Kragujevac J. Sci. 40 (2018) 33-48 UDC 541.27:541.61

ON THE GUTMAN INDEX OF THORN GRAPHS

Mahdieh Azari*

Department of Mathematics, Kazerun Branch, Islamic Azad University,
P. O. Box: 73135-168, Kazerun, Iran
*Corresponding author; E-mails: azari@kau.ac.irrmatidie.azari@gmail.com

(Received July 24, 2017; Accepted August 08, 2017)

ABSTRACT. In this paper, the relation between the Gutmanxrde simple connected
graph and its thorn grapts stablished and several special cases of thdt rasel

examined. Results are applied to compute the Guindex of thorn paths, thorn rods,
caterpillars, thorn rings, thorn stars, Kragujetraes, and dendrimers.
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INTRODUCTION

Let G be ann-vertex simple connected graph with vertex 8é%) ={v;,v,,....v,} and
let P=(py, p,....,p,) be ann-tuple of nonnegative integers. Tt®rn graph G, is the graph

obtained by attachingy, pendent vertices (terminal vertices or verticesl@gree one) to the
vertexv, of G, for i = 12...,n (see Fig. 1).

Figure 1. The thorn grapG, with parametersy,, p,,...,p,.

The p; pendent vertices attached to the vengeare called thorns of; . We denote the set of
p; thorns ofv, by v,, i=12...n. Clearly, V(G;) =V(G) UV, UV, U...UV,. The concept of

thorn graphs was introduced by@iaN (1998) and eventually found a variety of chemical
applications; see (BrAuTAs et al., 2001; BONCHEV and KLEIN, 2002; VUKICEVIC and
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GRAOVAC, 2004;ZHou, 2005; VWUKICEVIC et al., 2005,2007;WALIKAR et al., 2006;KLEIN
et al., 2007;HEYDARI and GUTMAN, 2010;L1, 2011;ALIZADEH et al., 2014; AARI, 2014;
AzARI and IRANMANESH, 2015, 2016). The motivation for the study of thgraphs came
from a particular case, namety; wherey, is the degree of thieth vertex

of G and y is a constant >y, for all i=12...n). Then the vertices o, are either of

degreey or of degree one. If in additiop= 4, then the thorn grapks is just what GYLEY

(1874) calls glerogram (a graph in which evergtom is represented by a vertex and adjacent
atoms are connected by a chemical bond) amdrR (1937) aC-H graph. The parent graph

G would then be referred to askanogram (CAYLEY, 1874) (a graph obtained from a
plerogram by suppressing hydrogen atoms) @+gaaph (PoLYA, 1937). The plerogram and
kenogram of 2,3,3-trimethylpentane are depictefign 2.

R

(a)

[
P

Figure 2. (a) The kenogram of 2,3,3-trimethylpestgh) The plerogram of 2,3,3-trimethylpentane.

A topological index is a numeric quantity that is mathematically dedivn a direct
and unambiguous manner from the structural grapa ofolecule. It is used in theoretical
chemistry for the design of chemical compounds wjitlen physico-chemical properties or
given pharmacologic and biological activitiessDEA, 2001). It is well known that the study
of topological indices of kenograms is much moravemtional than plerograms, because of
their simplicity and the fact that many topologicadlices give highly correlated results on
plerograms and kenograms {@vAN et al., 1998). The study of thorn graphs unifies these
two approaches by giving mathematical formulae tt@tinect the values of topological
indices of kenograms and plerograms.

In this paper, we study relation between the Gutnmalex of a simple connected
graph and its thorn graph and apply teeults to compute th@utmanindex ofthorn paths,
thorn rods, caterpillars, thorn rings, thorn st&m®gujevac trees, and dendrimers.
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DEFINITIONSAND PRELIMINARIES

In this paper, we consider connected finite grapitisout any loops or multiple edges.
The best known and widely used topological indethéMener index introduced by VWENER
(1947), who used it for modeling the shape of oigamolecules and for calculating several
of their physico-chemical properties. The Wieneteixof a graphG is defined as the sum of
distances between all pairs of verticessof
WG) = Ydguv),

{uviOV(G)

whered, (u,v) denotes the distance between the verticesdv in G.

The degree distance was introduced by B8RYNIN andKOCHETOVA (1994) and at the
same time by GTMAN (1994) as a weighted version of the Wiener indelie Tegree
distance of a grap@ is defined as

DD@G)= », [dg(u)+dsV)ldg(uv) -
{uviv(Q)
In fact, if T is a tree om vertices, the Wiener index and degree distancelasely related by
DD(T)=4VN (T )-n(n-1); see (BTMAN, 1994).

The Gutman index (also known aschultz index of the second kind) was introduced by
GUTMAN (1994) as a kind of vertex-valency-weighted sunthef distances between all pairs
of vertices in a graph. Gutman revealed that indage of acyclic structures, the index is
closely related to the Wiener index and reflectscizely the same structural features of a
molecular as the Wiener index does. The Gutmarxinfla graphG is defined as

Gu(G)= > dg(u)dg (v)dg (u,V).
{uv}OV(G)
We refer the reader to €NG andLiu, 2011;ANDOVA et al., 2012; GiEN, 2016;KNOR et al.,
2014;GUTMAN, 2016;AZzARI, 2016;AzARI andDIVANPOUR, 2017) for more information on
the Gutman index and degree distance.

The concept oterminal Wiener index was put forward by GrMAN et al. (2009).
Somewhat later, but independentlyzERELY et al. (2011) arrived at the same idea. The
terminal Wiener indextw(G) of a graphG is defined as the sum of distances between all

pairs of its pendent vertices,
TWG)= Y dsU,v).
{uV}OV'(G)
whereV'(G) is the set of all pendent vertices ®f
For uOv(G), we define the quantity\W;(u) as the sum of distances betweesnd all
pendent vertices d@B,
TWs ()= D dsu,Vv).

VOV'(G)

It is easy to see thatw(G) = 1 D TWg (u) -

uv'(G)
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RESULTSAND DISCUSSION

In this section, we establish relation betweenGléman index of a simple connected
graphG and its thorn grapls,, and examine several special cases of the result.

Theorem 1. Let G be a connectexd-vertex graph with vertex s&t(G) ={v;,V,,...v,} , and let
G; be the thorn graph & with nonnegative parametefs, p,.....0,. Then

Gut(Gp) =Gut(G) +2 3 (p;ds (Vi) + pidg(v;)ds (vi,v;) +4 > pp;dg (vi,Vv)) 1)

I<i<j<n I<i<js<n
+203 p)? + (EG)-DD p,
i=1 i=1

Proof. By definition of the Gutman index, we have
Gut(Gp) = zdep (Wdg, (Vdg, (V).

{uviOV(Gp)
By definition of the grapl(s,, the above sum can be partitioned into four susifeliows.

The first sum§ consists of contriutions tGut(G,) of pairs of vertices fronG ,

S = Zdep (Vi)dg, (v;)dg, (v,V;)

I<i<j<n

= 2 (ds(v)+P)ds(v))+ p;)ds (%,V;)

I<i<j<n

=Gut(G) + Z(pjde(vi)"'pidG(Vj))dG(Vi’Vj)"' Zpi P;ds (Vi,Vv;).

I<i<js<n I<i<js<n

The second sun®, consists of contriutions tGut(G,) of pairs of vertices fronv, for
all 1<i<n,

$,=Y ¥ de (e, (e, () =3 Tix1x2 :22@ =3 -3p
i=1{u,v}V; i=1{u, v}V i=1 i=1 i=1

The third sumS; is taken over all pairs of vertices such that ohéhem,u, is in G,
and the other one, isinV; for 1< j<n. So

5,=33 Y T de (U)de, V)de, (UY)

i:1j:lu:v,vD\/j

=33 S S (Ao () + ) XX (do (V) +)

i=1 j=lu=vvVj

= Ao Py e (o)) + D s P+ P Y Pids (V) + Y -
= =1 = =1 = =L =L =1

It is easy to check that

Zn:dG(Vi)Zn: pids (vi,v;) = Z(pjdG (Vi) + pdg (v;))dg (vi,V)) -
= j=1

I<i<js<n
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Hence

S;= 2 (Pids(M)+pds(v))ds (viv))+2 3 pp;ds (vi,V)+(_Zp.) +2|E(G)|_Zp.- 2

I<i<jsn I<i<j<n

The fourth sumS, is taken over all pairs of vertices such that ohthem,u, is inV,,
and the other on®, is inV,, wherel<i# j<n. So

Si= Y, 2> e, (Udg, Mdg, (V) = Y Y D Ax1x(dg (V) +2)

I<i<jsnulV vivj I<i<jsnulv Vv
= Zpi pids(v,v;)+2 Zpi p; .
I<i<j<n I<i<jgn

It is easy to check that

23 pp;= ZZp.p, Zp. —(Zp.) —Zp. .

I<i<jsn i=1 j=1
Hence

S, = 2.pp;ds(v.y, )+(Zp) -y p?.
I<i<j<n i=1
Eq. (1) is obtained by adding, S,, S;, S,;, and simplifying the resulting expression.
For every connected gra@®) we define
W(G)= Zde (U)TW; (u) .

UV (G)-V'(G)

In the following theorem, we find a formula f&#(G;) .

Theorem 2. Let G be a connected n-vertex graph with vertex\§&) ={v,,V,,...v,} , and let
G, be the thorn graph & with parameters,, p,,...,p, such that for every pendent vertex
of G, p, >0. Then
WGp) = D.(pids (V) + pdg(v))ds(v,v;)+2 3 pip;ds (Vi,V)+(Zp.) +2|E(G)|Z pi -
I<i<j<n I<i<jsn
Proof. Since for every pendent vertex of G, p >0, so V'(Gy)=V,UV,U...UV, and
V(Gp)-V'(Gp) =V(G). Then
W(Gp) = Zdep (WTWg, (u) = Z Zdep (W)dg, (V)dg, (U,V).

uv (G) UV (G) ViV (Gp)

One can easily see tha¥(G;) is the contribiutions t@ut(G;) of all pairs of vertice$u v} of
Gy such that one of them, is in G, and the other one, is inV,; for 1< j<n. So W(G;) is

equal to the suns, in the proof of Theorem 1. Now using Eq. (2), vea get Eq. (3).

As a direct consequence of Theorem 2, we get th@niog corollary which will be
used in the next section.

Corollary 1. Let G be a connected-vertex graph withk pendent vertices, and I&. be the
thorn graph ofG obtained by attachingg>0 pendent vertices to each pendent verteg.of
Then

W(Gp) = 2p(p+)TW(G) + pW(G) + kp(kp+ 2E(G)) . (4)



38
Proof. Let V(G)={v,,V,,...v,}, and without loss of generality l&t'(G) ={v;,V,,...}. By
settingp, = p,=...=p, =P and Py = Pusp =---= P, =0 in Eq. (3), we obtain

WGp)= 2 (px1+pxDdg (V) + > [0xdg(v;)+0xdg(v))lds (v.V,)

I<i<j<k k+l<i<j<n

k n
+3° 2 [0%dg (%) + pxdg (v))Idg (v, V) +2 3 pPdg (v,V;)

i=1 j=k+l 1<i<j<k
k n
+2 > 0%dg (v, v;)+2>. D px0xdg(v;,V,) +(kp)? + 2k E(G)| .
k+l<i<j<n i=1 j=k+1

K n
Using the relations Y dg (v,,v;) =TW(G) and >’ > d;(v;)ds (v,v;) =¥(G), we get Eq. (4).

1si<jzk i=1 j=k+1
Now, we express some special cases of Theorem 1.

Corollary 2. Let G be a connected-vertex graph, and leG, be the thorn graph @ with
parameterp, = p, =...= p, = p, where p is a nonnegative integer. Then

Gut (Gp) =Gut (G) +2pDD (G )+ 4pW G )+np(2np + JE G } - 1). (5)

Corollary 3. Let G be a connected-vertex graph wittk pendent vertices, and 16, be the
thorn graph ofG obtained by attaching=0 pendent vertices to each pendent vertes.of

Then
Gut(Gp) = GUt(G) +4p(p +1)TW(G) + 2pW(G) + kp(2kp + 2[E(G)|-1) . (6)

Proof. Let V(G)={v,V,,...v,}, and without loss of generality 1&t'(G) ={v,,V,,...V,}. By
settingp, = p, =...=p, =p and P,y = Prsz =---= P, =0 in Eq. (1), we can get Eq. (6).

Corollary 4. Let G be a connected-vertex graph with vertex s&t(G) ={v,,v,,...v,}, and let
G, be the thorn graph & with parameters,, p,,....p,, wherep, =ds(v.), i = 12....n. Then

Gut(Gy) = 9Gut(G) +12E(G)* - 2[E(G)|.-

Corallary 5. Let G be a connected-vertex graph with vertex s&t(G) ={v,,v,,...v,} , and let
y be an integer with the properyy=d;(v;), for i = 12...n. Let G, be the thorn graph @
with parametersp,, p,.,....p,, wherep, =y—dg(v;), i=12...,n. Then

Gut (Gp) =Gut(G) +4yW G)-2yDD G )+ (y-2E G ))(1y- JE G }- D).
Proof. It is easy to see that

ipi :ny—2|E(G)|, z (pjdg (v;) +pds (v;))dg (v; v;)=yDDG)-Gut G),

I<i<j<n

> ppdl;v,[G)=yW G)-yDDG)+Gut G).

I<i<j<n

Now using Eq. (1), we can get the desired result.



39

APPLICATIONS

In this section, we apply the results of the prasigection to compute the Gutman
index of various classes of chemical graphs andstanctures derived from thorn graphs. Let
P,, S,, andC, denote tha-vertex path, star and cycle, respectively. ltasyeto see that

_)2n? —4n+3 Mifnisodd,
Gut(p,) = (M= ”3 "3 Gui(s,) = (n-1@n-3), Gut(C,) = 3
% if nis even.

Thorn paths

Thethorn path B, ,, is obtained from the path, by addingp neighbors to each of its

nonterminal vertices ankl neighbors to each of its terminal vertices (see igConsider the
path P, and choose a labeling for its vertices such tisatno terminal vertices have numbers
1 andn and its nonterminal vertices have numbe...n-1 as shown in Fig. 3. Them,
can be considered as the thorn gréph., whereP is then-tuple P=(k, p....,p,K) . Using Eqg.
(1), we get the following theorem.

Figure 3. The thorn patR, ;. -

Theorem 3. Let n=2 and letp andk be any nonnegative integers. Then

_ 2 _ 2
Gut(P, o) = (n 1)(2n3 an+3) , 22 (n®-3n* -n+6) +§(4n3 -12n% +5n+6) (7
+4k?(n+1) + 2k(2n? = 2n - 1) + 4kp(n - 2)(n +1) .
Thorn rods

Thethornrod R, is a graph which includes a linear chain (termed") of n vertices

and degreen terminal vertices at each of the two rod ends, ehes2 (see Fig. 4). It is easy
to see tha®, , OPR, Using Eq. (7), wa@et the following corollary.

n,0om1-*
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Figure 4.The thorn rodR, .

Corallary 6. Let n,m>2. Then

(n-1)(2n? - 4n+3)

Gut(P, ) = 3

+4m-1)2(n+1) +2(m-1D(2n*-2n-1).

Caterpillars

Thecaterpillar T"(mn) is a thorn graph whose parent graph is the pathnd whose
n nonterminal vertices are of the same degnee2 (see Fig. 5). It is easy to see that
T(mn) 0P, ma - USing Eq. (7), weet the following corollary.

1
2
3
m-1

Figure 5. The caterpillaf“(m,n) .

Corollary 7. Let n=2 andm>2. Then

—1)(2n? - _ )2 -
)= (n 1)(2n3 an+3) , 2(m3 2) (n*-3n” —n+6) + m3 2(4n3 -12n? +5n +6)

+4m-1%(n+1) +2(m-1(@2n% -2n-1) + 4m-D(m-2)(n-2)(n+1).

Gut(T" (m,n)

Thorn rings

The mthorn ring C,,, has a cycleC, as the parent, anth-2 thorns at each cycle
vertex, wherem>2. The 3-thorn ringC,, is depicted in Fig. 6Them-thorn ringC,, can be
considered as the thorn gragt)),, where P is then-tuple P=(m-2m-2,...m-2). Using
Eqg. (5) and the fact th&ut(C,)=DD (C,) =4V (C,), weget the following theorem.
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Figure 6. The3-thorn ringCg3.

Theorem 4. Let n,m>3. Then

(0" -1 o124 nm-2)@nm-1-1)  nis odd,
Gut(C, ) =1 . 2

n—;(m—l)2 +n(m-2)(2n(m-1) -1) n is even.

Thorn stars

Thethorn star §, ,, is obtained from the sta, by addingp neighbors to the center of

the star and neighbors to its terminal vertices (see Fig. 7)nsider the stas, and choose a
labeling for its vertices such that its terminaftices have numbergz2...n-1 and its central
vertex has numben as shown in Fig. 7. Therg, ,, can be considered as the thorn graph

(S,)p, WhereP is then-tuple P=(kk,...k, p). Using Eq. (1), waet the following theorem.

Figure 7. Thehorn stars, ,, -

Theorem 5. Let n=3 and letp andk be any nonnegative integers. Then

Gut(S, ,x) = (N=1)(2n-23) +k(8n* = 2In+13) + 2k*(3n* = 8n +5) (8)
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+8pk(n—1) + p(4n-5) + 2pZ.
By setting p=0 in Eq. (8) we get the following corollary.

Corollary 8. Let n>3 and letk be any nonnegative integer. Then
GUt(S, ox) = (N=1(2n - 3) +k(Bn* - 2In +13) + 2k*(3n* = 8n +5) .

Consider the star grapg, and choose a labeling for its vertices such tisatierminal
vertices have numbers$2...n-1 and its central vertex has number Let S,(p,, P,,-sPps)
denote the thorn star obtained by attachimgterminal vertices to the vertexof S, for
i=12...n-1 (see Fig. 8)Using Eq. (1), we get the following theorem.

P4 Pasa

Figure 8. Thehorn starS, (p;, Py,.-sPpq) -

Theorem 6. Let n=3 and letp, p,....,p,., be nonnegative integers. Then

Kragujevac trees

Let B, be the 3-vertex path rooted at one of its termwwitices. Fork = 23...,
construct the rooted treB, by identifying the roots of copies ofR,. The vertex obtained by
identifying the roots ofk,-trees is the root oB,. Examples illustrating the structure of the
rooted treeB, are depicted in Fig. 9.
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P
B, 5, ,
B

k
Figure 9. The rooted treds,, B;, and B, . Their roots are indicated by large dots.

According toGUTMAN (2014), aKragujevac tree T is a tree possessing a vertex of degree
d>2, adjacent to the roots &, ,B,,....B,, , Where p;, p,,...,p; 22. This vertex is said to be

the central vertex of, whereasd is the degree of. The subgraphs, B, ....B, are the

branches ofT. Recall that some (or all) branches Tofmay be mutually isomorphic. We
denote the Kragujevac tree of degeeavith branchesB, ,B,,....B,, by Kg(p;, ps,....p4) - A

typical Kragujevac tree is depicted in Fig. 10.

Figure 10. The Kragujevac trégy (7,3222) .

Theorem 7. The Gutman index of the Kragujevac treg(p,, p,,...,p4) IS given by
d d d
Gut (Kg(py, Pas--rPg)) =d(2d =1) +32(3" p,)* ~16)_ p,* + (20d -18)>" p, - (10)
i=1 i=1 i=1

Proof. The Kragujevac tre&g(p,, p,.....p4) can be considered as the thorn graph obtained
from the thorn stas,,,(p,, p,...-.p4) DYy attaching a pendent vertex to its pendentcestiBy

d d
settingG = Sy,,(py, P,.--.Pg)» P=1, k=) p,, and|E(G)|=> p, +d in Eq. (6), we obtain
i=1 i=1

Gut(Kg(py, P2 Pg)) = GUE(Sy.1(Pys P2ses Pg ) + 8TW(Sy1 (P1s P2sees Py ) (11)
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By Eq. (9), we have

d d d
Gut(Sy.1(P1s P20 Pg)) =d(2d -1) +6(Z )’ _42 pi2 +(8d _5)2 pi -

i=1 i=1 i=1

One can easily check that,

d _ d d d d
TW(Sy.1(P1s P2y Pg)) =22( pIJ"' Z4pi P; :Z piz _Z P +2[(Z p)? _Z piz]
i=1 i=1 = i=1

2 ) << i=1

¢ 04, d
:z(Zpi) _Zpi _Zpi.

d d d d
=Z(3piZ P; _Zpi2 +3Z P; —2Pi)+2dz B
=1

i=1 j=1 i=1
d d d
=3, p) -2 P +(Ed-2)3 P -
i=1 i=1 i=1
Substituing the above formulae in Eg. (11), we ganEq. (10).
Dendrimers

Let D, be the graph depicted in Fig. 11.

Figure 11. The dendrimer graph.D

For positive integersp and h, let D, be a series of dendrimers obtained by attaching
pendent vertices to each pendent vertexDgf,; and letD,, =D,. We can also introduce
the D,,, as the thorn graph obtained by attachjngendent vertices to each pendent vertex
of D,,,. This molecular structure can be encounteredahaieemistry, e.g. in some tertiary
phosphine dendrimers. Some examples of this kirdenflrimers are shown in Fig. 12.
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D21 D> »

Figure 12.The dendrimer graphs, ,, for p=2 andh=1,2.

For a fixed positive integep, let k, denote the number of pendent verticesDgf,,
h=0. Obviously,k, = pk,, and|E(D, )| =|E(D,_,)|+3p". So for every=0, we have

h
ky =3p", [E(D,,)|=6+3Y p'.
i=0

It is easy to check thatW(D,) =12. In (AzARI and IRANMANESH, 2016), an explicit formula
for computing the terminal Wiener index of the demer graphD,,, was computed.

Theorem 8. (AzARlI and IRANMANESH, 2016) Let p and h be positive integers. The
terminal Wiener index of the dendrimer graph, is given by

TW(D, ) = Gh+12p™ ~3p"S " pl . (12)

i=0
It is easy to check tha¥(D,) =111 and Gut(D,) =291 In the following theorem, we
present recurrence relations for computii¢p,,) and Gut(D, ) . Results are deduced from

Egs. (4) and (6), and the proof of the theorerhasdfore omitted.

Theorem 9. Let p andh be positive integers. Then

h-1
W(D,,) =2p(p+DTW(D,,4) + p¥(D,4) +3p" (3Bp" +12+6Y p'), (13)
i=0
h
Gut(D, ) =Gut(D,p4) +4p(p+DTW(D, ) + 2pW(D ) + 3p"L1+6>. p'). (14)

Using Egs. (12)-(14), we can compute the Gutmaexraf the delntojrimer grapP, ,
for every positive integerp andh.

For example, by setting=1 in Egs. (12)-(14), we get
TW(D,,) =21p* -3p,
W(Dy1) =2p(p +HTW(Dy) + pP(D,) + 3p(3p +12+6) = 33p” +18%,
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Gut(D, ;) =Gut(Dy) +4p(p+1TW(D,) +2pW(Dy) + 3p[L1l+ 6(L+ p)] = 66p? +321p + 291.

By settingh=2 in Eqs. (12)-(14), we get
TW(D,,) =30p* -3p®-3p?,
W(D,,) =2p(p+HTW(D,,) + p¥(D,,) +3p*[3p® +12+ 6(L+ p)] =51p* +87p° +237p?,
Gut(D,,) =Gut(D,,) +4p(p+)TW(D,,) +2pW(D ;) +3p*[L1+ 6(L+ p+ p?)]
=102p* +156p°> + 483p? +321p + 291.
By settingh=3 in Egs. (12)-(14), we get
TW(D,5) =39p° -3p° -3p* -3p°,
W(D, ;) =2p(p+)TW(D,,) + p¥(D,,) +3p°[3p° +12+ 6(L+ p+ p?)]
=69p® +123p° +93p* +285p°,
Gut(D, ;) =Gut(D,,) +4p(p +DTW(D,,) + 2p¥(D,,) +3p°[L1+6(L+ p+ p? + p*)]
=138p°® +228p° + 270p* + 669p° + 483p? + 321p + 291.
By settingh=4 in Eqgs. (12)-(14), we get
TW(D,,) =48p° -3p’ —3p° -3p° -3p",
W(D,,) =2p(p+)TW(D, ;) + p¥(D,5) +3p*[3p" +12+ 6(L+ p+ p* + p°)]
=87p® +159p’ +129p° +99p° +333p*,
Gut(D,,) =Gut(D,5) + 4p(p +)TW(D, ;) +2pW(D, ;) +3p*[L1+ 6+ p+ p® + p° + p*)]
=174p® +300p’ +378p° + 408p° +879p” + 669p> + 483p? +321p + 291.

The Gutman index 0P, for p=23 andh<4 is computed in Tab. 1.

Table 1. The Gutman index of the dendrimer graB@gq for p=23 andh<4.

h Gut(Dz2h) Gut(Dzh)
0 291 291

1 1197 184¢

2 574~ 1807¢
<) 2866¢ 20154(
4 14247 226728.
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