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ABSTRACT. The Graovac-Pisanski index (GP index) is an algebraic approach for 
generalizing the Wiener index. In this paper, we compute the difference between the 
Wiener and GP indices for an infinite family of polyhedral graphs. 
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INTRODUCTION 
 

The Wiener number is defined as the half sum of distances between all pairs of vertices 
in a molecular graph, see: WIENER, 1947; GUTMAN and ŠOLTÉS, 1991; KLAVŽAR and 
ŽEROVNIK, 1996; DOBRYNIN et al., 2001, 2002; VUKIČEVIĆ and GRAOVAC, 2004; KLAVŽAR  and 
GUTMAN , 2006; WAGNER, 2006, 2010; ZHANG et al., 2008, 2010; ZHOU and TRINAJSTIĆ, 2009; 
HEYDARI and GUTMAN , 2010; FURTULA, 2013; GHORBANI and GHORBANI, 2013; LIN, (2013a,b, 
2014; GUTMAN  and ŠKREKOVSKI, 2014; KOOREPAZAN-MOFTAKHAR and ASHRAFI, 2015; 
SHABANI  and ASHRAFI, 2016. 

Let G be a group and Ω be a non-empty set. An action of G on Ω is a function φ:G × Ω 
→ Ω where (g,x) ↦φ(g,x) that satisfies the following two properties (we denote φ(g,x) as xg): 
αe = α for all α in Ω and (αg)h = αgh for all g,h in G. The orbit of an element α ∈Ω  is denoted 
by αG and it is defined as the set of all αg, g G∈ . The stabilizer of element α ∈Ω  is defined as 

{ : }.gG g Gα α α= ∈ =  Let H = Gα. Then for ,α β ∈Ω  (α ≠ β), Hα is denoted by Gα,β. On the 

other hand, the orbit-stabilizer theorem implies that |αG|.|Gα| = |G|. 
A bijection f on the vertices of graph X is called an automorphism of X which preserves 

the edge set E. In other words, the bijection f on V(X) is an automorphism if e=uv is an edge, 
then ( ) ( ) ( )f e f u f v=  is an edge of E in which the image of vertex u is denoted by ( )f u . The 
set of all automorphisms of X s denoted by Aut(X) . It is not difficult to see that Aut(X) under 
the composition of mappings forms a group. This group acts transitively on the set of vertices, 
if for a pair of vertices such as u and v in V(X), there is an automorphism Aut(X)g∈  such that 

( ) .g u v=  
The modified Wiener index was introduced in 1991 by A. GRAOVAC and T. PISANSKI 

to count the symmetries of a graph, see [17]. The modified Wiener index is also called Graovac-
Pisanski index as suggested M. GHORBANi and S. KLAVŽAR  in [16]. Consider the graph X with 
automorphism group Aut(X)G = . Then the Graovac-Pisanski index of X is 
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Theorem 1 (GRAOVAC and PISANSKI, 1991). Let X be a graph with automorphism group 
Aut( )G X=  and vertex set V(X). Let V1, V2, …,Vk be all orbits under the action G on V(X). 

Then 
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The difference between Wiener and modified Wiener indices is defined in HAKIMI -NEZHAAD 

and GHORBANI (2014) as  

( ) W( ) W( ).δ X X X
∧

= −       (3) 
It is clear that X is vertex-transitive if and only if the difference number is zero. Many properties 
of this topological index are studied in: KLEIN et al., 1995; LIN, 2014; ASHRAFI et al., 2015; 
ASHRAFI and DIUDEA, 2016; ASHRAFI and SHABANI , 2016; GHORBANI et al., 2016; GHORBANI 

and HAKIMI -NEZHAAD, 2016, 2017; GHORBANI and KLAVŽAR , 2016. It can be resulted from 
Eq. (2) that the difference number is closely related to the number of orbits of Aut(X). In other 
words, the difference number is equal with the Wiener number if the regarded graph is 
asymmetric (a graph without non-trivial symmetry element). It is not difficult to see that in this 
case the number of orbits is equal with the number of vertices. 
 
 

MAIN RESULTS AND DISCUSSION 
 

A polyhedral graph is a 3-connected simple planar graph. GHORBANI et al. in a series of 
papers [ASHRAFI and GHORBANI, 2009, 2010; ASHRAFI et al., 2010; GHORBANI, 2010, 2013; 
GHORBANI and GHORBANI, 2013; GHORBANI et al., 2016; GHORBANI and HAKIMI -NEZHAAD, 
2016, 2017] introduced some new classes of polyhedral graphs with tetragons, pentagons, 
heptagons and octagons. In this paper, we also introduce an infinite class of cubic polyhedral 
graphs with tetragons, pentagons and hexagons denoted by (4,5,6)-polyhedral graphs. This class 
of polyhedral graphs has exactly 16n+8 vertices, where n is an integer greater than or equal 
with 3and thus, we denote this new family of cubic polyhedral graphs by C16n+8, see Figures 1 
and 2. 

  
Figure 1. C16n+8 for n = 3. Figure 2. C16n+8 for n = 4. 

 

Let s, p, h, n and m be respectively the number of tetragons, pentagons, hexagons, 
carbon atoms and bonds between them, in a given (4,5,6) polyhedral graph. By Euler’s 
formula,we have  
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n - m+(s+p+h) = 2.                                 (4) 
Since this graph is cubic, we have  

2m = 3n.     (5) 
On the other hand  

4s + 5p + 6h = 2m.                                 (6) 
This yields s = 2, p= 8 and h = 8n - 4, for 3≥n . Consider now the dihedral group D2n with the 
following presentation: 

2 1 1
2 , : , .n
nD  a  b a b  1 b ab a− −= = = =  

This group is considered as the symmetry group of many molecular graphs such as fullerenes 
and polyhedral graphs. This group is of order 2n with two generators of orders n and 2. The 
cyclic group n¢  of order n is also a group with generator g in which n¢  = {g, g2, ..., gn = 1}.  

Lemma 2. Let n = 3. The automorphism group of the graph C16n+8 is isomorphic with the group 

2 8.D×¢  

Proof. The polyhedral graph C16n+8, for n=3is depicted in Figure 3. Let G=Aut(C16n+8). If α 
denotes the rotation of C16n+8 for 90o and β,γ are two reflections over the central vertical lines, 
then , , .G α β γ≥p f On the other hand, | , , | 16α β γ =p f , where  

4 2 2 11, , .α β γ βαβ=α βγ=γβ,αγ=γα−= = =   (7) 

Hence, one can verify that 2 8α,β,γ D .≅ ×p f ¢  On the other hand, the orbit-stabilizer theorem 

implies that 1| | |1 | | | .GG G= ×  Next, consider the action of subgroup G1. Any symmetry of the 

polyhedral graph C56 which fixes vertex 1 must also fixes the opposite vertex 3. Then applying 
again orbit-stabilizer property states that 1

1 1 3| | | 3 | | , | .GG G= ×  It is not difficult to prove that 

1,3| | 2G = and 1| 3 | 1G = . Hence, |G1| = 2. On the other hand 1G = {1, 2, 3, 4, 53, 54, 55, 56} and 

thus |G| = 16. This means that 2 8G D .≅ ×¢  

Theorem 3. The automorphism group of the graph C16n+8 is isomorphic with the group 2 8.D×¢  

Proof. Similar to the proof of Lemma 2, suppose that α denotes the rotation of C16n+8 for 90o 

and that β,γ are two reflections over the central vertical lines. Then 2 8, , .G D≅ ≅ ×p f ¢α β γ  
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Figure 3. Labeling of the polyhedral graph 816 +nC  for n=3.  

 

Theorem 4. Consider the nanotube L depicted in Figure 4. For n ≥ 3 



94 
 

3 2256 320
( ) 128 224,

3 3
W L n n n= + + −                                 (8) 

where n + 1 is the number of layers of L. 
Proof. Suppose the vertices of the last layer are U = { u1, u2, …,u16}. Let tn be two times the 
Wiener index of graph L. A straightforward computation yields the recurrence 

, , \ , \

1
, \

2 ( ) ( , ) ( , ) 2 ( , )

1024 2 ( , ).

n
x y U x y V U x U y V U

n
x U y V U

W L t d x y d x y d x y

t d x y

∈ ∈ ∈ ∈

−
∈ ∈

= = + +∑ ∑ ∑

= + + ∑
                (9) 

To compute the summation 
, \

( , )
x V y V U

d x y∈ ∈∑  by using the symmetry of the graph L, we have  
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Where ∑
∈

=
UVy

yudud
\

11 ),()(  and )( 2ud  is defined similarly, see Figure 4. By computing these 

values, one can see that: 

.44816)(

,12816)(
2

2

2
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−+=

−−=

nnud

nnud
                     (10) 

This implies that tn+1 = nt+1024 + ))()((8 21 udud + . The solution of this recurrence is 

3 2256 320
( ) 128 224.

3 3
W L n n n= + + −           (11) 
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Figure 4. 2 - D graph of nanotube L. 
 

Theorem 5. For n ≥ 3, we have 

.324
3

1664
384

3
256

)( 23
816 −++=+ nnnCW n   (12) 
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Proof. First we partite the vertices of graph into three subsets B, U and W, where B = {v1, v2, 
…, vr}, U = {u1, …, us} and W = {w1, …, wr} are respectively the set of vertices of the internal 
cap, the vertices of nanotube L and the vertices of outer cap, see Figure 5. The distance matrix 
D can be written as following block form: 

.

V B W

D B U B

W B V

 
 =  
 
 

 

The entries of matrix U is computed in Theorem 4. It is easy to see that the Wiener index 
is equal to the half-sum of distances of the distance matrix D between all pairs of vertices. For 
given polyhedral graph 816 +nC , the matrix V is constant as shown in Figure 6. The summation 

of entries of matrix V is 696. Obviously, the distance matrices B, U, and W depend to the 
number of rows in the nanotube L. 
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Figure 5. Labeling of the polyhedral graph 816 +nC  for n=3.  

 
In other words, if wn and wn-1 are the Wiener indices of the polyhedral graphs 816 +nC and 

8)1(16 +−nC , respectively, then similar to the proof of the Theorem 1, for n ≥ 4, we have: 

w4 – w3 = 6400,w5 – w4 = 9216,w6 – w5 = 12544,w7 – w6 = 16384.  (13) 
Again, a straightforward computation yields the recurrence 

.256512256 2
1 ++=− − nnww nn     (14) 

The solution of this recurrence is 

3 2
16 8

256 1664
W(C ) 384 324.

3 3n n n n+ = + + −    (15) 

This completes the proof. 

Corollary 6. For the polyhedral graph C16n+8, we have 
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3 2
16 8

64 776
( ) 96 360 3.

3 3nC n n n nδ + = − + − ≥    (16) 

Proof. By using Theorem 3, for n ≥ 3, we have 16 8 2 8Aut( )nC D+ ≅ ×Z . By using Eq. (2), 

similar to the proof of Theorem 4, one can conclude that 
3 2

16 8Ŵ( ) 64 480 296 36.nC n n n+ = + + +      (17) 

This completes the proof. 
 
 

CONCLUSION 
 

In this paper, we introduced a new family of cubic polyhedral graphs and then we 
computed its Graovac-Pisanski index. We also computed the difference between Wiener and 
GP indices for this class of polyhedral graphs. 
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0 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 3, 2, 3, 4,

1 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 4, 3, 2, 3,

2 1, 0, 1, 2, 3, 4, 5, 4, 5, 4, 3, 3, 2, 1, 2,

3 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 4, 3, 2, 3,

4 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 3, 4, 3, 2,

5 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 2, 3, 2, 1,

6 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 3, 4, 3, 2,

5 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 2, 3, 4, 3,

4 5, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 1, 2, 3, 2,

3 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 2, 3, 4, 3,

2 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 3, 2, 3, 4,

1 2, 3, 4, 5, 4, 5, 4, 3, 2, 1, 0, 2, 1, 2, 3,

3 4, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 0, 1, 2, 1,

2 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 1, 0, 1, 2,

3 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 2, 1, 0, 1,

4 3, 2, 3, 2, 1, 2, 3, 2, 3, 4, 3, 1, 2, 1, 0,

V

 

Figure 6. 
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