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ABSTRACT. The Merrifield–Simmons index σ = σ(G) of a graph G is the number of

independent vertex sets of G. This index can be calculated recursively and expressed

in terms of Fibonacci numbers. We determine the molecular graphs for which σ can be

recursively calculated in a single step.

1 Introduction: The Merrifield–Simmons index

In a series of articles [1–5], published in the 1970s and 1980s, Richard Merrifield and

Howard Simmons elaborated a mathematically oriented theory of molecular structure,

based on set topology. Eventually, this theory was outlined in the book [6]. Today,

more than 30 years later, we see that this theory fall into oblivion and is not pursued
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by any contemporary scholar. The only surviving feature of this theory is a quantity

that nowadays is referred to as the Merrifield–Simmons index .

Let G be a graph with vertex set V(G) = {v1, v2, . . . , vn}. An independent vertex

set of G is a subset of V(G), such that no two vertices in it are adjacent. The number

of distinct k-element independent vertex sets is denoted by n(G, k). By definition,

n(G, 0) = 1 for all graphs, and n(G, 1) = n.

The Merrifield–Simmons index is then defined as

σ = σ(G) =
∑

k≥0

n(G, k)

i.e., it is just the total number of independent vertex sets of the underlying graph

G [7].

The name “Merrifield–Simmons index” for the graph invariant σ was first time

used by one of the present authors [8]. Nowadays, in mathematical chemistry and

mathematics this name is commonly accepted. For details of the theory of the

Merrifield–Simmons index see the review [9], the recent papers [10–14], and the re-

ferences cited therein.

For the present consideration we need the following recurrence relations [6, 9].

If a graph G consists of disconnected components H1, H2, . . . , Hp, then

σ(G) =

p∏

i=1

σ(Hi) . (1)

Let v be a vertex of the graph G, and let Nv be the set consisting of the vertex v

and its first neighbors. Then

σ(G) = σ(G− v) + σ(G−Nv) . (2)

The Fibonacci numbers Fn , n ≥ 0 are defined recursively as

Fn = Fn−1 + Fn−2

with initial conditions F0 = F1 = 1. Thus

F2 = 2 , F3 = 3 , F4 = 5 , F5 = 8 , F6 = 13 , F7 = 21 , F8 = 34

etc.
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When formula (2) is applied to the terminal vertex of the n-vertex path Pn, we

get

σ(Pn) = σ(Pn−1) + σ(Pn−2) (3)

a relation that has the same form as the recurrence relation for the Fibonacci numbers.

By direct calculation, we can check that σ(P1) = 2 and σ(P2) = 3, from which, by

using Eq. (3), it follows step-by-step

σ(P3) = 5 , σ(P4) = 8 , σ(P5) = 13 , σ(P6) = 21 , σ(P7) = 34

etc. We thus conclude that the Merrifield–Simmons index of the path is simply related

with the Fibonacci numbers as

σ(Pn) = Fn+1 for n = 1, 2, 3, . . . . (4)

Identity (4) is also known for a long time.

2 Calculating the Merrifield–Simmons index

Combining the recursion relations (1), (2), and the identity (4), it is possible to

express the Merrifield–Simmons index of any (molecular) graph in terms of Fibonacci

numbers. We illustrate this fact on the example of triphenylene.

The molecular graph of triphenylene G0 is depicted in Fig. 1. The vertex to which

relation (2) will be applied is indicated by a heavy dot. This yields

σ(G0) = σ(G1) + σ(G2) .

The recurrence relation (2) needs now to be applied to the subgraphs G1 and G2

(again to the vertices indicated by heavy dots, see Fig. 1), resulting in:

σ(G1) = σ(G3) + σ(G4)

σ(G2) = σ(G5) + σ(G6) .
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Fig. 1. The molecular graph of triphenylene (G0) and its subgraphs needed for the
calculation of the Merrifield–Simmons index σ(G0).

The subgraph G4 consists of two components, both being paths. The subgraph

G6 consists of three components, all three being paths. Therefore, applying (1) and

(4), we get

σ(G4) = σ(P10) σ(P3) = F11 F4 = 144 · 5 = 720

σ(G6) = σ(P5) σ(P3) σ(P3) = F6 F4 F4 = 13 · 5 · 5 = 325 .

In order to compute σ(G3) and σ(G5), one needs to apply (1), (2) and (4) once

again. Thus,
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σ(G3) = σ(G7) + σ(G8)

= σ(P10) σ(P5) + σ(P5) σ(P5) σ(P3)

= F11 F6 + F6 F6 F4 = 144 · 13 + 13 · 13 · 5 = 1872 + 845 = 2717

and

σ(G5) = σ(G9) + σ(G10)

= σ(P5) σ(P4) σ(P3) + σ(P4) σ(P3) σ(P3)

= F6 F5 F4 + F5 F4 F4 = 13 · 8 · 5 + 8 · 5 · 5 = 520 + 200 = 720 .

This now gives

σ(G1) = 2717 + 720 = 3437

σ(G2) = 720 + 325 = 1045

which finally yields

σ(G0) = 3437 + 1045 = 4482 .

By means of this example we see how the Merrifield–Simmons index of any (molec-

ular) graph can be expressed in terms of Fibonacci numbers. In the general case, in

order to achieve this goal, we must apply Eqs. (1), (2), and (4) several times. This

requires the examination of a large number of vertex–deleted subgraphs, making the

calculations complicated and error prone.

However, there exists large classes of molecular graphs in which the above de-

scribed calculation can be accomplished in a single step. In the subsequent sections

we describe these classes.

3 Simple calculation of the Merrifield–Simmons

index of some acyclic molecular graphs

Example 3.1. Consider the molecular graph T0 of 3-ethyl-5-methyloctane, depicted

in Fig. 2. When Eqs. (1), (2), and (4) are applied to its vertex labeled by v, then

T0 − v = P5 ∪ P5 and T0 −Nv = P1 ∪ P2 ∪ P2 ∪ P3
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implying

σ(T0) = σ(P5) σ(P5) + σ(P1) σ(P2) σ(P2) σ(P3)

= F6 F6 + F2 F3 F3 F4 = 13 · 13 + 2 · 3 · 3 · 5 = 259 .
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Fig. 2. Acyclic molecular graphs for which the recursive calculation of the Merri-
field–Simmons index can be achieved in a single step.

It can be easily recognized that T0 is a special case of the molecular graph T1, in

which the parameters a1, a2, b1, b2 are non-negative integers. Thus, for T0, a1 = a2 = 2,

b1 = 1, b2 = 3.

Bearing in mind that

T1 − v = Pa1+a2+1 ∪ Pb1+b2+1 and T1 −Nv = Pa1 ∪ Pa2 ∪ Pb1 ∪ Pb2

by applying Eqs. (1), (2), and (4) we get:

σ(T1) = σ(Pa1+a2+1) σ(Pb1+b2+1) + σ(Pa1) σ(Pa2) σ(Pb1) σ(Pb2)

= Fa1+a2+2 Fb1+b2+2 + Fa1+1 Fa2+1 Fb1+1 Fb2+1 .

Extending this argument, we arrive at the chemical trees T2 and T3. By fully

analogous calculation, we have:
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σ(T2) = σ(Pa1+a2+1) σ(Pb1+b2+1) σ(Pc1+c2+1)

+ σ(Pa1) σ(Pa2) σ(Pb1) σ(Pb2) σ(Pc1) σ(Pc2)

and

σ(T3) = σ(Pa1+a2+1) σ(Pb1+b2+1) σ(Pc1+c2+1) σ(Pd1+d2+1)

+ σ(Pa1) σ(Pa2) σ(Pb1) σ(Pb2) σ(Pc1) σ(Pc2) σ(Pd1) σ(Pd2) .

The series T1, T2, T3 cannot be continued because in the case of molecular graphs

the vertex degree must not be greater than 4 (see [15]). Thus T1, T2, T3 form a

complete set of acyclic molecular graphs for which the recursive calculation of the

Merrifield–Simmons index can be achieved in a single step.

4 Simple calculation of the Merrifield–Simmons

index of some unicyclic molecular graphs

Example 4.1. Consider the molecular graph U0 of isopropyl-cyclopentane, depicted

in Fig. 3. When Eqs. (1), (2), and (4) are applied to its vertex labeled by v, then

U0 − v = P3 ∪ P4 and T0 −Nv = P1 ∪ P1 ∪ P2

implying

σ(U0) = σ(P3) σ(P4) + σ(P1) σ(P1) σ(P2)

= F4 F5 + F2 F2 F3 = 5 · 8 + 2 · 2 · 3 = 52 .

The molecular graph U0 is a special case of U1, in which the parameters a1, a2 are

non-negative integers whereas r is the size of the (unique) cycle, r ≥ 3. In particular,

for U0, a1 = a2 = 1, r = 5.

Bearing in mind that

U1 − v = Pa1+a2+1 ∪ Pr−1 and U1 −Nv = Pa1 ∪ Pa2 ∪ Pr−3
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by applying Eqs. (1), (2), and (4) we get:

σ(U1) = σ(Pa1+a2+1) σ(Pr−1) + σ(Pa1) σ(Pa2) σ(Pr−3)

= Fa1+a2+2 Fr + Fa1+1 Fa2+1 Fr−2 .
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Fig. 3. Unicyclic molecular graphs for which the recursive calculation of the Merri-
field–Simmons index can be achieved in a single step.

By attaching two branches to the vertex v we obtain the molecular graph U2.

Note that two is the maximal number of branches that may be attached. Then, in

full analogy to the previous case, we have:

σ(U2) = σ(Pa1+a2+1) σ(Pb1+b2+1) σ(Pr−1) + σ(Pa1) σ(Pa2) σ(Pb1) σ(Pb2) σ(Pr−3) .

Another class of unicyclic molecular graphs with the required property is repre-

sented by U3, cf. Fig. 3. In this graph, two path fragments with x and y vertices are
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attached to the first neighbors of the vertex v. Recall that if x = y = 0, then U3 is

just the cycle of size r. For this molecular graph,

U3 − v = Px+y+r−1 and U3 −Nv = Px ∪ Py ∪ Pr−3

which directly yields

σ(U3) = σ(Px+y+r−1) + σ(Px) σ(Py) σ(Pr−3) .

Also the combination of the above described two types of molecular graphs, namely

U4 and U5 possess the needed property. By calculation fully analogous to what was

described above, we get:

σ(U4) = σ(Pa1+a2+1) σ(Px+y+r−1) + σ(Pa1) σ(Pa2) σ(Px) σ(Py) σ(Pr−3)

σ(U5) = σ(Pa1+a2+1) σ(Pb1+b2+1) σ(Px+y+r−1)

+ σ(Pa1) σ(Pa2) σ(Pb1) σ(Pb2) σ(Px) σ(Py) σ(Pr−3) .

The molecular graphs U1, U2, U3, U4, U5 with parameters a1, a2, b1, b2, x, y,≥ 0 and

r ≥ 3 are the only unicyclic species for which the recursive calculation of the Merri-

field–Simmons index can be achieved in a single step.

5 Simple calculation of the Merrifield–Simmons

index of some bicyclic molecular graphs

Example 5.1. Consider the molecular graph B0 of 1,8-diethyl-naphthalene, depicted

in Fig. 4. When Eqs. (1), (2), and (4) are applied to its vertex labeled by v, then

B0 − v = P13 and B0 −Nv = P2 ∪ P2 ∪ P3 ∪ P3

implying

σ(B0) = σ(P13) + σ(P2) σ(P2) σ(P3) σ(P3)

= F14 + F3 F3 F4 F4 = 610 + 3 · 3 · 5 · 5 = 835 .

As easily seen, the bicyclic molecular graph B0 is a special case of B1, in which

the parameters x, y are non-negative integers whereas r and s are the sizes of the two

cycle, r, s ≥ 3. In particular, for B0, x = y = 2, r, s = 6.
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Fig. 4. Bicyclic molecular graphs for which the recursive calculation of the Merri-
field–Simmons index can be achieved in a single step.

Using the same reasoning as in the cases of acyclic and unicyclic graphs, we

immediately arrive at the molecular graphs B2 and B3 depicted in Fig. 4. In addition

to these, we have one more bicyclic system, represented by B4 in which the parameters

w, x, y, z are non-negative integers. By direct calculation we arrive at the following

expressions:

σ(B1) = σ(Px+y+r+s−3) + σ(Px) σ(Py) σ(Pr−3) σ(Ps−3)

σ(B2) = σ(Pa1+a2+1) σ(Pr+s−3) + σ(Pa1) σ(Pa2) σ(Pr−3) σ(Ps−3)

σ(B3) = σ(Pa1+a2+1) σ(Px+y+r+s−3) + σ(Pa1) σ(Pa2) σ(Px) σ(Py) σ(Pr−3) σ(Ps−3)

σ(B4) = σ(Pw+y+r−1) σ(Px+z+s−1) + σ(Pw) σ(Px) σ(Py) σ(Pz) σ(Pr−3) σ(Ps−3) .

6 Simple calculation of the Merrifield–Simmons

index of some tricyclic molecular graphs

Example 6.1. Consider the molecular graph D0 of dicyclobutano[1,2;2,3]cyclohex-

ane, depicted in Fig. 5. When Eqs. (1), (2), and (4) are applied to its vertex labeled

by v, then

D0 − v = P9 and D0 −Nv = P1 ∪ P1 ∪ P3



93

implying

σ(D0) = σ(P9) + σ(P1) σ(P1) σ(P3)

= F10 + F2 F2 F4 = 89 + 2 · 2 · 5 = 109 .

The tricyclic molecular graph D0 is a special case of D1, in which the parameters

r, s, t are integers greater than or equal to 3. In particular, for B0, r = s = 4, t = 6.
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Fig. 5. Tricyclic molecular graphs for which the recursive calculation of the Merri-
field–Simmons index can be achieved in a single step.

From the diagram depicted in Fig. 5 we see that

D1 − v = Pr+s+t−5 and D1 −Nv = Pr−3 ∪ Ps−3 ∪ Pt−3

and therefore

σ(D1) = σ(Pr+s+t−5) + σ(Pr−3) σ(Ps−3) σ(Pt−3)

= Fr+s+t−4 + Fr−2 Fs−2 Ft−2 .

In the same way as in the acyclic, unicyclic, and bicyclic molecular graphs, the case

D1 can be generalized into D2, with parameters x, y ≥ 0. The respective expression

reads:

σ(D2) = σ(Pr+s+t+x+y−5) + σ(Pr−3) σ(Ps−3) σ(Pt−3) σ(Px) σ(Py)

= Fr+s+t+x+y−4 + Fr−2 Fs−2 Ft−2 Fx+1 Fy+1 .
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7 Concluding remarks

In view of the fact that the vertex degrees in molecular graphs (provided these rep-

resent organic compounds) must not exceed 4 [15], the acyclic graphs T1, T2, T3, uni-

cyclic graphs U1, U2, U3, U4, U5, bicyclic graphs B1, B2, B3, B4, and tricyclic graphs

D1, D2 (depicted in Figs. 2–5) with parameters a1, a2, b1, b2, c1, c2, d1, d2, x, y, z, w ≥ 0

and r, s, t ≥ 3 seem to be the only species for which the recursive calculation of the

Merrifield–Simmons index can be achieved in a single step. For the same reason, it

seems that tetracyclic and higher–cyclic molecular graphs of this kind do not exist.

Therefore, the graphs presented in this work appear to be the only possible of this

kind.

It would be interesting to have a formal mathematical verification of the above

claim.
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