then the
Wiener, hyper-Wiener, Zagreb indices and general Zagreb indices satisfy the following
relations:

Theorem 3.1 Suppose that G is a graph with ¢ octagons, n vertices, m edges and

g(G) = 8.1f §'(G) = 6' = min{deg;(v)|v € V(G)anddeg;(v) # 1}, then

1L wE) 22242 F(G) + (8 — DEM,(G) + 4c — (2m + EM,(G) +
M1(G)+2Mz(6)+ M1 (@),

2. WW(G)21W(6)+3 g 24 ZEG) + 9(5' — 1)EM,(G) + 36¢ —
(10m + 9EM2(G) + 8M1 (G) + 161\/12 (G) +- M1 6],

3. WW(G) = - [15n(n —1) + 15F(G) + 10(5’ — 1)EM,(G) + 40c — (12m +

10EM,(G) G IM, (G) + 18M,(G) + SMX(G)))],
4. WW(G) = 3W(G) + 3F(G) + 2(8' — 1)EM,(G) + 8¢c — (2EM,(G) +
“My(G) + 3M,(6) + M} (G)).

The equality in all four cases will hold if and only if the distance between any two
vertices in G is not greater than 5 and {deg;(v)|v € V(G) and deg;(v) # 1} = {§'}.

Proof. From what has already been proved in section 2, we have:
(DW(G) = Yks1 kd(G, k) =d(G,1) + 2d(G,2) +3d(G,3) +4d(G,4) +
Lizs kd(G, k)
>m+ M;(G) —2m + 3M,(G) — 3M,(G) + 3m + 4EM,(G) — 4A(G)
+2M{(G) — 6F(G) + 6M,(G) — 4m — 16¢ + 5 Y5 d(G, k)
=m+ M;(G) —2m + 3M,(G) — 3M,(G) + 3m + 4EM,(G) — 4A(G)
+2M{(G) — 6F(G) + 6M, (G) — 4m — 16¢ + =2 — 50, (G)

—5M,(G) — 5EM2(G) +54(G) — 2 MF(G) + % F(G) +20c

> 2O 4 21(6) + (8 - DEM,(6) + 4c
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—(2m + EMy(G) + My(G) + 2M2(G) + 5 M{(G)).
The last inequality follows from A(G) = (6’ — 1)EM,(G).

RIWW(G) =3 Tiea1 k(k + 1)d(G, k) =3 W (6) + 3 Tya1 k2d(G, k)

“W(G) +3[d(G,1) + 4d(G, 2) + 9d(G,3) + 16d(G, 4) + s k2d(G, k)]
> ~W(G) + [5 + My(G) — 2m + 2 My(G) — = My (G) +>m + 8EM,(G)
—8A(G) + 4M{(G) — 12F (G) + 13M;(G) — 8m — 32 + = Yyz5 d(G, k)
= ZW(G) — 5m + 2 My(G) — 2 My (G) + BEM,(G) — BA(G)
+4M{ (G) — 12F (G) + 12M,(G) + 18c + =2 + T (G)
—SM(6) = T My(6) = TEM;(G) + S AG) = MH(6)
>W(6) + 2+ ZF(6) +2(8' — DEM,(G) + 18¢

—(5m + 2 EM,(G) + 4My(G) + 8M,(G) + 2 M{(G))

in which the last inequality follows from A(G) = (6’ — 1)EM;(G). The inequality (3) is a
direct consequence of (1) and (2).

(HWW () = 5 Zar k(k + 1)A(G, k) = SW(G) +5 Tpea1 k2d(G, )

“W(G) +3[d(G,1) + 4d(G, 2) + 9d(G,3) + 16d(G, 4) + Lis k2d(G, k)]

> ZW(G) + My (6) — 5m + 2 M,(6) + = My (G) + BEM;(G) — 8A(G)

+4MH(G) — 12F (G) — 32¢ + 2 Xjeas kd (G, k)

= ~W(G) — 5m + ="My (G) + 2 My (G) + 8EM,(G)

—8A(G) + 4M#(G) — 12F(G) — 32¢

+2[W(6) = (d(G,1) + 2d(G, 2) + 3d(G, 3) + 4d(G, 4))]

= 3W(G) — 5m + = M, (G) + 2 M(G) + 8EM;(G)

—8A(G) + 4M#(G) — 12F(G) — 32¢

+5m — 10M,(G) — = M,(G) — 10EM,(G)

+104(G) — 5ME(G) + 15F (G) + 40c

= 3W(G) + 3F(G) + 24(G) + 8¢

—(2EM,(G) + My (G) + 3M,(G) + M#(G))

> 3W(G) + 3F(G) + 2(8' — 1)EM,(G) + 8¢

—(2EM,(G) + > My (G) + 3M(G) + M#(G))
in which the last inequality is a consequence of A(G) = (6" — 1)EM,(G). Equality in (1 —4)
hold if and only if Yyss kd(G, k) = 5 Y5 d(G, k)(0r Yiss k2d(G, k) = 255 d(G, k)
and A(G) = (6' — 1)EM,(G). Therefore, these equalities can be occurred if and only if the

distance between any two vertices of the graph G is not greater than 5 and {deg;(v)|v €
V(G)and deg;(v) # 1} = {6'}.
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