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ABSTRACT. Irregularity indices are generally used for quantitative characterization of

topological structure of non-regular graphs. According to a widely accepted preconception,

using a topological invariant (called a graph irregularity index) for that purpose, the results

of graph irregularity classification should be consistent with our subjective judgements (in-

tuitive feeling). In the case of structurally strongly similar graphs, it is difficult to select the

proper irregularity index by which the irregularity ranking (ordering) of graphs can be per-

formed in a consistent manner to our preliminary expectations. In this work we investigate

various possibilities of constructing so-called composite irregularity indices obtained as a

function of traditional irregularity indices and test their discriminatory performance. More-

over, it has been demonstrated in examples, that in some cases the subjective evaluation

of graph irregularities leads to false conclusions. This phenomenon is called the paradox of

quantitative graph irregularity characterization. From our study we have concluded that

results of graph irregularity measuring depend not only on the choice of irregularity indices

but it is influenced strongly on the preselected set of graphs to be investigated. Similar prob-

lems arise for the quantitative evaluation of information content, complexity or branching

of molecular graphs.



54

1 Introduction, preliminary considerations

Throughout the paper, we consider only simple connected graphs. For a graph G

with n vertices and m edges, V (G) and E(G) denote the set of vertices and edges,

respectively. Let di = d(ui) be the degree of vertex ui (i = 1, 2, n), and denote by

(i, j) = (ui, uj) an edge of G connecting vertices ui and uj. Let ∆ = ∆(G) and

δ = δ(G) be the maximum and the minimum degrees, respectively, of vertices of G.

We use the standard terminology in graph theory, for notations not defined here we

refer the reader to [5, 19]. Let A = A(G) be the adjacency matrix of a graph G. We

denote by ρ(G) the largest eigenvalue of A(G) and call it the spectral radius of G.

For a connected graph G, denote by {mr,s = mr,s(G) : mr,s > 0, 1 ≤ s, r ≤ ∆}

the finite set of positive integers mr,s representing the numbers of edges in G with

end-vertex degrees r and s. Similarly, for a graph G, denote by {nr = nr(G) : nr >

0, 1 ≤ r ≤ ∆} the set of numbers nr of vertices with degree r. For simplicity,

numbers mr,s(G) are called the edge-parameters of G, and numbers nr(G) are called

the vertex-parameters of G, respectively.

Connected graphs G1 and G2 are said to be edge-equivalent if for their corre-

sponding edge-parameters sets {mr,s(G1) > 0} = {mr,s(G2) > 0} holds. Analogously,

graphs G1 and G2 are called vertex-equivalent if for their vertex-parameters sets

{nr(G1) > 0} = {nr(G2) > 0} is fulfilled. It is known that edge-equivalent graphs

are also vertex-equivalent. A graph is called regular if all its vertices have the same

degree. A graph which is not regular is called an irregular graph. A connected graph

G is said to be bidegreed if its each vertex is of degree either ∆ or δ(∆ > δ ≥ 1).

A connected bidegreed bipartite graph G(∆, δ) is called semiregular if each vertex

in the same part of bipartition has the same degree. A connected graph G is said

to be harmonic (pseudo-regular) [6, 39] if there exists a positive constant p(G) such

that each vertex u of G has the same average neighbor degree number identical with

p(G). The spectral radius of a harmonic graph G is equal to p(G). It is obvious that

any connected R-regular graph GR is a harmonic graph with p(GR) = ρ(GR) = R. A

graph in which the maximum vertex degree is not larger than four is referred to as a

chemical graph. In the literature there are several degree-based graph invariants of
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the form ∑
(i,j)∈E

ε(di, dj)

where ε is an appropriately selected non-negative function. These graph invariants

(often referred to as topological indices) have proven to be useful in QSAR/QSPR

studies for characterizing quantitatively the structure of chemical graphs and predict

molecular properties [11, 17, 18, 20, 22, 25, 29, 31, 33–35, 37, 38, 40]. Among them the

most important are the first and second Zagreb indices M1(G) and M2(G) formulated

as

M1(G) =
n∑
i=1

d2i and M2(G) =
∑

(i,j)∈E

didj .

Moreover the Randić index Ra(G) given as

Ra(G) =
∑

(i,j)∈E

1/
√
didj .

By definition, a topological invariant IT (G) is called an irregularity index of a

graph G if IT (G) ≥ 0 and IT (G) = 0 if and only if G is a regular graph. The majority

of irregularity indices belong to the family of degree-based graph invariants, but there

exist eigenvalue-based irregularity indices as well [1, 3, 4, 7, 8, 12, 15, 21, 24, 26, 27].

Widely used invariants of this type are the Albertson irregularity index [3],

AL(G) =
∑

(i,j)∈E

|di − dj|

and the Collatz–Sinogowitz irregularity index [8]

CS(G) = ρ(G)− 2m

n
.

Both have been extensively studied during the last decade [1, 12, 15, 24, 26]. As an

example, consider the 7-vertex trees T (3, 2) and T (2, 3) depicted in Fig. 1

For both trees the corresponding Collatz–Sinogowitz irregularity index is identical:

CS(T (3, 2)) = CS(T (2, 3)) = 2− 12/7 = 0.285714, while the values of the Albertson

index are strongly different: AL(T (3, 2)) = 6 and AL(T (2, 3)) = 10. Comparing

AL(G) and CS(G) irregularity indices we can conclude that the practical application

of CS(G) index is more complicated, since the spectral radius cannot be directly

deduced from the structure of graphs considered [21].
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Figure 1: Seven-vertex trees having equal spectral radius 2.

In what follows, we concentrate our study on the construction and comparison of

various irregularity indices devoted mainly to structural characterization of chemical

graphs. Considering degree-based graph invariants, we evaluate their applicability

for the construction of graph irregularity indices. Our investigations are extended

to the critical evaluation of discriminatory power of the Collatz–Sinogowitz and the

Albertson irregularity indices as well. Moreover, we study the relations between

some traditional irregularity indices (Collatz–Sinogowitz irregularity index, Albert-

son irregularity index) and the widely used molecular descriptors applied primarily

in mathematical chemistry. It will be also demonstrated that among traditional

degree–based graph invariants, the Randić index and the Zagreb indices can be ad-

vantageously used for constructing various topological quantities for quantifying the

irregularity of graphs.

2 Zagreb indices-based graph irregularity indices

The following Lemma serves as a useful tool to generate several types of Zagreb indices

based irregularity indices.

Lemma 2.1. [29] Let G be a connected graph with n vertices and m edges. Then

M1(G) ≥ 4m2/n and M2(G) ≥ 4m3/n2 hold with equalities if and only if G is a

regular graph. Based on Lemma 2.1, we can define the first and the second Zagreb

irregularity indices IRM1(G) and IRM2(G) as follows [26]:
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IRM1(G) = M1(G)− 4m2

n
(1)

IRM2(G) = M2(G)− 4m3

n2
(2)

Additionally, from Lemma 2.1 it is easy to deduce several simple irregularity

indices formulated as

IRMA(G) =
IRM1(G)

2m
=
M1(G)

2m
− 2m

n
(3)

V AR(G) =
M1(G)

n
−
(

2m

n

)2

=

(√
M1(G)

n
+

2m

n

)(√
M1(G)

n
− 2m

n

)
(4)

IRMB(G) =
IRM2(G)

m
=
M2(G)

m
−
(

2m

n

)2

=

(√
M2(G)

m
+

2m

n

)(√
M2(G)

m
− 2m

n

)

IR1(G) =

√
M1(G)

n
− 2m

n
(5)

IR2(G) =

√
M2(G)

m
− 2m

n
(6)

Remark 2.2. There is a broad class of connected graphs for which the identity ρ(G) =√
M2(G)/m is fulfilled. These graphs are called Z2 graphs, because they are defined on

the basis of the second Zagreb index [2]. It is important to note that if G is an m-edge

Z2 graph, then ρ2(G) = M2(G)/m is a positive number. The harmonic and bipartite

semiregular graphs form subsets of Z2 graphs [2]. From the previous considerations it

follows that if G is a Z2 graph then IR2(G) = CS(G) holds.
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3 Two simple methods for constructing

irregularity indices

Various irregularity indices can be constructed as special cases of the general Randić

index and the general zeroth-order Randić index published in Refs. [32, 41]. The

general Randić index Rα(G) and the general zeroth-order Randić index Rα(G) are

defined as

Rα(G) =
∑

(i,j)∈E

(didj)
α Qα(G) =

n∑
i=1

dαi

where α is a real number [41]. Depending on the particular choice of parameter α

we obtain a set of degree-based topological indices which are widely used in QSPR

and QSAR applications [41]. Consequently, R−1/2(G) and R1(G) are identical to

the ordinary Randić index Ra(G) and the second Zagreb index M2(G). Moreover, it

follows that the invariant Q2(G) is equal to the first Zagreb index M1(G). In math-

ematical chemistry Q3(G) is referred to as the forgotten topological index denoted

by F (G) [17]. Additionally, R1/2(G) is called as reciprocal Randić index denoted by

RR(G) [23]. Starting with the general Randić index and the general zeroth-order

Randić index, a family of different irregularity indices can be generated. To do this,

consider the irregularity index of general type

IRZ(G,α) =
∑

(i,j)∈E

(dαi − dαj )2 =
∑

(i,j)∈E

(d2αi + d2αj )− 2
∑

(i,j)∈E

(didi)
α ≥ 0

where α is real number differing from zero. Using the transformation rule published

in [14], the above inequality can be rewritten in the following alternative form:

∑
(i,j)∈E

(dαi − dαj )2 =
n∑
i=1

d2α+1
i − 2

∑
(i,j)∈E

(didi)
α ≥ 0

with equality if and only if G is a regular graph. This implies that

IRZ(G,α) =
n∑
i=1

d2α+1
i − 2

∑
(i,j)∈E

(didi)
α = Q2α+1(G)− 2Rα(G) ≥ 0 .

It should be noted that the above general inequality has been published in [32].

In particular cases, one obtains the following irregularity indices:
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If α = 1, then Q3(G) = F (G) =
∑n

i=1 d
3
i , and this implies that

IRZ(G, 1) =
n∑
i=1

d3i − 2
∑

(i,j)∈E

(didj) = F (G)− 2M2(G) ≥ 0 (7)

If α = −1/2, then
∑n

i=1 d
0
i = n, and

IRZ(G,−1/2) = n− 2
∑

(i,j)∈E

1/
√
didj = n− 2Ra(G) ≥ 0 .

If α = 1/2, then

IRZ(G, 1/2) =
∑

(i,j)∈E

(
√
di −

√
dj)

2

=
∑

(i,j)∈E

(di + dj)− 2
∑

(i,j)∈E

√
didj = M1(G)− 2RR(G) ≥ 0 .

If α = 2, then

IRZ(G, 2) =
∑

(i,j)∈E

(d2i − d2j)2 =
∑

(i,j)∈E

(d4i + d4i )− 2
∑

(i,j)∈E

(didj)
2

=
n∑
i=1

d5i − 2R2(G) ≥ 0 .

If α = −1, then

IRZ(G,−1) =
∑

(i,j)∈E

(1/di − 1/dj)
2 =

∑
(i,j)∈E

(1/d2i + 1/d2j)− 2
∑

(i,j)∈E

1/(didj)

=
n∑
i=1

1/di − 2
∑

(i,j)∈E

1/(didj
) = Q−1(G)− 2R−1 ≥ 0 .

Another simple technique for constructing irregularity indices is based on the

following concept. Consider the irregularity index IRV (G,α) formulated as

IRV (G,α) =
∑

(i,j)∈E

{(didj)α/2 −
(

2m

n

)α
}2 ≥ 0

where α is real number not equal to zero. It follows that

IRV (G,α) =
∑

(i,j)∈E

(didj)
α +m

(
2m

n

)2α

− 2

(
2m

n

)α ∑
(i,j)∈E

(didj)
α/2 ≥ 0 .
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For particular cases, we have

If α = 2, then

IRV (G, 2) =
∑

(i,j)∈E

(didj)
2 +m

(
2m

n

)4

− 2

(
2m

n

)2 ∑
(i,j)∈E

(didj)

= R2(G) +m

(
2m

n

)4

− 8
m2

n2
M2(G) ≥ 0 .

If α = 1, then

IRV (G, 1) =
∑

(i,j)∈E

didj +m

(
2m

n

)2

− 2

(
2m

n

) ∑
(i,j)∈E

√
didj

= M2(G) + 4
m3

n2
− 4m

n
RR(G) ≥ 0 .

If α = −1, then

IRV (G,−1) =
∑

(i,j)∈E

1/didj +m

(
2m

n

)−2
− 2

(
2m

n

)−1 ∑
(i,j)∈E

1/
√
didj

= R−1(G) +
n2

4m
− n

m
Ra(G) ≥ 0 .

4 Construction of composite irregularity indices

A topological graph invariant is called a composite index if it is generated as a function

of two or more algebraically independent graph invariants. For example, the sum or

the product of more irregularity indices results in a novel irregularity index. Generally,

it is expected that a composite irregularity index has an increased discriminatory

power comparing with the simple irregularity indices.

Surprisingly, in some cases the discriminating ability of a composite irregularity

index obtained as a sum of 2 different irregularity indices is less than that of their

components. As an example, consider the irregularity index IRM2A(G) obtained from

formula (2):

IRM2A(G) = 2IRM2(G) = 2M2(G)− 8m3

n2

and define the corresponding composite irregularity index of the form
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IRMAdd(G) = IRM2A(G) + IRZ(G, 1) = F (G)− 8m3

n2
(8)

where IRZ(G, 1) = F (G)− 2M2(G) according to equation (7).

It is clear that the values of IRMAdd(G) index are equal for all graphs having

the same vertex degree sequence. Namely, if graphs G1 and G2 are characterized by

the same vertex degree sequence, then IRMAdd(G1) = IRMAdd(G2) is fulfilled. This

observation implies that for some graphs having an identical degree sequence but

different second Zagreb indices, the irregularity indices IRM2A(G) and IRZ(G, 1))

will be more discriminative than IRMAdd(G).

By definition, a graph invariant IT (G) is called a non-negative topological index

(NN -index) if IT (G) ≥ 0 holds for any connected graph G. It is easy to see that

the irregularity indices form a particular subset of NN -indices, and the sum of an

irregularity index and NN -indices results in an irregularity index as well. As an

example, define the topological invariants FA(G) and FB(G) as follows:

FA(G) = ρ(G)−
√
M1(G)

n
(9)

FB(G) = ρ(G)− 2M2(G)

M1(G)
(10)

Fundamental properties of topological invariants FA(G) and FB(G) are character-

ized by the following lemma.

Lemma 4.1. The topological invariants FA(G) and FB(G) are not irregularity in-

dices. Both belong to the family of NN-indices.

Proof. It is known that for FA(G) and FB(G) the following relations hold:

FA(G) ≥ 0 and FA(G) = 0 if and only if G is regular or semiregular graph [39].

FB(G) ≥ 0 and FB(G) = 0 if and only if G is a regular graph or a non-regular

harmonic graph [40].
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Define the following composite irregularity indices as follows:

IRadd,a(G) = CS(G) + FA(G) = 2ρ(G)− 2m

n
−
√
M1(G)

n

IRadd,b(G) = CS(G) + FB(G) = 2ρ(G)− 2m

n
− 2M2(G)

M1(G)
.

Consider now, the 7-vertex trees T (3, 2) and T (2, 3) depicted in Fig. 1 As we have

observed, for these trees the Collatz–Sinogowitz irregularity index is identical, namely

CS(T (3, 2)) = CS(T (2, 3)) = 2−12/7 = 0.285714. However, it is easy to see that for

trees T (3, 2) and T (2, 3) the irregularity indices IRadd,a(G) and IRadd,b(G) are more

selective (discriminative) than CS(G) index. Because M1(T (3, 2)) = M2(T (3, 2)) =

M2(T (2, 3)) = 24 and M1(T (2, 3)) = 26, we get the following results:

IRadd,a(T (3, 2)) = 2ρ(T (3, 2))− 2m

n
−
√
M1(T (3, 2))

n

= 4− 12

7
−
√

24

7
= 0.4334074

IRadd,a(T (2, 3)) = 2ρ(T (2, 3))− 2m

n
−
√
M1(T (2, 3))

n

= 4− 12

7
−
√

26

7
= 0.358466

IRadd,b(T (3, 2)) = 2ρ(T (3, 2))− 2m

n
− 2M2(T (3, 2))

M1(T (3, 2))

= CS(T (3, 2)) = CS(T (2, 3)) = 0.285714

IRadd,b(T (2, 3)) = 2ρ(T (2, 3))− 2m

n
− 2M2(T (2, 3))

M1(T (2, 3))

= 4− 12

7
− 2 · 24

26
= 0.439560 .

It is worth noting that for tree T (3, 2) the corresponding irregularity index is

IRadd,b(T (3, 2) = CS(T (3, 2) = CS(T (2, 3). The reason for this can be explained

by the fact that T (3, 2) is a harmonic graph, for which the equality ρ(T (3, 2)) =

2M2(T (3, 2))/M1(T (3, 2)) = 2 holds. As can be seen, when ranking the graph irreg-

ularity by indices IRadd,a(G) and IRadd,b(G) the results obtained are not consistent,
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because the inequalities IRadd,a(T (3, 2)) > IRadd,a(T (2, 3)) and IRadd,b(T (3, 2)) <

IRadd,b(T (2, 3)) hold.

An interesting observation is that a composite topological invariant can be a graph

irregularity index in some particular cases, when their components are not irregular-

ity indices. This phenomenon is demonstrated in the following example. Consider

the topological invariants FA(G) and FB(G) represented by formulas (9) and (10).

Previously, it has been verified that FA(G) and FB(G) are non-negative numbers, and

they do not belong to the family of irregularity indices.

Lemma 4.2. In the family of connected non-regular graphs there are no graphs which

are semiregular and harmonic simultaneously.

Proof. Let G(∆, δ) a semiregular graph. For any edge (i, j) of a bidegreed semiregular

graph the equality di = d(ui) = ∆ and dj = d(uj) = δ holds. Denote the degree sum

of vertices adjacent to a vertex ui by Q(ui). For the corresponding average neighbor

degree numbers we obtain the following identities: µ(ui) = Q(ui)/d(ui) = ∆δ/∆ = δ

and µ(uj) = Q(uj)/d(uj) = ∆δ/δ = ∆. Because µ(ui) 6= µ(uj) holds for every edge

(i, j), this implies that graph G(∆, δ) is not harmonic. From this it follows that if G

is a harmonic graph, then G is not semiregular.

Proposition 4.3. Let G be a connected graph, and consider the topological invariant

IRAB(G) formulated as

IRAB(G) = FA(G) + FB(G) = 2ρ(G)−
√
M1(G)

n
− 2M2(G)

M1(G)
.

Then IRAB(G) is a graph irregularity index.

Proof. From Lemma 4.1 and Lemma 4.2 it follows that IRAB is a non-negative number

and IRAB(G) = 0 if and only if G is a regular graph. Consequently, IRAB(G) is an

irregularity index.

Remark 4.4. Based on the concept outlined previously, it is possible to generate

composite irregularity indices of multiplicative type as well. To do this, construct the

composite graph invariant IM(G) in the following form:
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IM(G) = (1 + FA(G))(1 + FB(G))− 1 .

It is easy to see that IM(G) ≥ 0 and IM(G) = 0 if and only if G is a regular graph.

Consequently, IM(G) is an irregularity index.

5 Decomposition of irregularity indices

There are several ways to obtain an additive decomposition of a given irregularity

index IR(G). The decomposition of IR(G) into K components can be formulated as

IR(G) =
K∑
k=1

pkIRk(G)

where IRk(G) represent a finite set of various irregularity indices and pk are positive

numbers. As an example, consider the irregularity index IRMAdd(G) given by Eq.(8).

Irregularity index IRMAdd(G) can be decomposed as

IRMAdd(G) = (F (G)− 2M2(G)) +

(
2M2(G)− 8m3

n2

)
= IRZ(G, 1) + 2IRM2(G) .

It is possible to perform a decomposition of an irregularity index into 2 graph

invariants in such a way that only one component will be an irregularity index. Such

decompositions of the Collatz–Sinogowitz irregularity index will be demonstrated in

3 examples.

Example 5.1. Consider the topological invariant FA(G) and the irregularity index

IR1(G) defined by Eq.(5). Using FA(G) and IR1(G) one obtains the following de-

composition of CS(G):

CS(G) = ρ(G)−2m

n
=

(
ρ(G)−

√
M1(G)

n

)
+

(√
M1(G)

n
− 2m

n

)
= FA(G)+IR1(G) .

It should be emphasized that FA(G) is an NN-index, because FA(G) = 0 holds for

regular and semiregular graphs.
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Example 5.2. As another similar example, consider the topological invariant

Φ(G) = ρ(G)−
√
M2(G)

m

and the irregularity index IR2(G) defined by Eq.(6). It is important to note that Φ(G)

can be a positive or a negative number, and Φ(G) = 0 holds for any Z2 graphs. This

implies that Φ(G) is not an irregularity index. Using the above formula we get the

following decomposition of the Collatz–Sinogowitz index:

CS(G) =

(
ρ(G)−

√
M2(G)

m

)
+

(√
M2(G)

m
− 2m

n

)
= Φ(G) + IR2(G) .

Example 5.3. An interesting decomposition of CS(G) index can be obtained if we

use the reciprocal Randić index RR(G) for this purpose [23]. It is verified [16] that

for an m-edge connected graph

ρ(G) ≥ 1

m

∑
(i,j)∈E

√
didj =

1

m
RR(G)

where for example, equality holds for regular or semi-regular graphs. From the above

inequality we can construct the topological invariant Ψ(G) defined as

Ψ(G) = ρ(G)− 1

m

∑
(i,j)∈E

√
didj = ρ(G)− RR(G)

m
.

Moreover, it is known [23] that

RR(G)

m
=

1

m

∑
(i,j)∈E

√
didj ≥

2m

n

with equality if and only if G is regular. From the above inequality we can generate

the irregularity index IRS(G) formulated as

IRS(G) =
RR(G)

m
− 2m

n
.

Based on the previous considerations, the CS(G) index can be decomposed into

the sum of Ψ(G) and IRS(G) as follows

CS(G) =

(
ρ(G)− RR(G)

m

)
+

(
RR(G)

m
− 2m

n

)
= Ψ(G) + IRS(G) .
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In certain cases, the irregularity index IRS(G) has a higher discriminatory perfor-

mance than CS(G) index. This observation is demonstrated in the following example.

We have shown for trees T (3, 2) and T (2, 3) depicted in Fig. 1 that their CS(G) in-

dices are identical, namely CS(T (3, 2)) = CS(T (2, 3)) = 2 − 12/7 = 0.2857143. For

these trees we have the following reciprocal Randić indices:

RR(T (3, 2)) =
∑

(i,j)∈E

√
didj = 3

√
2 + 3

√
6 = 11.59111

RR(T (2, 3)) =
∑

(i,j)∈E

√
didj = 4

√
3 + 2

√
6 = 11.82718 .

Consequently, for the corresponding irregularity indices one obtains

IRS(T (3, 2)) =
RR(T (3, 2))

m
− 2m

n
=

1

6

(
3
√

2 + 3
√

6
)
− 12

7
= 0.217566

and

IRS(T (2, 3)) =
RR(T (2, 3))

m
− 2m

n
=

1

6

(
4
√

3 + 2
√

6
)
− 12

7
= 0.256911 .

Comparing the computed values of IRS(G) indices, the tree T (3, 2) is judged to

be more regular than T (2, 3).

6 Problems of degeneracy

A well-known problem when performing topological graph characterizations is that

there exist non-isomorphic graphs having the same value of topological indices. This

phenomenon is called degeneracy [9, 10, 13, 30]. A graph invariant is referred to be

degenerate if it has the same value for more than one graph [9].

Supposing that a set of graphs is given, the fundamental task to be solved is to

select a highly discriminating irregularity index for ranking. If the irregularity index

is not compatible with the preselected graph family, then the irregularity ordering of

graphs by this index becomes impossible. The degeneracy problem is clearly demon-

strated by the following example related to the Collatz–Sinogowitz irregularity index.

Let q be an arbitrary positive integer. It is easy to show that there exists an

infinite family Ω(q) of connected graphs for which CS(G) = q holds for any graph G
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included in Ω(q). Such infinite graph families can be constructed as follows: Let Cr

be a cycle of length r, where r ≥ 3. Denote by Ck
r the graph obtained from Cr by

attaching k ≥ 1 pendent vertices to every vertex of Cr. Because Ck
r is a 2-walk (2, k)

linear graph [28,36] for its spectral radius one obtains

ρ(Ck
r ) =

1

2

(
2 +
√

4 + 4k
)

= 1 +
√

1 + k .

If (1 + k) is a perfect square then ρ(Ck
r ) = 1 +

√
1 + k will be a positive integer.

The above identity is valid for any unicyclic graph C3
r with arbitrary r ≥ 3. The

smallest graph of this type is the graph C3
3 depicted in Fig. 2.

Figure 2: Unicyclic C3
3 graph with a spectral radius 3.

Because graphs Ck
r are unicyclic, then 2m/n = 2 holds for them. This implies

that if k = (q + 1)2 − 1, where q is a positive integer, then for the corresponding

Collatz–Sinogowitz index we obtain

CS
(
C(q+1)2−1
r

)
= ρ

(
C(q+1)2−1
r

)
− 2m

n
= 1 +

√
1 + (q + 1)2 − 1− 2 = q .

Remark 6.1. For Ck
r graphs the vertex number is determined by parameters r and k,

because n = r(1 + k) holds. Moreover, the diameter of these graphs can be arbitrary

large and depends only on parameter r. This implies that CS(Ck
r ) is independent of

the graph diameters. Our investigations confirm the general observation formulated

in [10]: A topological index can be unique only for a particular graph class, but it fails

when it is applied to another class.

In certain cases, the degeneracy can be avoided or efficiently decreased if instead of

degree-based irregularity indices we use so-called combined irregularity indices which

are constructed by the generalization of some traditional irregularity indices. This
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concept is demonstrated in an example concerning the construction of two extended

versions of the Albertson irregularity index.

For an edge (i, j) = (ui, uj) of graph G, define the positive integers Ni and Nj

where Ni is the number of vertices of G whose distance to vertex ui is smaller than

distance to vertex uj, and analogously, Nj is the number of vertices of G whose dis-

tance to the vertex uj is smaller than to ui. Based on the previous considerations,

an extended distance-based version of the Albertson irregularity index can be con-

structed. This extended (combined) irregularity index IRAf (G) is defined in the

following general form:

IRAf (G) =
∑
(i,j)

|di − dj|f(Ni, Nj) .

In the above formula f(x, y) is a non-negative symmetric function for which

f(x, y) = f(y, x) ≥ 1 holds and f(x, y) = 1 if and only if x = y. As an example,

depending on the particular choice of function f(x, y), two distance-based irregularity

indices denoted by IRAS(G) and IRAQ(G) are constructed:

If f(x, y) = (x2 + y2)/(2xy), then

IRAS(G) =
1

2

∑
(i,j)

|di − dj|
(
N2
i +N2

j

NiNj

)
≥
∑
(i,j)

|di − dj| = AL(G), (11)

If f(x, y) = 2(x2 + y2)/(x+ y)2 then

IRAQ(G) = 2
∑
(i,j)

|di − dj|
(
N2
i +N2

j

(Ni +Nj)2

)
≥
∑
(i,j)

|di − dj| = AL(G). (12)

It is easy to see that in the above formulas equality holds, if for every edge (i, j)

having different end-vertex degrees, Ni = Nj is fulfilled.From this fact we can conclude

that both irregularity indices can be considered as extended versions of the traditional

degree-based Albertson irregularity index AL(G).

7 Paradox of graph irregularity characterization

According to a general opinion, the concept of “graph irregularity” depends strongly

on the subjective impression (feeling) about this notion [21]. Comparing two con-
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nected graphs, based only on simple visual observations, in certain cases it is easy to

judge that a given graph is more irregular than another. This concept forms the basis

of the hypothesis that quantifying the notion of graph irregularity, by using an ap-

propriately defined (constructed) irregularity index, the ordering of graphs according

to their irregularity can be trustworthily performed. In what follows, we will demon-

strate that there exist some particular classes of graphs where the concept mentioned

is false, because it leads to serious inconsistency in the interpretations of computed

results.

Figure 3: Eight non-isomorphic trees having identical vertex parameters.

In Fig. 3 eight non-isomorphic tree graphs Ji (i = 1, 2, . . . , 8) characterized by

identical degree sequence (n1 = 8, n2 = 3, n4 = 3) are depicted. All of them have

strongly similar structures. This observation implies that ranking the irregularity of

these trees on the basis of direct visual impressions seems to be problematic, practi-

cally it is impossible.

For the structural characterization of graphs depicted in Fig.3 the irregularity

indices IRZ(G, 1) and IRM2(G) were selected and compared, where IRZ(G, 1) =

F (G)−2M2(G) and IRM2(G) = M2(G)−4m3/n2, by definition. The correspondence

between the computed values of these irregularity indices is illustrated in Fig. 4.

As can be observed, for the irregularity classification of 8 trees we have completely
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Figure 4: Relation between irregularity indices IRZ(G, 1) and IRM2(G) for 8 trees.

different results with IRZ(G, 1) and IRM2(G) indices. This is due to the fact that

between them there is an exact linear relationship formulated as

IRM2(G) = −IRZ(G, 1)

2
+

1

2
F (G)− 4m3

n2
.

It should be emphasized that the above formula is generally valid for all graphs

having an identical degree sequence. Denoting by T an arbitrary 14-vertex tree char-

acterized by the vertex degree sequence (n1 = 8, n2 = 3, n4 = 3), as a particular case,

we get

IRM2(T ) = −IRZ(T, 1)

2
+ 67.153265 .

On the basis of these observations it can be concluded that there exist several

graphs for which the irregularity ranking performed by IRM2(G) and IRZ(G, 1) can-

not be compatible with preliminary subjective perception. Our findings demonstrate

clearly that in some cases the subjective concepts concerning the visual-type graph

irregularity characterization (ordering) are based on unrealistic, speculative consid-

erations. This strange phenomenon called “the graph irregularity paradox” can be

interpreted as follows: There exist some particular classes of connected graphs for

which the result of evaluation (ranking) of graph irregularity by using various irregu-

larity indices is determined primarily on their definitions, consequently, in such cases

the results of classification depend only to a limited extent on the true topological

structure of graphs considered.
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8 Conclusions, final remarks

The result of graph irregularity classification using various irregularity indices is de-

termined i) by the type of the selected irregularity index and ii) the specific structural

properties of the graph family to be investigated. We have demonstrated that some-

times the application of two different irregularity indices can lead to inconsistent

results whose interpretation is problematic.

Figure 5: Non-isomorphic harmonic graph having spectral radius 3.

It should be mentioned that there exist non-isomorphic graphs whose irregularity

classification (ranking) cannot be performed using traditional degree-based irregu-

larity indices. In such cases, there is no preconception helping us to decide on the

correct irregularity ranking of graphs. As an example, consider the 6 non-isomorphic

harmonic graphs depicted in Fig. 5.

They are bidegreed graphs with ∆ = 4 and δ = 2, additionally, all of them are

characterized by the same set of edge parameters (m22 = 6,m24 = 12,m44 = 6).

Due to this fact, all degree-based irregularity indices will be equal for them. For

example, for the corresponding Albertson irregularity indices we got AL(Hi) = 24 for

i = 1, 2, . . . , 6.

Moreover, because these graphs are also harmonic, they have identical spectral

radius equal to 3. This implies that these graphs cannot be distinguished by the
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Collatz–Sinogowitz index. For unicyclic graphs Ck
r we have demonstrated that among

these graphs the discrimination is impossible by means of CS(G) index, because there

exist infinitely many Ck
r graphs characterized by the same CS(G) value.

However, it seems likely [9,21] that for a given family of structurally strongly simi-

lar non-isomorphic graphs it is possible to construct such distance and/or eigenvalue-

based irregularity indices by which a better discrimination can be achieved than by

using the traditional degree-based irregularity indices. Our investigations have con-

firmed that the distance-based irregularity indices IRAS(G) and IRAQ(G) have an

increased discriminatory performance, consequently both of them can be successfully

applied to the structural characterization of graphs depicted in Fig. 5.

Starting with the complex IRAS(G) index for 6 graphs depicted in Fig. 5, we

obtained the following results of irregularity ordering:

IRAS(H1) = 192, 75 > IRAS(H2) = 157, 07 > IRAS(H3) = IRAS(H4)

= 129, 25 > IRAS(H5) = IRAS(H6) = 97, 50 .

A completely similar result of ordering has been obtained by the IRAQ(G) irreg-

ularity index:

IRAQ(H1) = 42, 685 > IRAQ(H2) = 40, 957 > IRAQ(H3) = IRAQ(H4)

= 39, 907 > IRAQ(H5) = IRAQ(H6) = 38, 519 .

As we can conclude, in both cases the bipartite graphs H5 and H6 having equal

irregularity indices are judged to be the “most regular” graphs.
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