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ABSTRACT. Let G be a simple graph of order n ≥ 2 with m edges. Denote by d1 ≥ d2 ≥

· · · ≥ dn > 0 the sequence of vertex degrees and by µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 the

Laplacian eigenvalues of the graph G. Lower bounds for the Kirchhoff index, Kf(G) =

n
∑n−1

i=1
1

µi
, are obtained.

1 Introduction

Let G = (V,E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em} be a simple connected

graph of order n ≥ 3 and size m. If vertices i and j are adjacent, we denote it

as i ∼ j. Denote by d1 ≥ d2 ≥ · · · ≥ dn > 0 a sequence of vertex degrees, and

by ∆ and δ the greatest and the smallest vertex degrees, respectively. Let A be

the adjacency matrix of G, and D = diag(d1, d2, . . . , dn) the diagonal matrix of its

vertex degrees. Then L = D − A is the Laplacian matrix of G. Eigenvalues of L,

µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, are the Laplacian eigenvalues of graph G.

Some well-known properties of the Laplacian eigenvalues are (see for example [3]):

n−1
∑

i=1

µi =

n
∑

i=1

di = 2m and

n−1
∑

i=1

µ2

i =

n
∑

i=1

d2i +

n
∑

i=1

di = M1 + 2m,
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where

M1 = M1(G) =

n
∑

i=1

d2i =
∑

i∼j

(di + dj) =

m
∑

i=1

(d(ei) + 2)

is the first Zagreb index introduced in [11]. In the same paper the second Zagreb

index, M2, and so called forgotten index, F , were defined as

M2 = M2(G) =
∑

i∼j

didj and F = F (G) =

n
∑

i=1

d3i =
∑

i∼j

(d2i + d2j).

More on the invariant F one can find in [7, 9].

Matrix L∗ = D−1/2LD−1/2 = I−D−1/2AD−1/2 is the normalized Laplacian matrix

of G. Its eigenvalues, ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0, represent normalized Laplacian

eigenvalues of G. The following is valid for ρi, i = 1, 2, . . . , n, (see [3]):

n−1
∑

i=1

ρi = n and

n−1
∑

i=1

ρ2i = n + 2R−1,

where

R−1 =
∑

i∼j

1

didj
,

is the general Randić index (also called branching index) introduced in [27].

The Kirchhoff index of a connected graph is defined as (see [14]):

Kf(G) =
∑

i<j

rij,

where rij is the effective resistance distance between vertices i and j. The following

more appropriate formula from application point of view was put forward in [10]

Kf(G) = n

n−1
∑

i=1

1

µi
.

This, in turn, triggered the study of this invariant and its applications in various

areas, including spectral graph theory, molecular chemistry, computer science, etc.

(see for example [7, 9–11, 14, 18, 27]).

Before we proceed, let us define one special class of d-regular graphs Γd (see [25]).

Let N(i) be a set of all neighborhoods of the vertex i, i.e. N(i) = {k | k ∈ V, k ∼ i},

and d(i, j) the distance between vertices i and j. Denote by Γd a set of all d-regular
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graphs, 1 ≤ d ≤ n− 1, with diameter D = 2 and |N(i) ∩N(j)| = d. Further, denote

by t = t(G) a number of spanning trees of the connected graph

t = t(G) =
1

n

n−1
∏

i=1

µi,

and by ID = ID(G) the graph invariant called inverse degree

ID = ID(G) =
n
∑

i=1

1

di
.

In this paper we are concerned with the lower bounds of Kf(G) which depend

on some of the parameters n, m, ∆, and invariants R−1, M1, M2 or F . Before

going further, we recall some results from the literature needed for our subsequent

consideration.

2 Preliminaries

In this section we outline some results for the invariants Kf(G), M1, M2, F , t and

R−1 that will be needed in the remainder of the paper.

In [28] the following result was proved for the Kf(G):

Lemma 2.1. [28] Let G be a simple connected graph with n ≥ 2 vertices and m

edges. Then

Kf(G) ≥ −1 + (n− 1)

n
∑

i=1

1

di
, (1)

with equality if and only if G ∼= Kn or G ∼= Kr,n−r, 1 ≤ r ≤
⌊

n
2

⌋

.

Remark 2.2. We believe that equality in (1) holds also when G ∈ Γd and G ∼= Kn−e.

This only increases importance of the above inequality.

In [23] the following was proved for the general Randić index:

Lemma 2.3. [23] Let G be a simple connected graph with n ≥ 3 vertices and m

edges. Then, for any real k with the property ρ1 ≥ k ≥ ρn−1, holds

2R−1 ≥
n

n− 1
+

n− 1

n− 2

(

k −
n

n− 1

)2

, (2)

with equality if and only if k = n
n−1

and G ∼= Kn, or k = 2 and G ∼= Kn

2
,n
2
.
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In [13, 22, 24] for the Forgotten index the following results were established:

Lemma 2.4. [13] Let G be a simple graph with n vertices and m edges. Then

F ≤ (∆ + δ)M1 − 2m∆δ, (3)

with equality if and only if G is regular or bidegreed graph.

Lemma 2.5. [24] Let G be a simple connected graph with n ≥ 2 vertices and m

edges. Then

F ≤ 2m(∆2 +∆δ + δ2)− n∆δ(∆ + δ), (4)

with equality if and only if G is regular or bidegreed graph.

Lemma 2.6. [22] Let G be a simple connected graph with n ≥ 2 vertices and m

edges. Then

F ≤
M1

2m
+ 2mβ(S)(∆− δ)2, (5)

where

β(S) =
1

2m

∑

i∈S

di

(

1−
1

2m

∑

i∈S

di

)

and S is a subset of I = {1, 2, . . . , n}which minimizes the expression
∣

∣

∣

∣

∣

∑

i∈S

di −m

∣

∣

∣

∣

∣

.

Equality in (5) holds if and only if L(G) is regular.

In [4] (see also [15]) for the first Zagreb index, M1, the following was proved:

Lemma 2.7. [4] Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

M1 ≤ 2(∆ + δ)m− n∆δ, (6)

with equality if and only if G is regular or bidegreed graph.

For the same invariant in [21] the following was proved:

Lemma 2.8. [21] Let G be a simple connected graph with n ≥ 2 vertices and m

edges. Then

M1 ≤
4m2

n
+ nα(n)(∆− δ)2, (7)
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where

α(n) =
1

4

(

1−
(−1)m+1 + 1

2n2

)

.

Equality in (7) holds if and only if G is regular.

For the number of spanning trees, t, of a graph the following was proved in [5]:

Lemma 2.9. [5] Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

t ≤
1

n

(

4m2 −M1 − 2m

(n− 1)(n− 2)

)
n−1

2

, (8)

with equality if and only if G ∼= Kn.

For the same invariant in [1] the following was proved:

Lemma 2.10. [1] Let G be a simple connected graph with n ≥ 2 vertices and m

edges. Then

t ≥

(∏n
i=1

di

2m

)(

1

n− 1

(

n2 − (n− 2)(n+ 2R−1)
)

)
n−1

2

, (9)

with equality if and only if G ∼= Kn.

3 Main results

We will first prove one general result for the lower bounds of Kf(G) in terms of one

of the invariants R−1, M2, F or M1.

Theorem 3.1. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥ −1 + 2(n− 1)R−1, (10)

Kf(G) ≥ −1 +
2(n− 1)m2

M2

, (11)

Kf(G) ≥ −1 +
4(n− 1)m2

F
, (12)

Kf(G) ≥ −1 +
4(n− 1)m2

∆M1

. (13)

Equalities hold if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.



82

Proof. In [19] the following inequality was proved

ID ≥ 2R−1.

From the inequality
∑

i∼j

didj
∑

i∼j

1

didj
≥ m2,

follows that

R−1 ≥
m2

M2

.

Also, the following holds

2M2 = 2
∑

i∼j

didj ≤
∑

i∼j

(d2i + d2j) =
n
∑

i=1

d3i = F,

and

F1 =
n
∑

i=1

d3i ≤ ∆
n
∑

i=1

d2i = ∆M1.

Accordingly, we have that

ID ≥ 2R−1 ≥
2m2

M2

≥
4m2

F
≥

4m2

∆M1

. (14)

From (14) and (1) inequalities (10) – (13) are obtained.

If in (10) – (13) invariants R−1, M2, F and M1 are replaced with corresponding

lower bounds, a number of lower bounds for Kf(G) depending on various graph

parameters can be obtained. In what follows we will illustrate this.

From (10) and (2) the following corollary of Theorem 3.1 is obtained.

Corollary 3.2. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then for any real k, ρ1 ≥ k ≥ ρn−1, holds

Kf(G) ≥ n− 1 +
(n− 1)2

n− 2

(

k −
n

n− 1

)2

, (15)

with equality if and only if k = n
n−1

and G ∼= Kn, or k = 2 and G ∼= Kn

2
,n
2
.

Since

ρ1 ≥
∆+ 1

∆
≥

n

n− 1
≥ ρn−1,

according to (15), the following corollary of Theorem 3.1 holds.
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Corollary 3.3. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

Kf(G) ≥ n− 1 +
(n− 1)2

n− 2
max

{

(

ρ1 −
n

n− 1

)2

,

(

ρn−1 −
n

n− 1

)2
}

,

with equality if and only if G ∼= Kn or G ∼= Kn

2
,n
2
.

Corollary 3.4. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥ n− 1, (16)

with equality if and only if G ∼= Kn.

The inequality (16) was proved in [17]. It is not difficult to see that (16) can be

obtained from (10) and inequality (see [16])

2R−1 ≥
n

n− 1
.

Corollary 3.5. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

Kf(G) ≥ n− 1 +
(n− 1−∆)2

(n− 2)∆2
,

with equality if and only if G ∼= Kn.

Corollary 3.6. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
n(n− 1)−∆

∆
, (17)

with equality if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Proof. The inequality (17) is obtained from (10) and inequality

R−1 ≥
n

2∆

which proved in [2].

The inequality (17) was proved in [25].

According to Lemma 2.4 the following corollary of Theorem 3.1 can be obtained.
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Corollary 3.7. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
4(n− 1)m2

(∆ + δ)M1 − 2mδ∆
− 1,

with equality if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Corollary 3.8. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
32(n− 1)m3δ∆

(∆ + δ)2M2
1

− 1, (18)

with equality if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Proof. After applying the arithmetic-geometric mean (AG) inequality on (3), i.e. on

F + 2m∆δ ≤ (∆ + δ)M1,

the inequality

F ≤
(∆ + δ)2M2

1

8mδ∆

is obtained. From this and (12) we obtain (18).

From Lemma 2.5 the following corollary of Theorem 3.1 is obtained.

Corollary 3.9. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
4(n− 1)m2

2m(∆2 +∆δ + δ2)− n∆δ(∆ + δ)
− 1,

with equality if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Similarly, from Lemma 5 and (12) the following corollary of Theorem 3.1 is ob-

tained.

Corollary 3.10. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
8(n− 1)m3

M2
1 + 4m2β(S)(∆− δ)2

− 1,

where

β(S) =
1

2m

∑

i∈S

di

(

1−
1

2m

∑

i∈S

di

)
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and S is a subset of I = {1, 2, . . . , n} which minimizes the expression
∣

∣

∣

∣

∣

∑

i∈S

di −m

∣

∣

∣

∣

∣

.

Equality holds if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Corollary 3.11. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
4(n− 1)m2

∆(2m(∆ + δ)− n∆δ)
− 1,

with equality if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Proof. The required inequality is obtained from (6) and (13).

Corollary 3.12. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
4n(n− 1)δ

(∆ + δ)2
− 1,

with equality if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Proof. After applying the AG inequality on (6), i.e. on

M1 + n∆δ ≤ 2m(∆ + δ),

the inequality

M1 ≤
(∆ + δ)2m2

n∆δ

is obtained (see [6, 8, 12, 20]). The required inequality is obtained from the above

inequality and (13).

From (7) and (13) the following corollary of Theorem 3.1 is obtained.

Corollary 3.13. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
4n(n− 1)m2

∆(4m2 + n2α(n)(∆− δ)2)
− 1,

where

α(n) =
1

4

(

1−
(−1)n+1 + 1

2n2

)

.

Equality holds if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.



86

Corollary 3.14. Let G be a simple connected graph with n ≥ 2 vertices and m edges.

Then

Kf(G) ≥
2m(n− 1)

∆2
− 1,

with equality if and only if G ∼= Kn, or G ∼= Kn

2
,n
2
, or G ∈ Γd.

Proof. The required result is obtained from (13) and inequality

M1 ≤ 2m∆.

The following corollary of Theorem 3.1 sets up a lower bound for Kf(G) in terms

of parameters n and m and the invariant t.

Corollary 3.15. Let G be a simple connected graph with n ≥ 3 vertices and m edges.

Then

Kf(G) ≥
4(n− 1)m2

∆(4m2 − 2m− (n− 1)(n− 2)(nt)
2

n−1 )
− 1, (19)

with equality if and only if G ∼= Kn.

Proof. From inequality (8) follows

M1 ≤ 4m2 − 2m− (n− 1)(n− 2)(nt)
2

n−1 .

From the above and inequality (13) we arrive at (19).

Similarly, the following can be proved:

Corollary 3.16. Let G be a simple connected graph with n ≥ 3 vertices and m edges,

and let t be the total number of spanning trees of G. Then

Kf(G) ≥
n− 1

n− 2

(

2n− (n− 1)

(

2mt
∏n

i=1
di

)
2

n−1

)

− 1,

with equality if and only if G ∼= Kn.

Proof. From (9) follows

2R−1 ≥
1

n− 2

(

2n− (n− 1)

(

2mt
∏n

i=1
di

)
2

n−1

)

.

From the above and inequality (10) we obtain the required result.
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Let us note that the connectivity condition for the graph G does not deteriorate

the generality of the results. Namely, a graph G can be observed as a union of

connected components as well.
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Randić index R−1 of graph, Appl. Math. Comput. Sci. 1 (1) (2016) 9–13.



89
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