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IRREGULARITY OF MOLECULAR GRAPHS
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ABSTRACT. A graph whose all vertices have equal degrees is said to be regular. If this is

not the case, then the graph is irregular. Various measure of irregularity have been proposed.

These are described and compared, with particular emphasis on molecular graphs.

1 Introduction

Let G = (V,E) be a (molecular) graph with vertex set V = V (G) and edge set

E = E(G), having n = |V (G)| vertices and m = |E(G)| edges [26, 32]. Let V (G) =

{v1, v2, . . . , vn}. For vi ∈ V (G), the degree of the vertex vi, denoted by d(vi) = dG(vi),

is the number of vertices adjacent to v. The degree sequence of the graph G is the

non-increasing sequence of its degrees,

d = d(G) =
[

d(v1), d(v2), . . . , d(vn)
]

(1)

such that

d(v1) ≥ d(v2) ≥ · · · ≥ d(vn) .

At this point we recall that

∑

v∈V (G)

dG(v) = 2m. (2)
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The number of vertices of the graph G whose degree is equal to i will be denoted

by ni = ni(G). Then, of course,
n−1
∑

i=1

ni = n

and according to Eq. (2),
n−1
∑

i=1

i ni = 2m.

A graph G is is said to be regular if all its vertices have the same degree. Re-

gular graphs played an outstanding role in the history of graph theory [11] and are

still in the focus of interest of mathematicians. This is seen from the fact that

numerous regular graphs have special names, such as the Petersen graph, Moore

graph, Hoffman–Singleton graph, Shrikhande graph, Klein graph, Hall–Janko graph,

Schläfli graph, etc. Important and much studied is the class of “strongly regular

graphs”. In mathematical chemistry, regular graphs occur has much less frequently.

Only after the the discovery of fullerenes and nanotubes, such graphs started to

attract the attention of mathematical chemists. Irrespective of this, the fact is that

the vast majority of molecular graphs are non-regular.

A graph which is not regular is said to be irregular.

It seems that Pál Erdős1 was the first who recognized that it is reasonable to

ask about how irregular a non-regular graph is. In 1988, Erdős et al. published

a paper [12] in which they asked “Which class of graphs is opposite to the regular

graphs?” Such “opposite” graphs should be highly irregular. During the Second

Krakow Conference on Graph Theory (1994), Erdős officially posed as an open prob-

lem the determination of the extreme size of highly irregular graphs of given order [40].

Eventually, highly irregular graphs were examined in [6,39,40]. The degree sequence

of highly irregular graphs was studied in [39].

Evidently, a graph would be maximally irregular if all its degrees would differ, i.e.,

if

d(v1) > d(v2) > · · · > d(vn) .

Graphs with this property were named “perfect”. However, Behzad and Chartrand [9]

1Pál Erdős (1913–1996), Hungarian mathematician, one of the most outstanding and most prolific
mathematicians of the 20th century.
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established that perfect graphs do not exist. What does exist are the “quasi–perfect”

graphs (sometimes referred to as “antiregular graphs” [43]). These are graphs in

which all vertices, except two, have different degrees. The respective result is [9]:

Theorem 1.1. [9] For each n > 1, there is a unique connected quasi–perfect graph

of order n. Its degree sequence is

d =
[

n− 1, n− 2, . . . , ⌊n/2⌋, ⌊n/2⌋, . . . , 2, 1
]

.

Note that the complement of a quasi–perfect graph is also quasi–perfect. However,

the complement of a connected quasi–perfect graph is disconnected, and is therefore

of no relevance for the present considerations.

Of these quasi–perfect graphs only those depicted in Fig. 1 are molecular graphs.

Q Q Q Q
1 2 3 4

Fig. 1. The first four connected quasi–perfect graphs. With the exception of Q1,
these may be considered as the most irregular molecular graphs.

2 Irregularity index

A simple and straightforward way of expressing the irregularity of a graph is via its

irregularity index, Irrd, equal to the the number of distinct elements in the degree

sequence, or in a more formal notation:

Irrd =
∣

∣

∣

{

i | ni > 0
}
∣

∣

∣
.

This concept was, in an implicit manner, used in the early works [5,6,39,40], but was

explicitly considered only quite recently [36, 37, 41, 42].
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In the case of molecular graphs, the irregularity index should be applied with

due caution, or – better – not applied at all. Namely, by counting only the number

of different values in the degree sequence d(G), Eq. (1), we disregard the number

of times each value occurs. Even worse, we also disregard the existence (or non-

existence) of pairs of adjacent vertices of different degrees. Two self-explanatory

examples of these difficulties are shown in Fig. 2.

G G

G G

3 4

1 2

Fig. 2. Two pairs of graphs illustrating the weakness of the concept of irregularity
index Irrd. For details see text.

In Fig. 2 are depicted two pairs of graphs, having equal irregularity indices Irrd.

The graphs G1 and G2 each have 12 vertices, some of degree two, some of degree

three. Therefore, the Irrd-values of G1 and G2 are equal, Irrd(G1) = Irrd(G2) = 2.

Yet, in G1 the number of degree two and degree three vertices is equal, n2(G1) =

n3(G1) = 6. Contrary to this, the graph G2 is almost regular, since all but two of its

vertices are of degree three, n2(G2) = 2, n3(G2) = 10. Intuitively, one would expect

that G1 is much more irregular than G2.

The graphs G3 and G4 each have 20 vertices, some of degree two, some of degree

three. Therefore, also the Irrd-values of G3 and G4 are equal, Irrd(G3) = Irrd(G4) =
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2. The number of degree two vertices in G3 and G4 are equal, n2(G3) = n2(G4) = 12

and the same is the case with degree three vertices, n3(G3) = n3(G4) = 8, i.e.,

d(G3) = d(G4). Yet, in G3 all but two edges connect a degree two and a degree

three vertex. Contrary to this, G4 may be viewed as consisting of a regular graph

of degree three joined by an edge to a regular graph of degree two. Intuitively, one

would expect that G3 is much more irregular than G4.

3 Structure–dependent irregularity indices

Any measure of graph irregularity, say Irr(G), must satisfy the following require-

ments:

(α) Irr(G) = 0 if and only if the (connected) graph G is regular.

(β) Irr(G) > 0 if the (connected) graph G is not regular.

The irregularity index Irrd described above, satisfies these requirements. How-

ever, bearing in mind the difficulties explained in the preceding section, another

requirement for Irr needs to be added:

(γ) The quantity Irr has to be defined so that its numerical value follows our intuitive

feeling for “deviating from regularity”.

It seems that the first such measure of graph irregularity is found in the seminal

work of Collatz and Sinogowits [14], who proved that λ1, the greatest eigenvalue of the

adjacency matrix, satisfies the inequality λ1 ≥ 2m/n. In the case of connected graphs,

equality occurs if and only if this graph is regular. Thus, the Collatz–Sinogowitz

irregularity measure is

IrrCS = λi −
2m

n
.

Its application is not easy, because the λ1-value of a (non-regular) graph G cannot

be directly deduced from the structure of G (see, for instance, [45, 48]).

Certain irregularity measures depend solely on the degree sequence d, and can thus

be written as Irr = f(d). These automatically imply that two graphs with equal

degree sequence are equally irregular. In particular, according to such irregularity
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measures, the graphs G3 and G4 in Fig. 2 would be claimed to be equally irregular.

The simplest and best known index of this kind is that of Bell [10]. He measured

the irregularity of a graph by means of the variance of its vertex degrees. Bell’s

irregularity index is

IrrBell(G) =
1

n

∑

v∈V (G)

(

d(v)−
2m

n

)2

=
1

n

n−1
∑

i=1

ni

(

i−
2m

n

)2

recalling that the average value of vertex degrees is 2m/n.

Also the below mentioned Irrtot2, Eq. (4), belongs to this class, cf. Eq. (5).

Another direction of approaching the irregularity is by taking into account the

difference of degrees of adjacent vertices. By this, two graphs with equal degree

sequence need not necessarily be considered as equally irregular. In particular, the

irregularity of the graphs G3 and G4 from Fig. 2 will be found to differ.

Thus, for an edge e = uv ∈ E(G), the difference considered is |dG(u)−dG(v)| [8,13].

Accordingly, Albertson conceived the irregularity of a graph G as [7]

IrrAlb =
∑

uv∈E(G)

|dG(u)− dG(v)|

which is usually referred to as the Albertson index [22,24,38,44,49,50], although the

name “third Zagreb index” has also been proposed [21]. A similar, yet not much

studied quantity would be [23]

IrrAlb2(G) =
∑

uv∈E(G)

[

dG(u)− dG(v)
]2
. (3)

Recently [1, 3], the total irregularity was introduced, defined as

Irrtot =
∑

{u,v}⊆V (G)

|dG(u)− dG(v)|

which in analogy with (3) could be modified as

Irrtot2 =
∑

{u,v}⊆V (G)

[

dG(u)− dG(v)
]2
. (4)

Some of the above specified irregularity measures are related to the two Zagreb

indices M1(G) and M2(G), and the F -index [23, 25, 27, 28, 30, 47]



77

M1(G) =
∑

v∈V (G)

dG(v)
2 =

n−1
∑

i=1

i2 ni

M2(G) =
∑

uv∈E(G)

dG(u) dG(v)

F (G) =
∑

v∈V (G)

dG(v)
3 =

n−1
∑

i=1

i3 ni .

Namely,

IrrBell =
1

n
M1(G)−

(

2m

n

)2

IrrAlb2 = F (G)− 2M2(G)

Irrtot2 = nM1(G)− 4m2 . (5)

For comparative studies of IrrCS , IrrAlb , Irrtot , and IrrBell see [10, 15, 17, 31].

For more information on the above specified irregularity measures see the papers

[1–4, 16, 17, 23, 33–35, 46] and the references cited therein. For additional irregularity

measures see [18–20, 29].

4 Concluding remarks

The concept of “graph irregularity”, i.e., the extent by which a graph deviates from

“regularity” is a notion that has a vague meaning. From our everyday’s experience

we have some “intuitive” feeling about this notion, and in some cases the majority

of us would agree that a particular graph is more “irregular” than another. (For

examples, see Fig. 2.) When one attempts to quantify this concept, and give a

precise method for its measuring, then we encounter ambiguity. Simply: measures of

“graph irregularity” can be constructed in numerous agreeable, but different, ways.

In this survey we presented a dozen of such measures, whereas a skilled scholar could

easily design a dozen more.

Needless to say that this arbitrariness is an opportunity to produce a multitude

of papers that resemble serious scientific research.
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“Graph irregularity” is not the only such scientific conundrum. Analogous situa-

tions are encountered with “complexity”, “cyclicity”, “branching”, to mention just a

few.
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