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ABSTRACT. The Graovac-Pisanski indexGP index) is an algebraic approach for
generalizing the Wiener index. In this paper, wenpaote the difference between the
Wiener and5P indices for an infinite family of polyhedral gragh
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INTRODUCTION

The Wiener number is defined as the half sum dhdies between all pairs of vertices
in a molecular graph, see: IMMER, 1947; GTMAN and PLTES, 1991; KAvVZAR and
ZEROVNIK, 1996; DDBRYNIN et al.,2001,2002;V UKICEVIC and GRAOVAC, 2004; KAVZAR and
GUTMAN, 2006; WAGNER, 2006, 2010; AANG et al.,2008, 2010; Zou and TRINAJSTIC, 2009;
HEYDARI and QWTMAN, 2010; FURTULA, 2013;GHORBANI and GiORBANI, 2013;LIN, (2013a,b,
2014; QTMAN and KREKOVSKI, 2014; KOOREPAZANMOFTAKHAR and ASHRAFI, 2015;
SHABANI and AsHRAFI, 2016.

Let G be a group anf be a non-empty set. An action®fonQ is a functionp:G x Q
— Q where §,X —¢(g,X) that satisfies the following two properties (wendtep(g,X) asxd):
a® = for allain Q and 9" = o9 for all g,hin G. The orbit of an element 0 Q is denoted
by o€ and it is defined as the set of @] g0 G. The stabilizer of element 0 Q is defined as

G, ={g0G.a%=a}. LetH =G,. Then fora,0Q (a # f), Hs is denoted by, On the

other hand, the orbit-stabilizer theorem impliest #1°].1G,| = [G|.

A bijectionf on the vertices of grapXis called an automorphism Kfwhich preserves
the edge sek. In other words, the bijectiohon V(X) is an automorphism #=uv is an edge,
then f(e) = f(u) f(\) is an edge oE in which the image of vertaxis denoted byf (u). The

set of all automorphisms of s denoted byAut(X) . It is not difficult to see that Aux) under

the composition of mappings forms a group. Thisugracts transitively on the set of vertices,
if for a pair of vertices such asandv in V(X), there is an automorphisgnJAut(X) such that

g(u) = v.

The modified Wiener index was introduced in 1991AbyGRAOVAC and T. FSANSKI
to count the symmetries of a graph, see [17]. Todified Wiener index is also called Graovac-
Pisanski index as suggested MH@ERBANI and S. KAVZAR in [16]. Consider the grapkwith
automorphism groufs = Aut(X) . Then the Graovac-Pisanski indexXois
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wex) =V s 5 g0y 1(y) 1)

2|G | wivtx) Te
Theorem 1 (GRAOVAC and Pisanski, 1991). Let X be a graph with automorphism group
G =Aut(X) and vertex set K). Let Vi, V2, ...,Vk be all orbits under the actid@h on V(X).
Then

H K- W(V,
W(x) = V()| 5 W) )

i1 |Vl

The difference between Wiener and modified Wiendides is defined in kkimi -NEZHAAD
and GHORBANI (2014) as

0
d(X) = W(X)-W(X). (3)

It is clear thaKX is vertex-transitive if and only if the differennamber is zero. Many properties
of this topological index are studied inLEN et al.,1995; LN, 2014; AsHRAFI et al.,2015;
AsHRAFIand DUDEA, 2016; AsHRAFIand $ABANI, 2016; GIORBANI et al.,2016; GHORBANI
and HakiMI -NEzZHAAD, 2016, 2017; GORBANI andKLAVZAR, 2016. It can be resulted from
Eq. (2) that the difference number is closely eab the number of orbits of AXY). In other
words, the difference number is equal with the Wrenumber if the regarded graph is
asymmetric (a graph without non-trivial symmetrgraknt). It is not difficult to see that in this
case the number of orbits is equal with the nunolbeertices.

MAIN RESULTSAND DISCUSSION

A polyhedral graph is a 3-connected simple plamaply. GIORBANI et al.in a series of
papers [ASHRAFIand GiORBANI, 2009, 2010; AHRAFI et al.,2010;GHORBANI, 2010, 2013;
GHORBANI andGHORBANI, 2013; GIORBANI et al.,2016; GiIORBANI andHAKIMI -NEZHAAD,
2016, 2017] introduced some new classes of polgheghaphs with tetragons, pentagons,
heptagons and octagons. In this paper, we alsodinte an infinite class of cubic polyhedral
graphs with tetragons, pentagons and hexagonsetkhgi4,5,6)-polyhedral graphs. This class
of polyhedral graphs has exactlyn#B vertices, wher@ is an integer greater than or equal
with 3and thus, we denote this new family of cybityhedral graphs b@ien+s, see Figures 1
and 2.

Figure 1.Cienesforn= 3. Figure 2.Cignrsfor n=4.

Let s, p, h, nandm be respectively the number of tetragons, pentagoesagons,
carbon atoms and bonds between them, in a given6j§4polyhedral graph. By Euler’s
formula,we have
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n - me(s+p+h) = 2. 4)
Since this graph is cubic, we have

2m = 3. (5)
On the other hand

4s+ 5p + 6h = 2m. (6)

This yieldss = 2,p= 8 andh = 8n - 4, forn > 3. Consider now the dihedral groGpn» with the
following presentation:

Do, = <a, b:d'=F= 1bta él>.
This group is considered as the symmetry group afymmolecular graphs such as fullerenes
and polyhedral graphs. This group is of ordem&th two generators of ordersand 2. The
cyclic group¢ | of ordern is also a group with generain which ¢ = ={g, ¢ ...,g" = 1}.
Lemma 2. Letn = 3. The automorphism group of the gr&h+gis isomorphic with the group
¢, %D
Proof. The polyhedral grapRien+s, for n=3is depicted in Figure 3. L&=Aut(Cien+s). If «
denotes the rotation @en+sfor 90° andp,y are two reflections over the central vertical lines
thenG =< a, B,y > .On the other handx a,5,y >~ F 1€, where

a' =2 =y* =1, Bap=a"", By=yp, ay=ya. (7)
Hence, one can verify that a,8,y f ¢ ,xD,. On the other hand, the orbit-stabilizer theorem

implies that|G Flf K IG, | Next, consider the action of subgroGp Any symmetry of the

polyhedral grapl€Cse which fixes vertex 1 must also fixes the oppogéagex 3. Then applying
again orbit-stabilizer property states th& |3* K |G , | It is not difficult to prove that

|G, ; F 2and| 3* |= 1. Hence, G1| = 2. On the other han@® £ {1, 2, 3, 4, 53, 54, 55, 56} and
thus 5| = 16. This means th& [1¢ , x D;.

Theorem 3. The automorphism group of the grapfan+sis isomorphic with the group , x D,.

Proof. Similar to the proof of Lemma 2, suppose thatenotes the rotation @6+ for 90°
and thap,y are two reflections over the central vertical in€herG [p a, 8,y f U¢ », x Dg.

\ /
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Figure 3. Labeling of the polyhedral grafhg,,g for n=3.

Theorem 4. Consider the nanotulledepicted in Figure 4. For> 3
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W(L) =223 11282 + 3201 224 )
3 3

wheren + 1 is the number of layers bf
Proof. Suppose the vertices of the last layerldre {u, Uz, ...,uie}. Let ty be two times the
Wiener index of graph. A straightforward computation yields the recuoen

WL)=t,= ¥ dixy+ X dxy+2 X dxy

X, you x YOV\U XU, Y1 U ©)
=1024+t1+ 2 X d,y).
x0U, yaV\U

To compute the summatiop avud(x Y by using the symmetry of the graphwe have

> d(xy) =8(d(u) +d(uy)),

AU, yov \U

Whered(u,) = Zd(ul, y) andd(u,) is defined similarly, see Figure 4. By computihgge
yIV\U
values, one can see that:

d(u,) =16n*-8n-12,
d(u,) =16n% +8n- 44,
This implies thatn+1 = 1024+t +8(d(u,) +d(u,)). The solution of this recurrence is

W(L) =256 3 11282+ 220 224 (11)
3 3

5]

u; Uy

(10)

Uio Ugg

¢

Figure 4. 2 D graph of nanotubk.

Theorem 5. Forn> 3, we have

1664

2905 L 342 +=n -324 (12)

W(Cygnsg) = ?
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Proof. First we partite the vertices of graph into thrabsetsB, U andW, whereB = {vi, V>,
e Vil U={uy, ...,us and W= {wy, ..., w} are respectively the set of vertices of the in&ér
cap the vertices of nanotuldleand the vertices of outer cap, see Figure 5. Tdtartte matrix
D can be written as following block form:

V B W
D={B U B
W B V

The entries of matrik is computed in Theorem 4. It is easy to see tle¥fiener index
is equal to the half-sum of distances of the distamatrixD between all pairs of vertices. For
given polyhedral grapiC,4,.5, the matrix V is constant as shown in Figure 6e $ammation
of entries of matrix V is 696. Obviously, the dista matriceB8, U, andW depend to the
number of rows in the nanotube

Figure 5. Labeling of the polyhedral grafhg,,g for n=3.

In other words, ifwn andwn.1 are the Wiener indices of the polyhedral graghg,.sand
Cien-1)+8» respectively, then similar to the proof of theedrem 1, fon > 4, we have:

Ws —Ws3 = 6400Ws —ws = 9216Ws —Ws = 125447 —we = 16384. (13)
Again, a straightforward computation yields theureence

W, —W,_; = 25@° +51h+256 (14)
The solution of this recurrence is
W(Cygnsg) = 2%6 N +384n° +%4n— 324 (15)

This completes the proof.
Corollary 6. For the polyhedral grapBien+s, we have
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3(Cren+9) :6—; n° -96n° +%76 n-360 n=> 3 (16)
Proof. By using Theorem 3, fon > 3, we haveAut(Cyg,+g) 0Z ,x Dg. By using Eq. (2),
similar to the proof of Theorem 4, one can conclindg

W (Cpgn+g) = 64n° + 480n° + 296+ 3€ (17)
This completes the proof.

CONCLUSION

In this paper, we introduced a new family of cupmyhedral graphs and then we
computed its Graovac-Pisanski index. We also coetpthie difference between Wiener and
GP indices for this class of polyhedral graphs.
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