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ABSTRACT. In this paper, the relation between the Gutman index of a simple connected 
graph and its thorn graph is stablished and several special cases of the result are 
examined. Results are applied to compute the Gutman index of thorn paths, thorn rods, 
caterpillars, thorn rings, thorn stars, Kragujevac trees, and dendrimers. 
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INTRODUCTION 
 

Let G be an n-vertex simple connected graph with vertex set },...,,{)( 21 nvvvGV =  and 

let ),...,,( 21 nppp=Ρ  be an n-tuple of nonnegative integers. The thorn graph ΡG  is the graph 

obtained by attaching ip  pendent vertices (terminal vertices or vertices of degree one) to the 

vertex iv  of G, for ni ,...,2,1=  (see Fig. 1).  
 

  
Figure 1. The thorn graph ΡG  with parameters nppp ,...,, 21 . 

 
The ip  pendent vertices attached to the vertex iv  are called thorns of iv . We denote the set of 

ip
 
thorns of iv  by iV , ni ,...,2,1= . Clearly, nVVVGVGV UUUU ...)()( 21=Ρ . The concept of 

thorn graphs was introduced by GUTMAN  (1998) and eventually found a variety of chemical 
applications; see (BYTAUTAS et al., 2001; BONCHEV and KLEIN, 2002; VUKIČEVIĆ and 



34 

 
GRAOVAC, 2004; ZHOU, 2005; VUKIČEVIĆ et al., 2005, 2007; WALIKAR et al., 2006; KLEIN 

et al., 2007; HEYDARI and GUTMAN , 2010; LI, 2011; ALIZADEH  et al., 2014; AZARI, 2014; 
AZARI and IRANMANESH, 2015, 2016). The motivation for the study of thorn graphs came 
from a particular case, namely

 ),...,,( 21 n
GG γγγγγγ −−−Ρ = , where iγ  is the degree of the i-th vertex 

of G and γ  is a constant ( iγγ ≥  for all ni ,...,2,1= ). Then the vertices of ΡG  are either of 

degree γ  or of degree one. If in addition 4=γ , then the thorn graph ΡG  is just what CAYLEY  
(1874) calls a plerogram (a graph in which every atom is represented by a vertex and adjacent 
atoms are connected by a chemical bond) and POLYA  (1937) a C-H graph. The parent graph 
G would then be referred to as a kenogram (CAYLEY , 1874) (a graph obtained from a 
plerogram by suppressing hydrogen atoms) or a C-graph (POLYA , 1937). The plerogram and  
kenogram of 2,3,3-trimethylpentane are depicted in Fig. 2.  
 

 
 

Figure 2. (a) The kenogram of 2,3,3-trimethylpentane, (b) The plerogram of 2,3,3-trimethylpentane. 
 
A topological index is a numeric quantity that is mathematically derived in a direct 

and unambiguous manner from the structural graph of a molecule. It is used in theoretical 
chemistry for the design of chemical compounds with given physico-chemical properties or 
given pharmacologic and biological activities (DIUDEA, 2001). It is well known that the study 
of topological indices of kenograms is much more conventional than plerograms, because of 
their simplicity and the fact that many topological indices give highly correlated results on 
plerograms and kenograms (GUTMAN et al., 1998). The study of thorn graphs unifies these 
two approaches by giving mathematical formulae that connect the values of topological 
indices of kenograms and plerograms. 

In this paper, we study relation between the Gutman index of a simple connected 
graph and its thorn graph and apply the results to compute the Gutman index of thorn paths, 
thorn rods, caterpillars, thorn rings, thorn stars, Kragujevac trees, and dendrimers. 
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DEFINITIONS AND PRELIMINARIES 
 

In this paper, we consider connected finite graphs without any loops or multiple edges. 
The best known and widely used topological index is the Wiener index introduced by WIENER 

(1947), who used it for modeling the shape of organic molecules and for calculating several 
of their physico-chemical properties. The Wiener index of a graph G is defined as the sum of 
distances between all pairs of vertices of G, 


⊆

=
)(},{

),()(
GVvu

G vudGW ,  

where ),( vudG  denotes the distance between the vertices u  and v  in G . 
The degree distance was introduced by DOBRYNIN and KOCHETOVA (1994) and at the 

same time by GUTMAN (1994) as a weighted version of the Wiener index. The degree 
distance of a graph G is defined as 

{ , } ( )

( ) [ ( ) ( )] ( , )G G G
u v V G

DD G d u d v d u v
⊆

= + . 

In fact, if T is a tree on n vertices, the Wiener index and degree distance are closely related by 
( ) 4 ( ) ( 1)DD T W T n n= − − ; see (GUTMAN , 1994).

 
 

The Gutman index (also known as Schultz index of the second kind) was introduced by 
GUTMAN (1994) as a kind of vertex-valency-weighted sum of the distances between all pairs 
of vertices in a graph. Gutman revealed that in the case of acyclic structures, the index is 
closely related to the Wiener index and reflects precisely the same structural features of a 
molecular as the Wiener index does. The Gutman index of a graph G  is defined as 


⊆

=
)(},{

),()()()(
GVvu

GGG vudvdudGGut .
 

We refer the reader to (FENG and L IU, 2011; ANDOVA et al., 2012; CHEN, 2016; KNOR et al., 
2014; GUTMAN , 2016; AZARI, 2016; AZARI and DIVANPOUR, 2017) for more information on 
the Gutman index and degree distance.  

The concept of terminal Wiener index was put forward by GUTMAN et al. (2009). 
Somewhat later, but independently, SZÉKELY et al. (2011) arrived at the same idea. The 
terminal Wiener index )(GTW  of a graph G  is defined as the sum of distances between all 
pairs of its pendent vertices, 


′⊆

=
)(},{

),()(
GVvu
G vudGTW . 

where )(GV ′  is the set of all pendent vertices of G .  
For )(GVu ∈ , we define the quantity )(uTWG  as the sum of distances between u and all 

pendent vertices of G, 
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It is easy to see that,
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RESULTS AND DISCUSSION 
 

In this section, we establish relation between the Gutman index of a simple connected 
graph G  and its thorn graph ΡG , and examine several special cases of the result.  
 
Theorem 1. Let G be a connected n-vertex graph with vertex set },...,,{)( 21 nvvvGV = , and let 

ΡG  be the thorn graph of G with nonnegative parameters nppp ,...,, 21 . Then  
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Proof. By definition of the Gutman index, we have 
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By definition of the graph ΡG , the above sum can be partitioned into four sums as follows.  

The first sum 1S  consists of contriutions to )( ΡGGut  of pairs of vertices from G , 
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The second sum 2S  consists of contriutions to )( ΡGGut  of pairs of vertices from iV  for 
all ni ≤≤1 , 
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The third sum 3S  is taken over all pairs of vertices such that one of them, u, is in G, 
and the other one, v, is in jV  for nj ≤≤1 . So 


= = = ∈

ΡΡΡ
=

n

i

n

j vu
GG

Vv
G

i j

vudvdudS
1 1

3 ),()()(  

    


= = = ∈
+××+=

n

i

n

j vu
jiG

Vv
iiG

i j

vvdpvd
1 1

)1),((1))((  

     
    

= == == == =
+++=

n

i

n

j
ji

n

i

n

j
jiGji

n

i

n

j
jiG

n

i

n

j
jiGjiG ppvvdpppvdvvdpvd

1 11 11 11 1

),()(),()( . 

It is easy to check that 
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Hence 
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The fourth sum 4S  is taken over all pairs of vertices such that one of them, u, is in iV , 
and the other one, v, is in jV , where nji ≤≠≤1 . So 
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It is easy to check that 
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Eq. (1) is obtained by adding 1S , 2S , 3S , 4S , and simplifying the resulting expression.  
For every connected graph G, we define 
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In the following theorem, we find a formula for )( PGΨ .  
 
Theorem 2. Let G be a connected n-vertex graph with vertex set },...,,{)( 21 nvvvGV = , and let 

ΡG  be the thorn graph of G with parameters nppp ,...,, 21  such that for every pendent vertex iv  
of G, 0>ip . Then 
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Proof. Since for every pendent vertex iv  of G, 0>ip , so nP VVVGV UUU ...)( 21=′  and 

)()()( GVGVGV PP =′− . Then 
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One can easily see that, )( PGΨ  is the contribiutions to )( ΡGGut of all pairs of vertices },{ vu  of 

ΡG  such that one of them, u, is in G, and the other one, v, is in jV  for nj ≤≤1 . So )( PGΨ  is 

equal to the sum 3S  in the proof of Theorem 1. Now using Eq. (2), we can get Eq. (3).  
As a direct consequence of Theorem 2, we get the following corollary which will be 

used in the next section. 
 
Corollary 1. Let G be a connected n-vertex graph with k pendent vertices, and let ΡG  be the 
thorn graph of G obtained by attaching 0>p  pendent vertices to each pendent vertex of G. 
Then  

              
))(2()()()1(2)( GEkpkpGpGTWppGP ++Ψ++=Ψ .             (4) 
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Proof. Let },...,,{)( 21 nvvvGV = , and without loss of generality let },...,,{)( 21 kvvvGV =′ . By 

setting pppp k ==== ...21  and 0...21 ==== ++ nkk ppp  in Eq. (3), we obtain 


≤<≤+≤<≤

×+×+×+×=Ψ
njik

jiGjGiG
kji

jiGP vvdvdvdvvdppG
11

),()](0)(0[),()11()(
  

      
 

≤<≤= +=
+×+×+

kji
jiG

k

i

n

kj
jiGjGiG vvdpvvdvdpvd

1

2

1 1

),(2),()]()(0[  

                                )(2)(),(02),(02 2

1 11

2 GEkpkpvvdpvvd
k

i

n

kj
jiG

njik
jiG ++××++  

= +=≤<≤+
. 

Using the relations )(),(
1

GTWvvd
kji

jiG =
≤<≤

 and )(),()(
1 1

Gvvdvd
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, we get Eq. (4).  

Now, we express some special cases of Theorem 1. 
 
Corollary 2. Let G be a connected n-vertex graph, and let ΡG  be the thorn graph of G with 

parameters pppp n ==== ...21 , where p  is a nonnegative integer. Then  

                

2( ) ( ) 2 ( ) 4 ( ) (2 2 ( ) 1)Gut G Gut G pDD G p W G np np E GΡ = + + + + − .                (5) 

 
Corollary 3. Let G be a connected n-vertex graph with k pendent vertices, and let ΡG  be the 
thorn graph of G obtained by attaching 0≥p  pendent vertices to each pendent vertex of G. 
Then  

            
)1)(22()(2)()1(4)()( −++Ψ+++=Ρ GEkpkpGpGTWppGGutGGut .           (6) 

Proof. Let },...,,{)( 21 nvvvGV = , and without loss of generality let },...,,{)( 21 kvvvGV =′ . By 

setting pppp k ==== ...21  and 0...21 ==== ++ nkk ppp  in Eq. (1), we can get Eq. (6).  
 
Corollary 4. Let G be a connected n-vertex graph with vertex set },...,,{)( 21 nvvvGV = , and let 

ΡG  be the thorn graph of G with parameters nppp ,...,, 21 , where )( iGi vdp = , ni ,...,2,1= . Then   
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Corollary 5. Let G be a connected n-vertex graph with vertex set },...,,{)( 21 nvvvGV = , and let 

γ  be an integer with the property )( iG vd≥γ , for ni ,...,2,1= . Let ΡG  be the thorn graph of G 

with parameters nppp ,...,, 21 , where )( iGi vdp −= γ , ni ,...,2,1= . Then   
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Now using Eq. (1), we can get the desired result.  
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APPLICATIONS 
 

In this section, we apply the results of the previous section to compute the Gutman 
index of various classes of chemical graphs and nanostructures derived from thorn graphs. Let 

nP , nS , and nC  denote the n-vertex path, star and cycle, respectively. It is easy to see that 

3
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PGut n , )32)(1()( −−= nnSGut n , 











 −
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2
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2
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2

evenisnif
n

oddisnif
nn
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Thorn paths 
 

The thorn path kpnP ,,  is obtained from the path nP  by adding p
 
neighbors to each of its 

nonterminal vertices and k  neighbors to each of its terminal vertices (see Fig. 3). Consider the 
path nP  and choose a labeling for its vertices such that its two terminal vertices have numbers 
1 and n and its nonterminal vertices have numbers 1,...,3,2 −n  as shown in Fig. 3. Then, kpnP ,,  
can be considered as the thorn graph PnP )( , where P  is the n-tuple ),,...,,( kppk=Ρ . Using Eq. 
(1), we get the following theorem.

  

 
 

Figure 3. The thorn path kpnP ,, . 

 
 

Theorem 3. Let 2≥n  and let p and k be any nonnegative integers. Then
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nnn
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)1)(2(4)122(2)1(4 22 +−+−−+++ nnkpnnknk .                   

 
Thorn rods 
 

The thorn rod mnP ,  is a graph which includes a linear chain (termed "rod") of n vertices 

and degree-m terminal vertices at each of the two rod ends, where 2≥m  (see Fig. 4). It is easy 
to see that 1,0,, −≅ mnmn PP . Using Eq. (7), we get the following corollary. 
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Figure 4. The thorn rod mnP , .  

 
Corollary 6. Let 2, ≥mn . Then
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,
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Caterpillars 
 

The caterpillar ),( nmT ∗  is a thorn graph whose parent graph is the path nP  and whose 
n nonterminal vertices are of the same degree 2>m  (see Fig. 5). It is easy to see that 

1,2,),( −−
∗ ≅ mmnPnmT . Using Eq. (7), we get the following corollary. 

 

 
 

Figure 5. The caterpillar ),( nmT ∗ . 
 
 

Corollary 7. Let 2≥n  and 2>m . Then
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          )1()1(4 2 +−+ nm )122)(1(2 2 −−−+ nnm )1)(2)(2)(1(4 +−−−+ nnmm . 
 
 
Thorn rings 
 

The m-thorn ring mnC ,  has a cycle nC  as the parent, and 2−m  thorns at each cycle 

vertex, where 2>m . The 3-thorn ring 3,6C  is depicted in Fig. 6. The m-thorn ring mnC ,  can be 

considered as the thorn graph PnC )( , where P  is the n-tuple )2,...,2,2( −−−=Ρ mmm . Using 
Eq. (5) and the fact that ( ) ( ) 4 ( )n n nGut C DD C W C= = , we get the following theorem. 
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Figure 6. The 3-thorn ring 3,6C . 

 
 

Theorem 4. Let 3, ≥mn . Then
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Thorn stars 

 
The thorn star kpnS ,,  is obtained from the star nS  by adding p neighbors to the center of 

the star and k neighbors to its terminal vertices (see Fig. 7). Consider the star nS  and choose a 
labeling for its vertices such that its terminal vertices have numbers 1,...,2,1 −n  and its central 
vertex has number n as shown in Fig. 7. Then, kpnS ,,  can be considered as the thorn graph 

PnS )( , where P  is the n-tuple ),,...,,( pkkk=Ρ . Using Eq. (1), we get the following theorem. 
 

 
 

Figure 7. The thorn star kpnS ,, . 

 
 

Theorem 5. Let 3≥n  and let p and k be any nonnegative integers. Then
  

     
)583(2)13218()32)(1()( 222

,, +−++−+−−= nnknnknnSGut kpn              (8)        
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                                  22)54()1(8 pnpnpk +−+−+ .     

By setting 0=p  in Eq. (8), we get the following corollary. 
 
Corollary 8. Let 3≥n  and let k be any nonnegative integer. Then

  
)583(2)13218()32)(1()( 222

,0, +−++−+−−= nnknnknnSGut kn . 

Consider the star graph nS  and choose a labeling for its vertices such that its terminal 
vertices have numbers 1,...,2,1 −n  and its central vertex has number n . Let ),...,,( 121 −nn pppS  
denote the thorn star obtained by attaching ip  terminal vertices to the vertex i of nS  for 

1,...,2,1 −= ni  (see Fig. 8). Using Eq. (1), we get the following theorem. 
 

 
 

Figure 8. The thorn star ),...,,( 121 −nn pppS .  
 
 

Theorem 6. Let 3≥n  and let 121 ....,, −nppp  be nonnegative integers. Then
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Kragujevac trees 
 

Let 3P  be the 3-vertex path rooted at one of its terminal vertices. For ,...3,2=k , 
construct the rooted tree kB  by identifying the roots of k copies of 3P . The vertex obtained by 
identifying the roots of 3P -trees is the root of kB . Examples illustrating the structure of the 
rooted tree kB  are depicted in Fig. 9. 
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Figure 9. The rooted trees 2B , 3B , and kB . Their roots are indicated by large dots. 
 

According to GUTMAN (2014), a Kragujevac tree T is a tree possessing a vertex of degree 
2≥d , adjacent to the roots of 

dppp BBB ,...,,
21

, where 2,...,, 21 ≥dppp . This vertex is said to be 

the central vertex of T, whereas d  is the degree of T. The subgraphs 
dppp BBB ,...,,

21
are the 

branches of T. Recall that some (or all) branches of T may be mutually isomorphic. We 
denote the Kragujevac tree of degree d with branches 

dppp BBB ,...,,
21

 by ),...,,( 21 dpppKg . A 

typical Kragujevac tree is depicted in Fig. 10. 
 

 
 

Figure 10. The Kragujevac tree )2,2,2,3,7(Kg . 
 
 

Theorem 7. The Gutman index of the Kragujevac tree ),...,,( 21 dpppKg  is given by 
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Proof. The Kragujevac tree ),...,,( 21 dpppKg  can be considered as the thorn graph obtained 
from the thorn star ),...,,( 211 dd pppS +  by attaching a pendent vertex to its pendent vertices. By 

setting ),...,,( 211 dd pppSG += , 1=p , 
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i
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By Eq. (9), we have 
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Substituing the above formulae in Eq. (11), we can get Eq. (10).  
 
Dendrimers 

 
Let 0D  be the graph depicted in Fig. 11.  
 

 
 

Figure 11. The dendrimer graph D0. 

 

For positive integers p  and h , let hpD ,  be a series of dendrimers obtained by attaching p  

pendent vertices to each pendent vertex of 1, −hpD  and let 00, DDp = . We can also introduce 

the hpD ,  as the thorn graph obtained by attaching p  pendent vertices to each pendent vertex 

of 1, −hpD . This molecular structure can be encountered in real chemistry, e.g. in some tertiary 

phosphine dendrimers. Some examples of this kind of dendrimers are shown in Fig. 12. 
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Figure 12. The dendrimer graphs hpD , , for p=2 and h=1,2. 

 
For a fixed positive integer p , let hk  denote the number of pendent vertices of hpD , , 

0≥h . Obviously, 1−= hh pkk  and h
hphp pDEDE 3)()( 1,, += − . So for every 0≥h , we have 

h
h pk 3= , .36)(

0
, 

=
+=

h

i

i
hp pDE  

It is easy to check that 12)( 0 =DTW . In (AZARI and  IRANMANESH, 2016), an explicit formula 

for computing the terminal Wiener index of the dendrimer graph hpD ,  was computed. 

 
 
Theorem 8. (AZARI and IRANMANESH, 2016) Let p  and h be positive integers. The 

terminal Wiener index of the dendrimer graph hpD ,  is given by 

      


−

=
−+=

1

0

2
, 3)129()(

h

i

ihh
hp ppphDTW .               (12) 

It is easy to check that 111)( 0 =Ψ D  and 291)( 0 =DGut . In the following theorem, we 
present recurrence relations for computing )( ,hpDΨ  and )( ,hpDGut . Results are deduced from 

Eqs. (4) and (6), and the proof of the theorem is therefore omitted. 
 
 
Theorem 9. Let p  and h be positive integers. Then 

         
)6123(3)()()1(2)(

1

0
1,1,, 

−

=
−− +++Ψ++=Ψ

h

i

ihh
hphphp pppDpDTWppD ,                       (13) 

         
)(2)()1(4)()( 1,1,1,, −−− Ψ+++= hphphphp DpDTWppDGutDGut )611(3

0

=

++
h

i

ih pp .        (14) 

Using Eqs. (12)-(14), we can compute the Gutman index of the dendrimer graph hpD ,  

for every positive integers p  and h .  

For example, by setting 1=h  in Eqs. (12)-(14), we get 
ppDTW p 321)( 2

1, −= ,
 )6123(3)()()1(2)( 001, +++Ψ++=Ψ ppDpDTWppDp pp 18933 2 += ,
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)]1(611[3)(2)()1(4)()( 0001, ppDpDTWppDGutDGut p +++Ψ+++= 29132166 2 ++= pp .  

By setting 2=h  in Eqs. (12)-(14), we get 

234
2, 3330)( pppDTW p −−= ,

 )]1(6123[3)()()1(2)( 22
1,1,2, pppDpDTWppD ppp ++++Ψ++=Ψ 234 2378751 ppp ++= ,

 )]1(611[3)(2)()1(4)()( 22
1,1,1,2, pppDpDTWppDGutDGut pppp ++++Ψ+++=

                                   

                
291321483156102 234 ++++= pppp .

 
By setting 3=h  in Eqs. (12)-(14), we get 

3456
3, 33339)( ppppDTW p −−−= ,

 )]1(6123[3)()()1(2)( 233
2,2,3, ppppDpDTWppD ppp +++++Ψ++=Ψ

 

             

3456 2859312369 pppp +++= ,
 )(2)()1(4)()( 2,2,2,3, pppp DpDTWppDGutDGut Ψ+++= )]1(611[3 323 pppp +++++

 

                
291321483669270228138 23456 ++++++= pppppp .

 
By setting 4=h  in Eqs. (12)-(14), we get 

45678
4, 333348)( pppppDTW p −−−−= ,

 )]1(6123[3)()()1(2)( 3244
3,3,4, pppppDpDTWppD ppp ++++++Ψ++=Ψ

 

             

45678 3339912915987 ppppp ++++= ,
  )(2)()1(4)()( 3,3,3,4, pppp DpDTWppDGutDGut Ψ+++= )]1(611[3 4324 ppppp ++++++  

                
291321483669879408378300174 2345678 ++++++++= pppppppp .

 
The Gutman index of hpD ,  for 3,2=p  and

 
4≤h  is computed in Tab. 1. 

 
 

Table 1. The Gutman index of the dendrimer graphs hpD ,  for 3,2=p  and
 

4≤h . 
 

h Gut(D2,h) Gut(D3,h) 

0 291 291 

1 1197 1848 

2 5745 18075 

3 28665 201540 

4 142473 2267283 
 
 
 

Acknowledgments 
 

The author would like to thank the referee for insightful comments. 
 
 



47 

 

 
References: 
 
[1] ALIZADEH , Y., IRANMANESH, A., DOŠLIĆ, T., AZARI, M. (2014): The edge Wiener 

index of suspensions, bottlenecks, and thorny graphs. Glas. Mat. Ser. III 49 (69): 1–12. 
doi: 10.3336/gm.49.1.01 

[2] ANDOVA, V., DIMITROV , D., FINK , J., ŠKREKOVSKI, R. (2012): Bounds on Gutman 
index. MATCH Commun. Math. Comput. Chem. 67: 515–524. 

[3] AZARI, M. (2014): Sharp lower bounds on the Narumi-Katayama index of graph 
operations. Appl. Math. Comput. 239: 409–421. doi: 10.1016/j.amc.2014.04.088 

[4] AZARI, M. (2016): Some results on vertex version and edge versions of modified 
Schultz index. Int. J. Math. Combin. 2: 65–82. 

[5] AZARI, M., IRANMANESH, A. (2015): Clusters and various versions of Wiener-type 
invariants. Kragujevac J. Math. 39 (2): 155–171. doi: 10.5937/KgJMath1502155A 

[6] AZARI, M., IRANMANESH, A. (2016): Dendrimer graphs as thorn graphs and their 
topological edge properties. Natl. Acad. Sci. Lett. 39 (6): 455–460. doi: 10.1007/s40009-
016-0514-5 

[7] AZARI, M., DIVANPOUR, H. (2017): Splices, links, and their edge-degree distances. 
Trans. Comb. 6 (4): 29-42. doi: 10.22108/toc.2017.21614 

[8] BONCHEV, D., KLEIN, D.J. (2002): On the Wiener number of thorn trees, stars, rings 
and rods. Croat. Chem. Acta, 75 (2): 613–620. 

[9] BYTAUTAS, L., BONCHEV, D., KLEIN, D.J. (2001): On the generation of mean Wiener 
numbers of thorny graphs. MATCH Commun. Math. Comput. Chem. 44: 31–40. 

[10] CAYLEY , A. (1874): On the mathematical theory of isomers. Phil. Magazine, 47: 444–
447. doi: 10.1080/14786447408641058 

[11] CHEN, S. (2016): Cacti with the smallest, second smallest, and third smallest Gutman 
index. J. Comb. Optim. 31 (1): 327–332. doi: 10.1007/s10878-014-9743-z 

[12] DIUDEA, M.V. (2001): QSPR/QSAR Studies by Molecular Descriptors. Nova, New 
York.  

[13] DOBRYNIN, A., KOCHETOVA, A.A.  (1994): Degree distance of a graph: A degree 
analogue of the Wiener index. J. Chem. Inf. Comput. Sci. 34 (5): 1082–1086. 

[14] FENG, L., L IU, W. (2011): The maximal Gutman index of bicyclic graphs. MATCH 
Commun. Math. Comput. Chem. 66: 669–708. 

[15] GUTMAN , I. (1994): Selected properties of the Schultz molecular topological index. J. 
Chem. Inf. Comput. Sci. 34 (5): 1087–1089. 

[16] GUTMAN , I. (1998): Distance in thorny graph. Publ. Inst. Math. (Beograd) 63: 31–36. 

[17] GUTMAN , I. (2014): Kragujevac trees and their energy. SER A: Appl. Math. Inform. and 
Mech. 6 (2): 71–79. 

[18] GUTMAN , I. (2016): On two degree-and-distance-based graph invariants. Bull. Acad. 
Serbe Sci. Arts (Cl. Sci. Math. Natur.) 149 (41): 21–31. 



48 

 
[19] GUTMAN , I., V IDOVIĆ, D., POPOVIĆ, LJ. (1998): Graph representation of organic 

molecules-Cayley’s plerograms vs. his kenograms. J. Chem. Soc. Faraday Trans. 94: 
857–860. doi: 10.1039/A708076J 

[20] GUTMAN , I., FURTULA, B., PETROVIĆ, M. (2009): Terminal Wiener index. J. Math. 
Chem. 46: 522–531. doi: 10.1007/s10910-008-9476-2 

[21] HEYDARI, A., GUTMAN , I. (2010): On the terminal Wiener index of thorn graphs. 
Kragujevac J. Sci. 32: 57–64. 

[22] KLEIN, D.J., DOŠLIĆ, T., BONCHEV, D. (2007): Vertex-weightings for distance 
moments and thorny graphs, Discrete Appl. Math. 155 (17): 2294–2302. doi: 
10.1016/j.dam.2007.05.042 

[23] KNOR, M., POTOČNIK , P., ŠKREKOVSKI, R. (2014): Relationship between the edge-
Wiener index and the Gutman index of a graph. Discrete Appl. Math. 167: 197–201. 
doi: 10.1016/j.dam.2013.12.009 

[24] L I, S. (2011): Zagreb polynomials of thorn graphs. Kragujevac J. Sci. 33: 33–38.  

[25] POLYA , G. (1937): Kombinatorische Anzahlbestimmungen fur Gruppen, Graphen und 
chemische Verbindungen. Acta Math. 68: 145–254. doi: 10.1007/BF02546665 

[26] SZÉKELY, L.A., WANG, H., WU, T. (2011): The sum of distances between the leaves of 
a tree and the ‘semi-regular’ property. Discrete Math. 311 (13): 1197–1203. doi: 
10.1016/j.disc.2010.06.005 

[27] VUKIČEVIĆ, D., GRAOVAC, A. (2004): On modified Wiener indices of thorn graphs. 
MATCH Commun. Math. Comput. Chem. 50: 93–108. 

[28] VUKIČEVIĆ, D., NIKOLIĆ, S., TRINAJSTIĆ, N. (2005): On the Schultz index of thorn 
graphs. Internet Electron. J. Mol. Des. 4: 501–514. 

[29] VUKIČEVIĆ, D., ZHOU, B., TRINAJSTIĆ, N. (2007): Altered Wiener indices of thorn 
trees. Croat. Chem. Acta, 80: 283–285. 

[30] WALIKAR , H.B., RAMANE , H.S., SINDAGI , L., SHIRAKOL , S.S., GUTMAN , I. (2006): 
Hosoya polynomial of thorn trees, rods, rings, and stars. Kragujevac J. Sci. 28: 47–56.  

[31] WIENER, H. (1947): Structural determination of paraffin boiling points. J. Am. Chem. 
Soc. 69 (1): 17–20. doi: 10.1021/ja01193a005 

[32] ZHOU, B. (2005): On modified Wiener indices of thorn trees. Kragujevac J. Math. 27: 
5–9.  

 


