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ABSTRACT. Seth’s transition theory is applied to the probledf thermal creep
transition stresses and strain rates in a thirtingtaisc with shaft having variable density
by finite deformation. Neither the yield criteriomor the associated flow rule is assumed
here. The results obtained here are applicablentmpressible materials. If the additional
condition of incompressibility is imposed, then #gression for stresses corresponds to
those arising from Tresca yield condition. Thereifct decreased value of radial stress
at the internal surface of the rotating isotropgcdnade of compressible material as well
as incompressible material and this value of ragti@ss further much increases with the
increase in angular speed. With the introductiothefmal effects, the maximum value of
strain rates further increases at the internabserfor compressible materials as compare
to incompressible material.

Keywords: strain rates, displacement, angular speed, disontll stresses.

INTRODUCTION

Rotating discs provide an area of research andysdud to their vast utilization in rotating
machinery such as compressor, turbo generatorspgurompressors, flywheels, shrink fits,
automotive braking systems, ship propellers, coepdisc drives, steam and gas turbine
rotors. Theoretical investigation of the stressed strain rates in annular discs rotating at
high speeds have received widespread attentiontaue large number of applications in
mechanical and structural engineering. They arallysaperated at relatively higher angular
speed and high temperature. Therefore the prediatib long term steady state creep
deformation is very important for these applicasion

The classical theories of creep start with the mggions of constitutive equations for
creep and the classical theories of plasticity reaedxtra relation called the yield condition in
addition to the flow rules. The description of theformations in a solid subjected to external
forces is thus given by a different set of equatitor elastic, plastic and creep deformations.
Solutions for thin isotropic discs can be foundnmost of the standard creep text books
(LUBHAN, 1961; wuisT, 1974; KARAUS, 1980; BOYLE, 1983; NA\BARRO, 1995; ENNY, 1995;
HoFFMAN, 2012). In most of engineering application, thecdnas to operate under elevated
temperature and is simultaneously subjected to bigsses caused by disc rotation at high



16

speed (laskAJ, 1999). As a result of severe mechanical and takloading, the material of
disc undergoes creep deformation, thereby affegerfprmance of the systema@Hi et al.
2004, 2008). In recent years, the problem of crieeptating discs made of functionally
graded materials, subjected to severe mechanidahanmal load, has attracted the interest to
many researchers.

GuUPTA et al. (2007) study network modeling of creep behavioratating composite
disc. CeePAK et al. (2010) investigated the problem creep modelinduimctionally graded
rotating disc of variable thicknesseErAK et al. (2015) discuss the problem creep behavior
of rotating FGM disc with linear and hyperbolicakiness profiles. &H (1962) investigated
Transition theory of elastic-plastic deformatiomeep and relaxation. UBTA et al. (1979,
1981, 2000, 2007, 2008) analyzed creep transitiothin rotating disc and cylinder having
various conditions. KULA (1996) investigated creep transition in a thinatiog non-
homogeneous disc by using Seth theoWaKUR (2010) analyzed creep transition stresses in
a thin rotating disc with shaft by finite deforn@tiunder steady state temperatunearBiA
Sanjeevet al, (2010, 2013) analyzed creep deformation in a tromating disk of
exponentially varying thickness with inclusion aedge load by using Seth transition
theory. THAKUR et. al. (2015) study thermal creep stresses and stra@s rata circular disc
with shaft having variable density by using Sethnsition theory. WWHL (1956) has
investigated creep deformation in rotating discssuasng small deformation,
incompressibility condition, Tresc’a yield critenipits associated flow rule and a power strain
law.

The necessity of increasing use of ad-hoc semi+écapiaws in the classical theory
of elastic-plastic and creep transition lies in fhet that the latter does not recognize the
existence of the transition state between elast @astic ones and then creep. We have
shown in this research paper that assumptionsedd yionditions in such problems become
unnecessary once we recognize that the transitoon plastic state to creep, as explained by
Seth, is an asymptotic process and that transgtate is a separate state which cannot be
replaced by a yield surface as has always beenidahe current literature. This treatment in
the classical theory amounts to divide two extrgor@perties of a material by a sharp line
which is physically impossible. It has been cleamT our work that identification of the
transition state is basically important.

There are, at present, three ways to identify thiesition state. The most general one
among all is the vanishing of the Jacobian of ti@msation from elastic state to plastic state
and plastic to creep. An invariant relation amadmg gtrain (stress) invariants is obtained from
this condition and it is found that most of thelggconditions present in current literature are
obtainable from it as special cases.

Also our results include the Bauschinger's effebtlevthe classical yield conditions
fail to account for it. The classical theory ofslaity, plasticity and creep makes use of linear
strain measure. But we have shown that transiields are sub-harmonic (super-harmonic)
fields and that they are non-linear and non-corsem in character and hence it is very
important that a non-linear strain measure sudh@a®lmansi measure should be used in the
constitutive equation. The recognition of trangitistate or mid-zone as a separate state
necessitates showing the existence of the congéteguation for that state. In this context,
we have used Seth's transition theory to obtairsttesses and strains in the transition state

and the same may be obtained for the plastic sthén a certain paramete(rl— cl/l2- v);

wherev is the Poisson's ratio of the material, is madapjeroach zero. From these solutions
the constitutive equations for both transition alaktic states are obtained, the latter takes the
form of the Levy-von-Mises equation. In naturensiéions do occur frequently and the
existing classical theory fails to explain them cassfully. Thus the transition theory, as it
stands, now can be fruitfully exploited to explaiwvariety of physical phenomena and hence
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has a very wide application in all applied scien@sth’s transition theory does not acquire
any assumptions like an yield condition, incompit®bly condition and thus poses and
solves a more general problem from which casesiparg to the above assumptions can be
worked out. This theory utilizes the concept of gatized strain measure and asymptotic
solution at critical points or turning points oktdifferential equations defining the deformed
field and has been successfully applied to a lamgmber of problems H, 1962, 1966,
1970, 1972, 1974; @TA et al, 1979, 1981, 2000, 2007, 20083kBLA, 1996; DEEPAK et.

al., 2010, 2015; 8ARMA et al, 2010, 2013; HAKUR, 2010, 2015). In this paper we discuss
numerical study of possion ratios and thermal stag®l strain rates in an isotropic disc by
using Seth transition theory.

GOVERNING EQUATIONSOF THE PROBLEM

Consider a circular disc with central bore of radiu
and external radiub and having uniform thickness /
rotating with an angular velocitye of gradually / [; «\

increasing magnitude about an axis perpendicular to
its plane and passing through the center. The ._ p

thickness of the disc is assumed sufficiently small | =
that it is effectively in a state of plane streds, ( \ S / 11.-;.rjm
=0). The temperature at the central bore of the dis

iIs®,as shown in Figure 1.

' \ E:ur

Figure 1. Geometry of disk

Displacement Coordinate: The displacement components in cylindrical potaoainate are
given by (%&TH, 1962, 1966, 1970, 1972):

u=r@-pg)v=0, w=dz (1)
where u, v, w (displacement components)s is position function, depending on =

Jx?+y? only, andd is a constant. The generalized components ohsara given by Seth’s
(1972):

¢, = (-5 +A] e =2h-ple.=2h-0-0y]. o,=e.=e, =0 @

where r,6,z be polar co-ordinates an@ =d g/ dr.

Stress-Strain Relation: The stress —strain relations for thermo elasttrapic material are
(Parkus, 1976):

T, =01, +2ug ~80G , (,i=1,2,3) (3)
where T;;
strain invariant,d; is the Kronecker's delta$ = a'(3/1 +2,u), a being the coefficient of

are the stress components,and i are Lame’s constantd, =g, is the first

thermal expansion, an® is the temperature. Furthe® has to satisfyﬂzG):O:

d2® ldo_1d( do do _k _ .
— |=0 or — =—=: which has solutions:@=k (logr +k 4
arZ rdr v dr[r drj dr r k(logr+ky) (4)
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where k; andk, are constant of integration and can determineah fitee boundary condition.
Substituting (Equation (2)) in (Equation (3)), #teesses are obtained as:

T, =2—:{3—2c—,5’”{1— c+(2-9g(P+19"+ 2;;2}}

e AT T LR R S A AL RE SR

where ¢ is the compressibility factor of the material grrh of Lame’s constant, and are
givenby c=2ulA+2u.

Equation of equilibrium: The radial equilibrium of an element of the ratgtdisc requires:

d
dr
where T, and Ty are the radial and circumferential stressesis the material density of the
disk andw is the constant angular velocity.

(T, ) =T, + pafr? =0 (6)

Boundary conditions. The temperature satisfying Laplace (Equation (4ihvboundary
condition:

©=0, andu=0atr=a, ©=0 andT, =0 atr=Db, (7)
where O is constant, given by (Parkus, 197&)::L and k, =logb. Substituting
log(a/b)
Oylog(r/b
k, andk, from(Equation (4)), we get® :M (8)

log(a/b)
Critical points or Turning points. Using (Equations (5) & (8)) in (Equation (6)), \get a
non- linear differential equation i as:

n+1 n-1 dP C{JZ 2 éo n n n
(2-c) g™ P( P+1) e ”pzﬂr _”‘32‘; +B {1—(P+]) —nP[l— c+( 2= 9 P+”}
9)

where ©,=0,/log(a/b) andrg' =P (P is function of 3 and g is function ofr).
Transition points of§ in (Equation (9)) ard® -~ -1 andP - .

SOLUTION OF THE PROBLEM

For finding the thermal creep stresses and strain rates, the tnarfigiiction is taken through
principal stress difference (see1d, 1962, 1966, 1970, 1972, 1974y3A et al. 1979, 1981,
2000, 2007, 2008; HKULA, 1996; ANJEEV et al, 2010, 2013; BePAK et. al. 2010, 2015;
THAKUR, 2010, 2015, 2016) at the transition pdiht- -1 we define the transition function
 as:

0=T -T, =2Lf[1—( P+ 1)“} (10)

wherell is function ofr only andll is dimension.
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Taking the logarithmic differentiating of eq. (1@jth respect ta and substituting eq. (9) and
taking asymptotic valub - -1, we get:

2+n 7
9 o)=L In(3-2q)+1+ IOV NcO,
dr r(2-c) 2uD"  2uB"(2-c)
Asymptotic value of 5 asP - -1 isD/r; D being a constant. Integrating equation (Equation
(11)) with respect to and using(Equation (10))we get

(11)

0=T -T,=Ar exp(gor”+2 +(//r”), (12)
where A, fandg are constant of integrations ,which can be detegrby boundary condition
and

1-c . .
V= e be Poisson ratio'ssé =aE/(1-v),

ky =(n+1)+v(n-1)] y = 7%\ (1+v) e nafp(i-v) _ nep(i-v?)
D" 2uD" (n+2) ED"(n+2)

(Equations (10) and (12)), we have

T -T,=Are exp(qor”+2 +¢/r”) (13)

Substituting (Equation (13)) in (Equation (6)), g&t:

. From

_ o Al e e 0 e PV
T =B A.[ r* lexp(wr Z+yr )dr 5

(14)

whereB is a constant of integration, which can be deteentig boundary condition. Using
boundary condition (Equation (7)) in (Equation 014) we get

_ - - N 00r?
B—A\r;[br" 1exp(fr Z4+yr )dr+ >

Substituting the value @ in (Equation (14)), we get:

b o (b? —r?
T, = —A_[ re exp({rn+2 +¢/r”)dr +M (15)
d 2
Substituting (Equation (15) in (Equation (13)), get:
Ty =4 f e esaf g s o+ exs vy )|+ 220 20) (16)
=- re~expl&r™ e +ygr")dr—r'e exg & "+ ") |+
p [ p Y yr -
Comparing (Equations (10) and (13)) and then taksynptotic valu® - -1, we get:
Yn
1
:|:n( E+V) Akg—lexp(grmz +¢/rn):| (17)

where 2u = E/(1+ I/) is theYoung’'smodulus in term of Poisson’s ratio. Using (Equatio
(17)) in (Equation (1)), we get

) e
u-r—{TArk exp({r +yr )} {18

whereu be the displacement component.
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Using boundary condition (Equation (7)) in (Equatio (18)), we get;

_ E . |
A= n(Lev) exp(qod“z +{d‘) .Substituting the value of constahin (Equations (15), (16)
and (18)), we get:

T,s = pretexer e ] oo (01 )
n(1+v)as exp(gad™ +y )| -r' exp(@ " +yr ") >
_ E o ka s ] y 7% (b2 - rz)
T, = n(1+v)ak3 exp(¢a“+2+¢a”).![r exp((ﬂr +yr )}jr +_ V7 (20)
1
ks n+2 n\ |n
u=r-r|- explér™ +ur ) . (21)
ak3 exp(famz +wan)

(Equations. (19) — (21)) give creep stresses asplattement for a thin rotating disc with shaft
at temperature ©,. We introduce the following non-dimensional comeois as:
R=r/b,R =alb,o =T /E,0,=T,/E,Q"=pwb’/E, U=ulb and oG, =0;.
(Equations (19) - (21)) in non-dimensional form oee:

1 1 kalexp(flR“ZH//lR‘) Qz(l— Rz)
g, = dR+ —— 7 (22)
n(L+v) Ry exp(& R +¢, R) 7| -R exp(& R +¢, R)
_ l h kg—1 +2 Qz(l_Rz)

O R edaRT ) CPERTRI R TS @9
ks +2 %

U=R- Rk eXp(fllefqu) (24)
R exp(&,R +,R)

h ef-—nQZ(l_VZ)bn- _Ou(L+v)er Constants); T tial st

whereg, = D”(n+2) ,t//l—w (Constants); o, (Tangential stresses)g,

(Radial stress)R =r/band R, =a/b (Radii ratios).

Fully-Plastic state: For a disc made of incompressible material-.(1/2orc =0) (Equations
(22) to (24)) become:

> 1| R exp(f2 R +y, Rf) ok (1— RZ)
o, = R+ (25)
3R exp(&, R+, R) | -R“ exp({2 R*? +y, F@) 2
_ 2 h Ky -1 +2 Q° (1_ Rz)
o 3I’1F{)<4 exdfz RJHZ +, Fg) '!r; i eXp(fz : & F?) i 2 29

1
n

0= R- F{ Rk exp(f2 R*2 +y, F\”)} 27)

R exp(&,R™ +,R))
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DISTRIBUTION VARIATION PARAMETER IN POISSON RATIOS:

130 ——— n=1/5, Angular speed =5
120 ——=—— n=1/3,Angular speed =5
110 ——— n=1/7,Angular speed =5
2 100 ——-— n=1/5, Angular speed =10
a 90 —-8-— n=1/3, Angular speed =10
& 80 —-=— n=1/7, Angular speed =10
70
B 60
E 50
§ 40
5 30
$ 4
= 10 4 3 —
D :-_---====H===—_-_ﬁ
0.3 0.4 Materials Possion ratios 0.9

Figure 3(a). Percentage decrease in radial.
Versus materials Poisson ratios.
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% decreasein
circumferential stresess

B e
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0.3 O.#haterials Possion ratios 0.5

For numerically distribution of Poisson
ratios various percentage decrease In
radial as well as circumferential stresses as
shown in Fig. 3(a) and Fig. 3(b). It can be
calculated from equations (22), (23), (25)
and (26) by taking values o = 0.33, 0.

428, 0.5,Q° =5, 10,n = 1/5, 1/3, 1/7 and
temperature ©; =0, 5. It has been seen

from Fig. 3(a) that value of percentage
decrease in radial stress must be increased
for incompressible material. €. v=0.5) as
compare to compressible materiaise.(

Vv =0.33, 0.428) for measui(n =1/7).

From Fig. 3(b), It has been observed that
value of percentage decrease in

circumferential stresses must be increase
for measure n = 1/5, 1/7 at angular speed

Q%= 5 for incompressible material as
compare to compressible material but
reverse in case for measure 1/3. With

the increased in angular speed the value of
percentage decrease in radial as well as
circumferential stresses must be decrease
for incompressible as well as compressible
materials.

Figure 3(b). Percentage decrease in Circumferesitiadses.

Versus materials Poisson ratios.

ESTIMATION OF CREEP PARAMETERS

When the creep sets in, the strains should be aeghldy strain rates and the stress-strain

relations (Equation (3)) become:
_1+v Vv

€i Eaij g

(28)

where g; is the strain rate tensor with respect to flowapaetert. Differentiating (Equation

(4)) with respect to timg we get:
€0 = _/Bn_l/g

For SWAINGER measure.€é.n = 1), (equation (29)) become,, =5 .

(29)
(30)
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where &,,is the SWAINGER strain measure. From (Equation)(ft® transition valugs is
given by:

n Un
ﬁ:(nlzﬂ) [arr _066] (31)
Using (Equations (29)-(31)) in (Equation (28)), ged:

¢, =[nlo, -o,)a+ |/)]%‘1 [0, —va, +00)]
0 =00, - 0, )4V o, ~vo, +ae)]

¢, =nlo, —a,a+v) (g, +0,)+ a0 (32)

where ¢, &, and &,, are strain rates tensor.

These are the constitutive equations used bpusT (1974) for finding the creep stresses
and strain rates provided we put 1/N.

NUMERICAL RESULTS AND DISCUSSION

For calculating stresses, strain-rates and displane based on the above analysis, the
following values have been takéd = pw?b?/ E=5, 10v = 0.5 (incompressible material),
v =0.42857 and 0.333 (compressible materiats)= 1/3, 1/5, 1/7 i(e N =3, 5, 7),
a =50x10° deg F*(for Methyl Methacrylate; EviTsky et. al, 1975 ), ©,= 0 and

1,00,006F , ©, = a®, = 0.00 and 5 anB = 1.
In classical theory measuleis equal to Ii. Definite integrals in the equations (22) and (23)
have been solved by using Simpson’s rule.

It has been seen from Fig. 4 and 5, curve have been between radis¢siversus
temperatured, = 0, 5for measurer = 1/7, 1/5, 1/30Q%=5, 10. With the thermal effect stresses
must be decreases.

 For measuren =1/7, decrease percentage change are -12.4%, -13.5%, -14.3% at
angular spee(ﬂ2 =5 and -1.9%, -2.4%, -2.8%Vg sign indicates decease value) at
angular speed®? =10 having possion ratiog =0.33, 0.428, 0.5.

* For measuren =1/5, decrease percentage change are -10.6 %45%1112.3% at
angular speed2®=5 and -0.8%, -1%, -1.3% e sign indicates decease value) at
angular spee? =10 as shown having possion raties0.33, 0.428, 0.5.

* For measura =1/3, decrease in percentage change are -5.7.48p;67% at angular
speedQ2 =5 and -0.1 %, -0.12%, -0.2%vé sign indicates decease value) at angular
speedQ2 =10 having possion ratiag=0.33, 0.428, 0.5.

From Table 1, it has been seen that thermal effecteases the value of radial stresses
as well as circumferential stresses at the intesndhce for compressible material as compare
to incompressible material for measwre 1/7, 1/5 and 1/3. Percentage change in radil an
circumferential stresses should be decreased Webtef temperature.

Curves are produced between stresses and displateaioag the radii rati®® = r/b
(see Figures 5(a) and 5(b)) for rotating disc maideompressible as well as incompressible

materials with angular spee€@® = 5 and 10. It is also observed from (Figures-5(&)) that
the radial stress has maximum value at the intesndlace of the rotating disc made of
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compressible material.¢. v = 0.33 say Copper; 0.428ay saturated clay) as compare to
incompressible materials.€. v = 0.5sayrubber) for measure = 1/7 {.e. N = 7) at angular

speed Q®=5). The values of radial stress further increaaeshe internal surface with

increase value of angular spedd®(=10) for measura = 1/7 {.e.N = 7),n = 1/5 {.e. N =5)
andn =1/3 (.e. N = 3) respectively. Thermal effect decreases thgegaof radial stress at the
internal surface.
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Figures 4(a)-4(b). Percentage change in radiagdstre
with and without temperature at the initial yielgito become fully plastic.
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Table 1. Parentage change stresses for initiadipigland fully plastic state

Angular | Temperature | Measure Radial stresses Percentage| Circumferential Percentage
Speed e) n o change stress change
0?2 ! ' (Decrease) g, (Decrease)
0 1/5 3.0794932 | v =0.33 | 10.6% -0.679905306 | v =0.33 | 48%
5 1/5 2.7531297 (compress -1.006268796 |(compress
0 1/3 2.4367435 ple 5.7% 0.180878842 |le 77.4%
5 1/3 2.2967465 |material 0.0408818 material
0 1/7 3.8233112 12.4% -1.471616276 32.33%
5 1/7 3.3475945 -1.947333004
0 1/5 3.052207 |v = 11.5% -0.447968036 |v =0.4285| 78.43%
5 1/5 2.7008862 |0.428¢ -0.799288839 |(compres:
0 1/3 2.4231061 |(compress | 6.4% 0.322791059 |ole ) 47.76%
5 1/3 2.2689446 ple 0.168629576 |material)
5 0 1/7 3.7748112 material 13.5% -1.155012792 43.96%
5 1/7 3.2670218 -1.662802181
0 1/5 3.0448837 | v=0.5 | 12.3% -0.288449598 | v =0.5 129.99%
» 5 1/5 2.6699252 |(Incompre -0.663408086 ((Incompre
% 0 1/3 2.420306 [sible 7% 0.420105989 |[sible ] 40.11%
< 5 1/3 2.2518215 |materal) 0.251621524 |material
G 0 1/7 3.7567948 14.3% -0.938040834 57.24 %
9 5 1/7 3.2198703 -1.474965389
s}
E 0 1/5 4.4385543 | v =0.33 | 0.8% 0.67915578 v=0.33 | 5.07%
[ 5 1/5 4.4041066 (compress 0.644708152 |(compress
o 0 1/3 4.1302201 ple 0.1% 1.874355393 ple 0.17 %
£ 5 1/3 4.1270352 |material 1.8711705 material
0 1/7 4.8494276 1.9% -0.445499883 21.19%
5 1/7 4.7550385 -0.539889002
10 0 1/5 4.409522 |v = 1% 0.909347033 |v =0.4285| 4.87 %
5 1/5 4.3652161 (0.428¢ 0.865041045 |(compressi
0 1/3 4.1062292 (compress | 0.12% 2.005914208 |ple 0.24 %
5 1/3 4.1014429 ple 2.001127907 |material
0 1/7 4.8202831 |material 2.4% -0.109540887 104.17 %
5 1/7 4.7061754 -0.223648537
0 1/5 43979025 | v =0.5 | 1.3% 1.064569146 v=0.5 | 52%
5 1/5 4.3425087 (Inconrpres 1.009175342  |(Incompre
0 1/3 4.0920804 [sible 0.2% 2.091880367 |sible 0.33%
5 1/3 4.0851875 material 2.084987446 |material
0 1/7 4.8158733 2.8% 0.12103761 111.4 %
5 1/7 4.6810347 -0.01380097
3, sEgma rTemp=0 —#&—— n=1/3 sgma theta Temp=0
3, uTemp=0 — - —- n=1/5, sgma r Temp=0
5, sgma theta, Temp=0 —_— uTemp=0
ma r,TempE0 ——#&—— n=1/7, sgma thet Temp=0
. 7, uTemp=0 oy TE1(3, sigMA T, TempsS
Bl RS Tk 1ezinly ,sigma theta, Temps=s ———— =13 Temp=s
L sigma r, Temp=5 —He— =S s:gma theta, Te mp=5 T e
4 _— r=.1-E.u..Temp=5 — r=1: sigma r, Temp =5
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Figure 5(a). Stresses and displacement distribatiomg the r adii ratio R = r/b
at angular spee@’ =5,
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Figure 5(b). Stresses and displacement distribtiong the radii ratio R #b
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Curve are produced for strain rates along the ratio R = r/b (see Figures 6(a) and 6(b)) for
rotating disc made of compressible materials. (saturated clay or copper) as well as

incompressible material.€. rubber) with angular spee@” = 50 and 75 for measure= 1/7,
1/5, 1/3 (i.e. N = 7, 5, 3). It has been seen (Figures 6(a)-6{mg) totating disc made of
compressible materials has maximum value of s@ithe internal surface as compared to
disc made of incompressible material for measurelfi7, 1/5, 1/3 (i.e. N =7, 5, 3) at angular
speedQ?® = 5. Since the values of strain rates furtherdases at the internal surface with
increase value of angular spesaly Q° = 10 respectively. With the introduction of thetma
effects the maximum value of strain rates furthecreases at the internal surface for
compressible materials.€. saturated clay or copper) as compare to incomiptesmaterial.
Measure decrease value of strain rates at thenaitsurface. Rotating disc is likely to fracture
by cleavage close to the shaft at the bore.

CONCLUSION

Thermal effect decreased value of radial stresleainternal surface of the rotating isotropic

disc made of compressible material as well as imressible material and this value of radial

stress further much increases with the increasangular speed. With the introduction of

thermal effects the maximum value of strain ratether increases at the internal surface for
compressible materials as compare to incompressiaterial.
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