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ABSTRACT. Seth’s transition theory is applied to the problem of thermal creep 
transition stresses and strain rates in a thin rotating disc with shaft having variable density 
by finite deformation. Neither the yield criterion nor the associated flow rule is assumed 
here. The results obtained here are applicable to compressible materials. If the additional 
condition of incompressibility is imposed, then the expression for stresses corresponds to 
those arising from Tresca yield condition. Thermal effect decreased value of radial stress 
at the internal surface of the rotating isotropic disc made of compressible material as well 
as incompressible material and this value of radial stress further much increases with the 
increase in angular speed. With the introduction of thermal effects, the maximum value of 
strain rates further increases at the internal surface for compressible materials as compare 
to incompressible material. 
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INTRODUCTION 
 

Rotating discs provide an area of research and study due to their vast utilization in rotating 
machinery such as compressor, turbo generators, pumps, compressors, flywheels, shrink fits, 
automotive braking systems, ship propellers, computer disc drives, steam and gas turbine 
rotors. Theoretical investigation of the stresses and strain rates in annular discs rotating at 
high speeds have received widespread attention due to a large number of applications in 
mechanical and structural engineering. They are usually operated at relatively higher angular 
speed and high temperature. Therefore the prediction of long term steady state creep 
deformation is very important for these applications.  

The classical theories of creep start with the assumptions of constitutive equations for 
creep and the classical theories of plasticity need an extra relation called the yield condition in 
addition to the flow rules. The description of the deformations in a solid subjected to external 
forces is thus given by a different set of equations for elastic, plastic and creep deformations. 
Solutions for thin isotropic discs can be found in most of the standard creep text books 
(LUBHAN, 1961; ODUIST, 1974; KARAUS, 1980; BOYLE, 1983; NABARRO, 1995; PENNY, 1995; 
HOFFMAN, 2012). In most of engineering application, the disc has to operate under elevated 
temperature and is simultaneously subjected to high stresses caused by disc rotation at high 
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speed (LASKAJ, 1999). As a result of severe mechanical and thermal loading, the material of 
disc undergoes creep deformation, thereby affecting performance of the system (FARHI et al.  
2004, 2008). In recent years, the problem of creep in rotating discs made of functionally 
graded materials, subjected to severe mechanical and thermal load, has attracted the interest to 
many researchers.  

GUPTA et al. (2007) study network modeling of creep behavior in rotating composite 
disc. DEEPAK et al. (2010) investigated the problem creep modeling in functionally graded 
rotating disc of variable thickness. DEEPAK et al. (2015) discuss the problem  creep behavior 
of rotating FGM disc with linear and hyperbolic thickness profiles. SETH (1962) investigated 
Transition theory of elastic-plastic deformation, creep and relaxation. GUPTA et al. (1979, 
1981, 2000, 2007, 2008) analyzed creep transition in thin rotating disc and cylinder having 
various conditions. SHKULA  (1996) investigated creep transition in a thin rotating non-
homogeneous disc by using Seth theory. THAKUR (2010) analyzed creep transition stresses in 
a thin rotating disc with shaft by finite deformation under steady state temperature. SHARMA  
Sanjeev et al., (2010, 2013) analyzed creep deformation in a thin rotating disk of 
exponentially varying thickness with inclusion and edge load by using Seth transition 
theory. THAKUR et. al. (2015) study thermal creep stresses and strain rates in a circular disc 
with shaft having variable density by using Seth transition theory. WAHL (1956) has 
investigated creep deformation in rotating discs assuming small deformation, 
incompressibility condition, Tresc’a yield criterion, its associated flow rule and a power strain 
law.   

The necessity of increasing use of ad-hoc semi-empirical laws in the classical theory 
of elastic-plastic and creep transition lies in the fact that the latter does not recognize the 
existence of the transition state between elastic and plastic ones and then creep. We have 
shown in this research paper that assumptions of yield conditions in such problems become 
unnecessary once we recognize that the transition from plastic state to creep, as explained by 
Seth, is an asymptotic process and that transition state is a separate state which cannot be 
replaced by a yield surface as has always been done in the current literature. This treatment in 
the classical theory amounts to divide two extreme properties of a material by a sharp line 
which is physically impossible. It has been clear from our work that identification of the 
transition state is basically important.  

There are, at present, three ways to identify the transition state. The most general one 
among all is the vanishing of the Jacobian of transformation from elastic state to plastic state 
and plastic to creep. An invariant relation among the strain (stress) invariants is obtained from 
this condition and it is found that most of the yields conditions present in current literature are 
obtainable from it as special cases.  

Also our results include the Bauschinger's effect while the classical yield conditions 
fail to account for it. The classical theory of elasticity, plasticity and creep makes use of linear 
strain measure. But we have shown that transition fields are sub-harmonic (super-harmonic) 
fields and that they are non-linear and non-conservative in character and hence it is very 
important that a non-linear strain measure such as the Almansi measure should be used in the 
constitutive equation. The recognition of transition state or mid-zone as a separate state 
necessitates showing the existence of the constitutive equation for that state. In this context, 
we have used Seth's transition theory to obtain the stresses and strains in the transition state 
and the same may be obtained for the plastic state when a certain parameter( )1 / 2c c v− − ; 

where ν  is the Poisson's ratio of the material, is made to approach zero. From these solutions 
the constitutive equations for both transition and plastic states are obtained, the latter takes the 
form of the Levy-von-Mises equation.  In nature transitions do occur frequently and the 
existing classical theory fails to explain them successfully. Thus the transition theory, as it 
stands, now can be fruitfully exploited to explain a variety of physical phenomena and hence 
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has a very wide application in all applied sciences. Seth’s transition theory does not acquire 
any assumptions like an yield condition, incompressibility condition and thus poses and 
solves a more general problem from which cases pertaining to the above assumptions can be 
worked out. This theory utilizes the concept of generalized strain measure and asymptotic 
solution at critical points or turning points of the differential equations defining the deformed 
field and has been successfully applied to a large number of problems (SETH, 1962, 1966, 
1970, 1972, 1974; GUPTA et al., 1979, 1981, 2000, 2007, 2008; SHKULA , 1996; DEEPAK et. 
al., 2010, 2015; SHARMA  et al., 2010, 2013; THAKUR, 2010, 2015). In this paper we discuss 
numerical study of possion ratios and thermal stress and strain rates in an isotropic disc by 
using Seth transition theory.  
 
 

GOVERNING EQUATIONS OF THE PROBLEM 
 

Consider a circular disc with central bore of radius a 
and external radius b and having uniform thickness 
rotating with an angular velocity ω of gradually 
increasing magnitude about an axis perpendicular to 
its plane and passing through the center. The 
thickness of the disc is assumed sufficiently small so 
that it is effectively in a state of plane stress (zzT  

=0). The temperature at the central bore of the disc 
is 0Θ as shown in Figure 1.  
        Figure 1. Geometry of disk 
 
Displacement Coordinate: The displacement components in cylindrical polar co-ordinate are 
given by (SETH, 1962, 1966, 1970, 1972):  
 

)1( β−= ru ,v = 0,  w = dz                                                                                        (1) 

where u, v, w (displacement components); β  is position function, depending on r = 
22 yx +  only, and d is a constant. The generalized components of strain are given by Seth’s 

(1972): 
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where  zr ,,θ  be polar co-ordinates and /d drβ β′ = .  

Stress-Strain Relation: The stress –strain relations for thermo elastic isotropic material are 
(Parkus, 1976): 
 

ijT  = 1 2i j ij ijI eλδ µ ξ δ+ − Θ ,  (i, j = 1, 2, 3)                             (3) 

where  ijT  are the stress components, λ  and µ  are Lame’s constants, kkeI =1  is the first 

strain invariant, ijδ  is the Kronecker’s  delta, ( )µλαξ 23 += , α  being the coefficient of 

thermal expansion, and Θ  is the temperature. Further, Θ  has to satisfy: 2 0∇ Θ = ⇒  
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where 1k  and 2k  are constant of integration and can determined from the boundary condition.  

Substituting (Equation (2)) in (Equation (3)), the stresses are obtained as: 
 

( )( )2
3 2 1 2 1

2

nn
rr n

nc
T c c c P

n

µ ξβ
µβ

  Θ= − − − + − + +  
   

, 

( )( )2
3 2 2 1 1

2

nn
n

nc
T c c c P

nθθ
µ ξβ

µβ
  Θ= − − − + − + +  
   

, 0r z zr zzT T T Tθ θ= = = =           (5) 

where c  is the compressibility factor of the material in term of Lame’s constant, and are 
given by  2 / 2c µ λ µ= + . 
 
Equation of equilibrium: The radial equilibrium of an element of the rotating disc requires: 
 

( ) 2 2 0rr

d
rT T r

dr θθ ρω− + =
   

                                                     (6)  

where rrT  and Tθθ are the radial and circumferential stresses, ρ  is the material density of the 

disk and ω  is the constant angular velocity. 
 
Boundary conditions: The temperature satisfying Laplace (Equation (4)) with boundary 
condition: 
 

0Θ = Θ   and 0u = at r = a, 0Θ =    and 0rrT =  at r = b,        (7) 

where 0Θ  is constant, given by (Parkus, 1976): 
( )1 log /

k
a b

Θ=  and 2 logk b= . Substituting 

1k  and 2k  from (Equation (4)), we get: 
( )

( )
0 log

log

r b

a b

Θ
Θ =                             (8) 

Critical points or Turning points:  Using (Equations (5) & (8)) in (Equation (6)), we get a 
non- linear differential equation in β  as: 
 

( ) ( ) ( ) ( )( ){ }2 2
11 02 1 1 1 1 2 1

2 2
n n nn nncdP n r

c n P P P nP c c P
d

ξρωβ β
β µ µ
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            (9)  
where  00 0 / log( / )a bΘ = Θ  and Pr ββ =′ (P is function of β  and β  is function of  r). 

  Transition points of β  in (Equation (9)) are 1P → −  and P → ±∞ .
   

 
SOLUTION OF THE PROBLEM 

 
For finding the thermal creep stresses and strain rates, the transition function is taken through 
principal stress difference (see SETH, 1962, 1966, 1970, 1972, 1974; GUPTA et al. 1979, 1981, 
2000, 2007, 2008; SHKULA , 1996; SANJEEV et al., 2010, 2013; DEEPAK et. al. 2010, 2015; 
THAKUR, 2010, 2015, 2016) at the transition point P → -1 we define the transition function 
� as: 

( )2
1 1

n
n

rrT T P
nθθ

µβ  = − = − +
 

�                                                     (10) 

where � is function of r only and �  is dimension.  
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Taking the logarithmic differentiating of eq. (10) with respect to r and substituting eq. (9) and 
taking asymptotic value P→ -1, we get: 

( ) ( ) ( ) ( )
2 2

01
ln 3 2 1

2 2 2 2

n

n n

ncd n w r
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dr r c D c

ξρ
µ µβ
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�                      (11) 

Asymptotic value of β  as P→ -1 is D/r; D being a constant. Integrating equation (Equation 
(11)) with respect to r and using(Equation (10))  , we get 
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rrT T Ar r rθθ φ ψ+= − = +� ,                                                   (12) 

where  A,  f and g are constant of  integrations ,which can be determine by boundary condition  
and  
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(Equations (10) and (12)), we have 

( )3 2expk n n
rrT T Ar r rθθ φ ψ+− = +                                                            (13) 

Substituting (Equation (13)) in (Equation (6)), we get: 
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where B is a constant of integration, which can be determine by boundary condition. Using 
boundary condition (Equation (7)) in (Equation (14)), we get 
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Substituting the value of B in (Equation (14)), we get: 
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Substituting (Equation (15) in (Equation (13)), we get: 
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∫              (16) 

Comparing (Equations (10) and (13)) and then taking asymptotic value 1−→P , we get: 
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                                                                    (17)  

where  ( )2 / 1Eµ ν= +  is the Young’s modulus in term of Poisson’s ratio. Using (Equation 

(17)) in (Equation (1)), we get 
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where u be the displacement component. 
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Using boundary condition (Equation (7)) in (Equation (18)), we get; 

( ) ( )3 2
.
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E
A

n a a aν φ ξ+
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+ +
Substituting the value of constant A in (Equations (15), (16) 

and (18)), we get: 
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(Equations. (19) – (21)) give creep stresses and displacement for a thin rotating disc with shaft 
at temperature 0Θ . We introduce the following non-dimensional components as: 

brR /= , baR /0 = , /r rrT Eσ = , /T Eθ θθσ = , Eb /222 ρω=Ω , buu /=   and 0 1αΘ = Θ . 

(Equations (19) - (21)) in non-dimensional form become:  
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Fully-Plastic state: For a disc made of incompressible material (1/ 2ν → or 0c = ) (Equations 
(22) to (24)) become: 

( )
( )
( )

( )4

4 4

1 2 2 21
2 2

2 2
0 2 0 2 0 2 2

exp 12

23 exp exp

k n n

k n n k n n
R

R R R R
dR

nR R R R R R
θ

ξ ψ
σ

ξ ψ ξ ψ

− +

+ +

 + Ω −
 = +
 + − + 
∫               (25) 

( ) ( ) ( )
4

4

2 21
1 2

2 22
0 2 0 2 0

12
exp

23 exp
k n n

r k n n
R

R
R R R dR

nR R R
σ ξ ψ

ξ ψ
− +

+

Ω −
= + +

+ ∫                   (26) 

( )
( )

4

4

1
2

2 2

2
0 2 0 2 0

exp

exp

k n n n

k n n

R R R
u R R

R R R

ξ ψ
ξ ψ

+

+

 +
 = −

+  

                                                                          (27)
 



21 
 

where ( )
2

2

3

4 2

n

n

n b

D n
ξ Ω= −

+
 ;

2

13
4

+−= n
k  and 1

2
02 ln

n

n

b

D R
ψ Θ= . 

 
DISTRIBUTION VARIATION PARAMETER IN POISSON RATIOS: 

 
For numerically distribution of Poisson 
ratios various percentage decrease in 
radial as well as circumferential stresses as 
shown in Fig. 3(a) and Fig. 3(b). It can be 
calculated from equations (22), (23), (25) 
and (26) by taking values of  ν  = 0.33, 0. 
428, 0.5, 2Ω  =5, 10, n = 1/5, 1/3, 1/7 and 
temperature  1Θ  =0, 5. It has been seen 

from Fig. 3(a) that value of percentage 
decrease in radial stress must be increased 
for incompressible material (i.e. ν =0.5) as 
compare to compressible materials (i.e. 
ν =0.33, 0.428) for measure N (n =1/7). 

       Figure 3(a). Percentage decrease in radial. 
               Versus materials Poisson ratios. 
 

From Fig. 3(b), It has been observed that 
value of percentage decrease in 
circumferential stresses must be increase 
for measure n = 1/5, 1/7 at angular speed 

2Ω = 5 for incompressible material as 
compare to compressible material but 
reverse in case for measure n = 1/3. With 
the increased in angular speed the value of 
percentage decrease in radial as well as 
circumferential stresses must be decrease 
for incompressible as well as compressible 
materials.   

Figure 3(b). Percentage decrease in Circumferential stresses. 
               Versus materials Poisson ratios. 

 
ESTIMATION OF CREEP PARAMETERS 

 
When the creep sets in, the strains should be replaced by strain rates and the stress-strain 
relations (Equation (3)) become: 

Θ+−+= αδνσν
T

EE
e ijijij

1
&          (28) 

where ije&  is the strain rate tensor with respect to flow parameter t. Differentiating (Equation 

(4)) with respect to time t, we get:  
 

ββθθ
&&

1−−= ne                                            (29) 

For SWAINGER measure (i.e. n = 1), (equation (29)) become : βεθθ
&& =  .     (30) 
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where θθε& is the SWAINGER strain measure. From (Equation (10)) the transition value β  is 

given by: 

( ) [ ]11
/ 2

nn

rrn θθβ µ σ σ= −                                                                                        (31) 

Using (Equations (29)-(31)) in (Equation (28)), we get: 

( )( )[ ] [ ]Θ+−+−= − ανσσνσσε θθ rnrrr n 1
1

1&  

( )( )[ ] [ ]Θ+−+−= − ανσσνσσε θθθθ rnrn 1
1

1&   

( )( )[ ] ( )[ ]Θ+++−−= − ασσννσσε θθ rnrzz n 1
1

1&       (32) 

 
where rrε& θϑε& and zzε&  are strain rates tensor. 

These are the constitutive equations used by ODQUIST (1974) for finding the creep stresses 
and strain rates provided we put n = 1/N. 
 
 

NUMERICAL RESULTS AND DISCUSSION 
 

For calculating stresses, strain-rates and displacement based on the above analysis, the 

following values have been taken2 2 2 /b EρωΩ = =5, 10ν  = 0.5 (incompressible material), 
ν =0.42857 and 0.333 (compressible materials), n = 1/3, 1/5, 1/7 (i.e N =3, 5, 7), 

5100.5 −×=α  deg 1−F (for Methyl Methacrylate; LEVITSKY et. al., 1975 ), 0Θ = 0 and 
01,00,000F , 1Θ  = 0αΘ  = 0.00 and 5 and D = 1.  

In classical theory measure N is equal to 1/n. Definite integrals in the equations (22) and (23) 
have been solved by using Simpson’s rule. 

It has been seen from Fig. 4 and 5, curve have been between radial stresses versus 

temperature 1Θ = 0, 5 for measure n = 1/7, 1/5, 1/3, 2Ω =5, 10. With the thermal effect stresses 

must be decreases.  
• For measure n =1/7, decrease percentage change are -12.4%, -13.5%, -14.3% at 

angular speed 2Ω =5 and -1.9%, -2.4%, -2.8% (-ve sign indicates decease value) at 

angular speed 2 10Ω =  having possion ratios ν =0.33, 0.428, 0.5. 
• For measure n =1/5, decrease percentage change are -10.6 %, -11.5%, -12.3% at 

angular speed 2Ω =5 and -0.8%, -1%, -1.3% (-ve sign indicates decease value) at 

angular speed 2Ω =10 as shown having possion ratios ν =0.33, 0.428, 0.5. 
•  For measure n =1/3, decrease in percentage change are -5.7 %, -6.4%, -7% at angular 

speed 2Ω =5 and -0.1 %, -0.12%, -0.2% (-ve sign indicates decease value) at angular 

speed 2Ω =10 having possion ratios ν =0.33, 0.428, 0.5. 
 

From Table 1, it has been seen that thermal effect decreases the value of radial stresses 
as well as circumferential stresses at the internal surface for compressible material as compare 
to incompressible material for measure n = 1/7, 1/5 and 1/3. Percentage change in radial and 
circumferential stresses should be decreased with effect of temperature. 

Curves are produced between stresses and displacement along the radii ratio R = r/b 
(see Figures 5(a) and 5(b)) for rotating disc made of compressible as well as incompressible 
materials with angular speed 2Ω  = 5 and 10. It is also observed from (Figures 5(a)-5(b)) that 
the radial stress has maximum value at the internal surface of the rotating disc made of 
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compressible material (i.e. ν = 0.33 say Copper; 0.428 say saturated clay) as compare to 
incompressible materials (i.e. ν = 0.5 say rubber) for measure n = 1/7 (i.e. N = 7) at angular 
speed ( 2Ω =5). The values of radial stress further increases at the internal surface with 
increase value of angular speed (2Ω =10) for measure n = 1/7 (i.e. N = 7), n = 1/5 (i.e. N =5) 
and n =1/3 (i.e. N = 3) respectively. Thermal effect decreases the values of radial stress at the 
internal surface. 
                                      

Figure 4(a). 2Ω =5 
 
 

Figure 4(b). 2Ω =10 
 

Figures 4(a)-4(b). Percentage change in radial stress  
with and without temperature at the initial yielding to become fully plastic. 
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Table 1. Parentage change stresses for initial yielding and fully plastic state 
 

 
 

 
 

Figure 5(a). Stresses and displacement distribution along the r adii ratio R = r/b  

at angular speed 2 5Ω = . 
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Figure 5(b). Stresses and displacement distribution along the radii ratio R = r/b  

at angular speed 2 10Ω = . 
 
Curve are produced for strain rates along the radii ratio R = r/b (see Figures 6(a) and 6(b)) for 
rotating disc made of compressible materials (i.e. saturated clay or copper) as well as 
incompressible material (i.e. rubber) with angular speed 2Ω  = 50 and 75 for measure n = 1/7, 
1/5, 1/3 ( i.e. N = 7, 5, 3). It has been seen (Figures 6(a)-6(b)) that rotating disc made of 
compressible materials has maximum value of strain at the internal surface as compared to 
disc made of incompressible material for measure n = 1/7, 1/5, 1/3 (i.e. N =7, 5, 3) at angular 
speed 2Ω  = 5. Since the values of strain rates further increases at the internal surface with 
increase value of angular speed say 2Ω  = 10 respectively. With the introduction of thermal 
effects the maximum value of strain rates further increases at the internal surface for 
compressible materials (i.e. saturated clay or copper) as compare to incompressible material. 
Measure decrease value of strain rates at the internal surface. Rotating disc is likely to fracture 
by cleavage close to the shaft at the bore. 
 

 
CONCLUSION 

 
Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic 
disc made of compressible material as well as incompressible material and this value of radial 
stress further much increases with the increase in angular speed. With the introduction of 
thermal effects the maximum value of strain rates further increases at the internal surface for 
compressible materials as compare to incompressible material. 
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Figure 6(a). Strain rates distribution in disc along the radii ratio R = r/b at angular speed  

at angular speed 
2 5Ω = . 

 
 

   
 

Figure 6(b). Strain rates distribution in disc along the radii ratio R = r/b at angular speed  

at angular speed 
2 10Ω = . 
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