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ABSTRACT. Seth’s transition theory is applied to the problefnstresses in a solid
rotating disk under heat generation subjected toabke density by infinitesimal
deformation. Neither the yield criterion nor the@dated flow rule is assumed here. The
results obtained here are applicable to compressilblterials. If the additional condition
of incompressibility is imposed, then the expressior stresses corresponds to those
arising from Tresca yield conditiorit has been seen that circumferential stress are
maximum at the outer surface for incompressibleenslt as compare to disk made
compressible materials. Density variation paramemeases the value of circumferential
as well as radial stress at the outer surface d¢ifl stisk for compressible and
incompressible materials. The present solutiodlustiated by numerical results and is
compared with heat generation case.
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INTRODUCTION

Rotating disks have a wide range of applicatioangineering, such as steam and gas turbine,
turbo generator, flywheel of internal combustiongiees, turbojet engines, reciprocating
engines, centrifugal Compressors, brake disk andksfit. The analytical elasticity-plasticity
of such rotating disks of isotropic materials canfdund in many books (WOSHENKO et al,
1970, dHNSONet al, 1978), and the stress analysis in curviline#tnatropic disks can also
found in (LEkHNITSKII et al, 1981) The theoretical and experimental invetitga on the
rotating solid disk have been widespread attentioe to the great practical importance in
mechanical engineering. For a better utilizationtleé material, it is necessary to allow
variation of the effective material or thickneseperties in one direction of the solid disk.
Most of the research works are concentrated oramadytical solutions of rotating isotropic
disks with simple cross-section geometries of unifdhickness and specifically variable
thickness. The solution of a rotating solid diskhagonstant thickness is obtained by(ER,
1984, 1985) taking into account the linear straandiening material behavior. @R, 1984)
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found the elastic-plastic deformation of the retgtisolid disk under the assumptions of
Tresca’s yield condition, its associated flow raled linear strain hardening. To obtain the
stress distribution, they matched the plastic seesat the same radius= z of the disk.
Thermal stresses in a body due to heat sourcesnaintered in many engineering design
and applications. Nuclear reactors are one exanghstrical conductors and chemically
reacting systems are others.

The thermal stress distribution of a strain hantigrsphere due to a uniform heat source
was investigated by ABTIDAR et al, 1972) using the Ramberg-Osgood unaxial streagist
relation. The effect of temperature on the transweribration of a rotating disk of variable
thickness was investigated byHGsH, 1975) considering a uniform heat sourceu\et al.
(1999) analyzed Elastic-plastic stresses in a ingtasolid disk. @VEN (2000) analyzed
elastic-plastic solid disk with non-uniform heauste subjected to external pressureAT
et al. (2002) analyzed on the rotating elastic—plasti@dsdisks of variable thickness having
concave profiles. HAKUR et al (2015) investigated Infinitesimal deformationarsolid Disk
by using Seth’s transition theoryHAKUR et al (2015) studied elastic-plastic infinitesimal
deformation in a solid disk under heat effect bingsSeth’s theory. AiAKUR et al (2015)
investigated thermo elastic-plastic deformatioraisolid disk with heat generation subjected
to pressure.

METHODOLOGY

(SETH, 1962) proposed transition Theory and defined gdized strain measure. Seth’s
defined transition function for elastic-plastic aockep state. When a deformable solid is
subjected to an external loading system, it has ldeserved that the solid first deforms
elastically. If the loading is continued, plastioW may set in, and if continued further, it
gives rise to time dependent continuous deformatimmwn as creep deformation. It may be
possible that a number of transition states maymet the same critical point, then the
transition function will have different values, atite point will be a multiple point, each
branch of which will then correspond to a differstdte. In general, the material from elastic
state can go over into (i) plastic state, or tpdiieep state, or (iii) first to plastic state ahdn
to creep and vice-versa, depending upon the loading

All these final states are reached through a ifiansstate. In the plane stress condition,
the transition can take place either through thecppal stresses, or r, becoming critical

or through the principal stress difference-r, becoming critical. Hence we have to
consider the following three casea) {Transition througtr,, , (b) Transition throughr,,, (C)
Transition througlr,, -7, . For each transition point, we have to determire dtresses and

strains corresponding to the above three casel'sSednsition theory does not acquire any
assumptions like a yield condition, incompressipitondition and thus poses and solves a
more general problem from which cases pertaininthéoabove assumptions can be worked
out. It utilizes the concept of generalized straigasure and asymptotic solution at critical
points or turning points of the differential equais defining the deforming field and has been
successfully applied to a large number of the mwoisl (WPTA et al, 2007, 2008) and
(THAKUR et al, 2010, 2014, 2015). Results have been discusseetnally and depicted
graphically. In general, steady-state temperataet generation may be a function of space or
temperature (BvyAziToGLU et al, 2008). This work is concerned with the steadyrriia
stresses in a solid disk under heat generatiorestda to variable density. For the problem
considered here, heat generation géi¥ is a function of the radial position in the form
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where q, is the magnitude of the heat generationrat O, r is measured from the centre of

solid disk,a is the radius of disk. The analysis is based orugwal assumptions of a plane
stress state. The density of the disk vary aloegdlius in the form

p=po(ria)" 1(b)
where p, is the constant density at a andm s the density parameter

MATHEMATICAL MODEL AND BASIC EQUATIONS OF THE PROBLEM)

We consider a state of plane stress and assunméesfimal deformation. Suppose that solid
disk having of variable density with radias The disk is rotating with angular velocity
about an axis perpendicular to its plane and pggdbiough the centre. The thickness of disk
is assumed to be constant and is taken to be isumffig small so that the disk is effectively in
a state of plane stress that is, the axial strgsis zero. The cylindrical polar coordinates are

given by (&TH, 1962):

u=r@1-p8);v=0;, w=dz (2)

whereg is function of r = \>®+y* only andd is a constant.
The strain components for infinitesimal deformataoa:

A A A A A A
grrE%Z[l_(rﬁ’+ﬁ)]'£&gE%z[l—ﬁ], 5225?3—\;v=d. Er0 =gz =€2r =0 3)

The generalized components of strain are giveaKUR, 2010):

&0 =128+ 8) 1" | w1269 e = [ i) e == <0 @)

where B =dg/dr. The stress —strain relations for isotropic masligiven by (Sokolnikoff,
1952):

1, =A5) 1, +2ug -&0q , (,]=1,2,3) (5)
wherer; is the stress components; strain componentd , 4 are Lame’s constants = ¢,
is the first strain invariantg; is the Kronecker's delta wheig=a(31+2u); @ being the

coefficient of thermal expansion am®l is a temperature. The mathematical formulation of
the steady-state one-dimensional heat flow witht searce is given (BrAzITOGLU et al,
2008) by

1d| do(r)| a(r) _, .
?a{r - }T_O in0<r<a (6)
The temperature field satisfying equation (6) and
di—sr)zo at r=0,0(r)=0 at r=a.Using equation 1(a) and these boundary conditions,

the steady-state temperature distribution is obthas:



2 2 s+2
o(r)=2%2 1—(% 4 1—(% : wherek is the thermal conductivityEquation (5)
4k a)  (s+ 2)2 a

for this problem becomes:

2uéEO - 2Au - 2uéEO

/1+2,u A+2u" % yw2u A+2u’

I;=0=Tg= T€z=0' (7)
From equation (5), strain components in termsreflsses are obtained as:

[ +Egg |+ 208, ~ [ +&gg |+ 21Egy -

rr

ou_ 1 u_1 v
&y =E=E[qr _VT99:|+091599 :_:_[THH_VTrr]"'ae!gzz = __[Trr_T66:|+ael€rr =& =&y =0 (8)
r E E
where E :M and v=—2 . Substituting equation (4) in equation (7), thesies

(A+u) 2(A+ )

are obtained as:

:2—5{3‘26‘{2‘3(P+1>-1”“(%c> (7 (rg-12),

Tyezz_rfl{:g ZC{ (P+3- }”/2 (- )_n/z( C)_%}Tzzzrzr:ﬁezfaz:o’ 9)

where rg =pP andc= y i‘; .The equations of equilibrium are all satisfiedeptc
7

%(rr”)—rgg+pa)2r2:0 (10)

Using equations (9) and (6) in equation (10), weageon -linear differential equation fh
as:

o | _
MU {2p(p+)-§"

[1+nf;;;plgf-]}@}{Zﬁ-n}n/{l__@g;}ﬂ 1)

- (5

' qo 4 r s+l 2
whereP (P is function of Sand £ function of r Jande'(r) = Ak [m(—] -
TRANSITION POINTS: Transition points of in equation (11) are - 0and P z». P 0
gives nothing of importance.

BOUNDARY CONDITION: The solid disk considered in the present studwith heat
generation. The inner surface of the disk is assutode zero. The outer surface of the disk
is applied mechanical load. Thus, the boundary itimnd of the problem are given by:

u=0 at r=0 and 7, =0 at r=a (12)

(2-c)np? P{2,6’ (P+1)- j}( ) ,3

SOLUTION OF THE PROBLEM

For finding the plastic stress, the transition fiort is taken through the principal stress (see
Seth, 1962, 1966; Gup# al., 2007, 2008; Thakuet al, 2010, 2014, 2015) at the transition
pointP — +o0. We define the transition functidRas:
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where ¢ transition function of.

Taking the logarithmic differentiation of equatig¢b3) with respect to and using equation
(11), we get:

I el -4

(3¢} r-g(a5-1" iR 2§ -1
_nc(do/ di
d(I;)?c) __ A - (14)
r[s—z{zi(m—i (r@]
~(28-9"*(2¢
Taking the asymptotic value of equation (14pas +«~ and after integration we get:
= Ar_/l(z—c) (15)

whereA is a constant of integration which can be deteeshiby boundary condition. From
equation (13) and (15), we have:

el o]l

4k
Substituting (16) in equation (10) and using 1(grantegrating, we get:

. :{2#((2_5)} A/ (20) _chlj(a2 1_(%) P B
n(l-c 4 r\? 3-mb™ r
_(s+42)2 [1_(si3j(_aj ] ( )

where B is a constant of integration which can be deteechilby boundary condition.
Substituting equations (16) and (17) in equation\& get:

(17)

u_1l(2u) Hel 3-x | aEed(2-9(_ petr™™ B
o E[( n jAr {(1—0)(2— c)} k( s+ 2)( &3( g (3-m)5™ (18)
u_ (1-¢) | pePr®™ aBqd(1-9|  (rY__ Ast4 (r) B
rE(2-¢) (3-m)p™ 2k {l (3) (3+2)2(s+3)(aj ] r] (19)
where E= 2‘2(23__;) Is theYoung’'smodulus. Integrating equation (18) with respectrto,
we gets:
Loll(2u r% (3-2)|, aEqpd(2-9 YR et —

E{( n ]Al {(1—0)2} k(s+2)(s+3)2(a] (3- m® p" log ] 0 (20)

where D is a constant of integration which can be deterohibg boundary condition.
Comparing equations (19) and (20), one gets:
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(2-c)a 2(LJS3
W), oo 32 pfr*™ (¢ 1) aEqd (s+2)(s+322 (1-¢)+(2-¢) logr (21)
(n)’i“’{w}: e oo |l) 'Bl{ -9 }‘DE
22-c) | 2s+4) (LJM
7 o [ereate) | ,
and - E((lz‘f)c)[ (g?:;‘;_aE%az (-9 {1U _(Sfi)j*( 4)3)U H 22)

Using boundary conditions (12) in equations (22¢, gets:s=0. Putting equations (21) in
equation (17) and using boundary condition (11) gee

Putting

E|(3-m|2-c 3m (-9(23) Ks3(s3|l 3 (2 )} s ¢
values ofB,, D and using equations (21) in equations (16) andl (@Spectively, we get the
plastic stresses and displacement as:

[ e e e e

o R S e )
R Gt R Sl
(Bij)(zéi_zzgzgm {(fs'm-a}m)[%+ﬁj+a} {%H

| aEq@(1-9(2-9 r ** | aEgé(1- ):4 i(r 2
e ™ k(s+2)(s+3°(3- 2@{(61] 1} 2k(3—20)(2-©{( a) 1} (24)

D:i{powzaTl—c 1 -z ] aEqa {( 2—cj_(1—c)2(s+4) 3 2;}

(23)

aEqd(1- 9*(sr4) P | aEqd(2-9r). (1Y +aEq,é(l—()
| k(s+2(s+3)(2- 9(3 z){(éj 1} k(s+2)° {1 [a)} K(s+2)('sr3)
_ (1—0) Wfr3m  aE at”(l—c)r r 2 2(S+4) r s+2
u_E(Z—C)[(g—m)U“_ : 2k {_1{_61) _(s+2)2(s+3)(_a] H (©3)

Initial Yielding: For a solid disk the stress at the centre is gwkan r = 0. Withr equal to
zero the above equations will yield infinite stiessvhatever the speed of rotation, these
stresses are not meaningf@uppose we take yielding at=r, (say), then equation (23)

becomes:
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where g, denotes the initial yield stress. The angular dpeessary for inner-plastic-zone is

given by:
=) ¥-), @zé 3
(9 (=3(3 2

Q- (#°-) Q-g1($-3_dz i ¥

o (s 233)

_ Q(2-9 { Xl( 'j

(s+2)(s+3 X

1

@ =mod 2 (26)

bl e
2-c 3m
T .
wherex, =(0<r<r)/a(=0.4),Q= E”Z_Oaz 0 =—-.The stresses and displacement are
0 0

obtained in non dimension form as:

-9 (49

0 (o yl-d2-dire, 1) | QR-I(7-1)
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where gy =Tﬁ;u=%.
a, E

RESULTSAND DISCUSSION

To see the effect of stresses and displacememtbdisbn in a rotating solid disk following
values have been takern= 0 (Incompressible material), 0.25 (Compressihbgerial), 0.75
(Compressible materialQ, = 200, 400 ands = 3. In Figure 2-3, curve has been drawn
between stresses and displacement of the rotatimydisk having density parameten € 0,
0.25. 0.5) and having different values of heat sewlong the radii ratixq(r /a). It has been
seen that circumferential stress are maximum aother surface for incompressible material
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as compare to disk made compressible materialssiyevariation parameter increases the
value of circumferential as well as radial stressthe outer surface of solid disk for
compressible and incompressible materials. Witeotfbf heat generation, stresses and the
displacement must be increase for compressibleraodnpressible materials.

CONCLUSION

It has been seen that circumferential stress arginmian at the outer surface for
incompressible material as compare to disk madepoessible materials. Density variation
parameter increases the value of circumferentialedsas radial stress at the outer surface of
solid disk for compressible and incompressible nlte
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Figure 2. Stresses and displacement distribution
in solid disk.
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Figure 3. Stresses and displacement
distribution in solid disk.



