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M. Arsenijević1 and N. Banković 2
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ABSTRACT This article presents microscopic derivation of the Kraus operators for (the

generalized) amplitude and phase damping process. Derivation is based on the recently

developed method [Andersson et al, J. Mod.Opt. 54, 1695 (2007)] which concerns finite

dimensional systems (e.g. qubit). The form of these operators is usually estimated without

insight into the microscopic details of the dynamics. The behaviour of the qubit dynamics

is simulated and depicted via Bloch sphere change.

1. INTRODUCTION

Quantum information processing substantially depends on the mathematical details

of the environmental influence exerted on the qubit-registers [1]. Nevertheless, to the best

of our knowledge, theoretical origin of the widely used Kraus operators for the one-qubit

quantum noise-channels [1–7] has not been investigated yet. In this paper we perform a

thorough analysis of the microscopic models for the standard one-qubit amplitude damp-

ing and phase damping quantum processes. To this end we use a recently formulated

method [8] for derivation of the Kraus operators from a microscopic master-equation de-

scription of the processes. We find the unitary equivalence of the here derived Kraus

operators with those widely used in the literature, thus presenting the same quantum

noise process. The converse conclusion regarding the one-qubit depolarizing process will

be presented elsewhere [9].

In Section 2, we overview the method of Andersson et al [8]. In Section 3 we derive
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the Kraus operators for the generalized amplitude damping process, while in Section 4 we

derive the Kraus operators for the phase damping process. Section 5 is the conclusion.

2. OVERVIEW OF THE METHOD

In the paper [8], the authors developed a general procedure for deriving a Kraus decom-

position from the known master equation and vice versa, regarding the finite-dimensional

quantum systems. The only assumption is that the master equation is local in time.

The so-called Nakajima-Zwanzig projection method [11,13] gives the following master

equation for the system’s density operator ρ̂S(t), (~ = 1):

dρ̂S(t)

dt
= −i[Ĥ, ρ̂S(t)] +

∫ t

0

Kt,s[ρ̂S(s)]ds, (1)

where Ĥ represents the system’s self-Hamiltonian (that includes the so-called Lamb-shift

term) and Kt,s is the memory kernel which accounts for the non-unitary effects due to the

environment.

Certain processes can be written in a local-in-time form [11,13]:

˙̂ρS(t) = Λt(ρ̂S(t)), (2)

where Λt is a linear map which preserves hermiticity, positivity and unit trace of ρ̂S(t)

and has the property:

trΛt(ρ̂S(t)) = 0. (3)

Alternatively, dynamics can be presented in a non-differential, “integral” form [8, 11,

13]:

ρ̂S(t) = ϕt(ρ̂S(0)), (4)

where ϕt is a completely positive and trace preserving linear map.

It can be shown [8] that linear maps Λt and ϕt are connected via the matrix differential

equation:

Ḟ = LF, (5)

where the matrix elements of L are given by:

Lkl = tr[GkΛ(Gl)]. (6)

In eq.(6), {Gk} is any orthonormal basis of the Hermitian operators acting on the system’s

Hilbert space. For the time independent Λt, i.e. L, eq.(5) has the unique solution:

F = eLt. (7)
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Complete positivity of the map ϕt (and hence of the matrix F ) is equivalent to the

positivity of the, so called, Choi matrix, S [8, 10], whose elements are defined as [8]:

Snm =
∑
s,r

Fsrtr[GrG†
nGsGm]. (8)

With the use of equation (8), eq.(4) takes the form:

ϕ(ρ̂S(0)) =
∑
nm

SnmGnρ̂S(0)G†
m, (9)

which, after diagonalization of the S matrix:

S = UDU †, (10)

gives rise to a Kraus decomposition. The eigenvalues di and the eigenvectors of the S

matrix constitute the diagonal matrix D and the unitary matrix U = (uij) respectively;

columns of the unitary U operator are the normalized eigenvectors of the S matrix. Then

the Kraus operators:

Ei =
∑
j

√
diujiGj (11)

yield the Kraus decomposition of the dynamical map ϕt:

ϕt(ρ̂S(0)) =
∑
k

Êk(t)ρ̂S(0)Ê
†
k(t). (12)

Therefore, the chain of the construction is established: from a master equation to

calculate L, then via relation (7) to obtain the matrix F and, due to eq.(8) and diagonal-

ization eq.(10) of the Choi matrix to calculate the Kraus operators eq.(11).

3. THE GENERALIZED AMPLITUDE DAMPING CHANNEL

The standard master equation for the amplitude damping process, at absolute zero,

T = 0K, reads [2]:

dρ̂S(t)

dt
=

γ

2
(2σ̂−ρ̂S(t)σ̂+ − σ̂+σ̂−ρ̂S(t)− ρ̂S(t)σ̂+σ̂−) , (13)

while the corresponding standard Kraus operators:

Ê0 = |0⟩⟨0|+
√

1− λ(t)|1⟩⟨1|, Ê1 =
√
λ(t)|0⟩⟨1| (14)

and the Pauli operators σ̂z = |0⟩⟨0| − |1⟩⟨1|, σ̂x = |0⟩⟨1| + |1⟩⟨0|, σ̂y = ı|0⟩⟨1| − ı|1⟩⟨0|,
and σ̂± = 1

2
(σ̂x ± ıσ̂y).
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To describe the amplitude damping process for all temperatures, the following Hamil-

tonian is often regarded [11]:

Ĥ =
ω0

2
σ̂z +

∫ ωmax

0

dωâ†ωâω +

∫ ωmax

0

dωh(ω)(â†ωσ̂− + âωσ̂+). (15)

The first term on the right side of eq.(15) denotes the system’s self-Hamiltonian, the

second denotes the self-Hamiltonian of the environment (a thermal bath of linear non-

interacting harmonic oscillators and âω representing the bosonic ”annihilation” operator

for the frequency ω) while the last term represents the interaction with the coupling-

coefficients h(ω). ωmax is the ’cutoff frequency’ for the bath’s oscillators; one may take

the limit ωmax → ∞ providing that the h(ω) sufficiently quickly decreases.

As distinct from eq.(13), the microscopic Markovian master equation, in interaction

picture, derived from Hamiltonian (15) reads [11]:

dρ̂S(t)

dt
= −i[(

∆

2
+ ∆′)σ̂z, ρ̂S(t)]

+ 2πJ(ω0)(⟨n(ω0)⟩+ 1)
[
σ̂−ρ̂S(t)σ̂+ − 1

2
{σ̂+σ̂−, ρ̂S(t)}

]
+ 2πJ(ω0)⟨n(ω0)⟩

[
σ̂+ρ̂S(t)σ̂− − 1

2
{σ̂−σ̂+, ρ̂S(t)}

]
,

(16)

where ∆ = P.V.
∫ ωmax

0
dω′ J(ω′)

ω0−ω′ and ∆′ = P.V.
∫ ωmax

0
dω′ J(ω′)⟨n(ω′)⟩

ω0−ω′ denote the Lamb-like

shift and the Stark-like shift contributions from the vacuum and the thermal field, re-

spectively, and curly brackets stand for anti-commutator. P.V. stands for the Cauchy

principal value of the integral. J(ω) represents the spectral density of the bath.

The master equation (16) reduces to the standard ADmaster equation (13) for T = 0K,

and is therefore often called generalized amplitude damping (GAD) channel. Below, due

to the procedure described in Section 2, from eq.(16) we derive the GAD Kraus operators,

which will turn out to be unitary equivalent with the known GAD Kraus operators [12]:

E0 ≡
√
p

[ √
1− λ(t) 0

0 1

]
; E1 ≡

√
p

[
0 0√
λ(t) 0

]
;

E2 ≡
√
1− p

[
1 0

0
√

1− λ(t)

]
; E3 ≡

√
1− p

[
0
√
λ(t)

0 0

]
,

(17)

where λ(t) ≡ 1− e−γ0(2Nth+1)t; p ≡ Nth+1
2Nth+1

. Nth =
[
e(ω/T ) − 1

]−1
while γ appears in (13).

To ease the calculation, we introduce the following notation: x =
∆

2
+ ∆′, y =

2πJ(ω0)(⟨n(ω0)⟩+ 1) > z = 2πJ(ω0)⟨n(ω0)⟩ ≥ 0 with which the equation (16) reads:

dρ̂S(t)

dt
= −ix[σ̂z, ρ̂S(t)]

+ y[σ̂−ρ̂S(t)σ̂+ − 1
2
{σ̂+σ̂−, ρ̂S(t)}]

+ z[σ̂+ρ̂S(t)σ̂− − 1
2
{σ̂−σ̂+, ρ̂S(t)}] .

(18)
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Now, from (18) and using eq.(6) from the body text, the σ̂z-representation of the L

matrix takes the form:

L =


0 0 0 0

0 1
2
(−y − z) −2x 0

0 2x 1
2
(−y − z) 0

z− y 0 0 −y − z

 . (19)

In order to facilitate the calculation of the exponential F matrix, we multiply the

L matrix by 2
(y+z)

that allows introduction of new variables: θ = 4x
y+z

, Ω = −2(y−z)
(y+z)

,

τ = (y+z)
2

t; Ω ∈ [−2, 0), τ ∈ (−∞,∞). Then follows:

2L

y + z
=


0 0 0 0

0 −1 −θ 0

0 θ −1 0

Ω 0 0 −2

 . (20)

and

F = e
2L
y+z

τ , (21)

which obtains the form:

F =


1 0 0 0

0 e−τ cos(θτ) −e−τ sin(θτ) 0

0 e−τ sin(θτ) e−τ cos(θτ) 0

e−τΩ sinh(τ) 0 0 e−2τ

 . (22)

From eq.(22) we obtain the corresponding Choi matrix (Section 2), whose diagonal-

ization gives the following set of eigenvalues:

−1

4
e−2τ

(
−1 + e2τ

)
(−2 + Ω), (23a)

1

4
e−2τ

(
−1 + e2τ

)
(2 + Ω), (23b)

1

4
e−2τ

(
2 + 2e2τ −

√
16e2τ + Ω2 − 2e2τΩ2 + e4τΩ2

)
, (23c)

1

4
e−2τ

(
2 + 2e2τ +

√
16e2τ + Ω2 − 2e2τΩ2 + e4τΩ2

)
, (23d)

and the respective non-normalized eigenvectors:
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{
0,

1

2
ie−τ

(
−1 + e2τ

)
Csch[τ ], 1, 0

}
, (24a){

0,−1

2
ie−τ

(
−1 + e2τ

)
Csch[τ ], 1, 0

}
, (24b){

e−τ
(
−
√
16e2τ + Ω2 − 2e2τΩ2 + e4τΩ2 + 4eτCos[θτ ]

)
2(−2iSin[θτ ] + ΩSinh[τ ])

, 0, 0, 1

}
, (24c){

e−τ
(√

16e2τ + Ω2 − 2e2τΩ2 + e4τΩ2 + 4eτCos[θτ ]
)

2(−2iSin[θτ ] + ΩSinh[τ ])
, 0, 0, 1

}
. (24d)

Hence we obtain the first two Kraus matrices for GAD, eq.(4):

E1 =

(
0 0

1
2
i
√
(e−2τ − 1) (Ω− 2) 0

)
, (25)

E2 =

(
0 −1

2
i
√
(1− e−2τ ) (Ω + 2)

0 0

)
. (26)

By introducing:

A = −2i sin[θτ ] + Ω sinh[τ ], (27)

B± = e−4τ
(
2 + 2e2τ ±

√
Ω2 + e2τ (16 + (−2 + e2τ ) Ω2)

)
, (28)

C± = e−2τ
(√

Ω2 + e2τ (16 + (−2 + e2τ ) Ω2)± 4eτ cos[θτ ]
)2

, (29)

D = 4eτ−iθτ (30)

and

E± =
(
1− e2τ

)
Ω±

√
Ω2 + e2τ (16 + (−2 + e2τ ) Ω2), (31)

another pair of Kraus matrices, E3 and E4, can be written as:

E3 =

√
|A|2B−

4|A|2+C−

2
√
2A

(
D − E+ 0

0 D∗ + E−

)
(32)

and

E4 =

√
|A|2B+

4|A|2+C+

2
√
2A

(
D − E− 0

0 D∗ + E+

)
. (33)

It is straightforward yet tedious task to confirm the completeness relation
∑

k Êk(t)
†Êk(t) =

Î (Î is the identity operator) for the Kraus matrices eqs.(25), (26), (32) and (33).
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For the bath on T = 0K, the parameters x = 0 = y, equivalently θ = 0,Ω = −2, the

GAD master equation eq.(16) reduces to the standard AD master equation eq.(13). Now

placing θ = 0,Ω = −2 in eqs.(25)-(33), we obtain:

E1 =

(
0 0

i
√
1− e−2τ 0

)
, (34)

E2 = 0, (35)

E3 = 0, (36)

and

E4 =

(
−e−τ 0

0 −1

)
. (37)

It is easy to prove the completeness relation for the Kraus matrices eqs.(34) and (37).

The matrices E′
1 = −iE1 and E′

4 = −E4 are unitary-equivalent with the standard AD

Kraus operators eq.(14). That is, the sets eqs.(34)-(37) and eq.(14) describe the same

process.

Unitary equivalence of the Kraus matrices (25)-(33) and the GAD Kraus matrices (17)

follows from the following observations. First, the GAD Kraus matrices eq.(5) reduce to

standard ones eq.(14) for Nth = 0 i.e. p = 1 (in our notation these are: θ = 0,Ω = −2).

Second, for both sets of the Kraus operators, (25)-(33), and eq.(17), it easily follows:

ϕτ (Î) = Î +
Ω

2
(1− e−2τ )σ̂z , (38a)

ϕτ (σ̂x) = e−τ (σ̂x cos θτ + σ̂y sin θτ) , (38b)

ϕτ (σ̂y) = e−τ (σ̂y cos θτ − σ̂x sin θτ) , (38c)

ϕτ (σ̂z) = e−2τ σ̂z , (38d)

which, bearing in mind ρ̂ = 1
2

(
Î + n⃗ · ˆ⃗σ

)
, gives rise to:

ϕτ (ρ̂) = 1
2
[Î + e−τ sin v cos(u+ θτ)σ̂x + e−τ sin v sin(u+ θτ)σ̂y

+ (Ω
2
(1− e−2τ ) + e−2τ cos v)σ̂z] ,

(39)

i.e. to:

ϕt(ρ̂) = 1
2
[Î + e−

1
2
t(y+z) cos(u+ 2tx) sin vσ̂x + e−

1
2
t(y+z) sin v sin(u+ 2tx)σ̂y

+
((−1+2e−t(y+z))y+z) cos v

y+z
σ̂z] .

(40)

Expressions eq.(39) and eq.(40) are solutions of the master equation eq.(16). Unitary-

equivalent Kraus matrices eqs.(25)-(33) and eq.(17) describe the same process.

For completeness, with the use of eqs.(38), below we compare the temporal behaviors

of the Bloch sphere for the standard AD and GAD channels. Also we study the GAD
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Figure 1: (Left) Representation of the GAD process for high temperature: the big sphere

is for the initial instant of time t = 0–the unchanged Bloch sphere. For t = 0.05, both

smaller and larger ellipsoids pertain to the GAD channel for T = 300 and T = 100,

respectively. (Right) A representation for low temperature (T = 1): the big sphere is for

the initial instant of time t = 0. For t = 2.5, there is only one ellipsoid for both, the

standard AD and the GAD channel, exhibiting their match in this temperature regime.

The parameters: α = 0.02, ω0 = 10 and ωc = 15.

channel for various (high) temperatures via investigating temporal behavior of the Bloch

sphere volume.

Fig.1(right) exhibits unchangeability of the “ground” state |1⟩ on T = 0K while

Fig.1(left) shows instability (finite probability for excitation) of the ground state for the

finite temperature range; of course, this physical observation is well known from the ap-

plication of the quantum-optical master equation to a two-state atom [13]. On the other

hand, Fig.1(left) reveals a faster change of the “excited” state |0⟩ for higher temperatures.

Time dependence of the Bloch-sphere volume is:

V (τ) =
4π

3
e−4τ , (41)

equivalently V (t) = 4π
3
e−2(z+y)t. The relative change of the Bloch sphere volume, κ(t) =

1
V0

dV (t)
dt

:

κ(t) = −2(z+ y)e−2(z+y)t. (42)

Eq.(42) regarding GAD process is presented in Fig.2;

Finally, GAD Kraus operators, eqs.(25)-(33) and eq.(17), can be shown to take the

following forms in the asymptotic limit , τ → ∞:

EAsym
1 =

(
0 0

i
√
2−Ω
2

0

)
(43)
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Figure 2: The relative change of the Bloch sphere volume for the high-temperature GAD

process. The dashed line is for T = 100 and the thick one for T = 300. The parameters:

α = 0.02, ω0 = 10 and ωc = 15.

EAsym
2 =

(
0 − i

√
Ω+2
2

0 0

)
(44)

EAsym
3 =

(
0 0

0 −
√
2−Ω
2

)
(45)

EAsym
4 =

( √
Ω+2
2

0

0 0

)
(46)

from which it is clear that, asymptotically, the actions of the standard AD channel,

eqs.((34)-(37)), and of the GAD channel, eqs.((43)-(46)) , are not mutually equivalent,

except for the choice Ω = −2 for the GAD channel.

4. THE PHASE DAMPING CHANNEL

The phase damping (PD) quantum channel models pure decoherence without loss of

energy for a single-qubit system. The Hamiltonian for the total (closed) system is given

by [11]:

Ĥ =
ω0

2
σ̂z +

∫ ωmax

0

dωâ†ωâω + σ̂z ⊗
∫ ωmax

0

dωh(ω)(â†ω + âω). (47)

Notation and the meaning of the terms in eq.(47) are the same as in eq.(15).

The model eq.(47) gives rise to the following microscopic Markovian master equation

in the interaction picture [11]:

dρ̂S(t)

dt
= r(σ̂zρ̂S(t)σ̂z − ρ̂S(t)), (48)

whereby the decay rate r [11]:

r = 2π lim
ω→0

J(|ω|)⟨n(|ω|)⟩, (49)
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under assumption limω→0 J(|ω|) = 0. J(ω) is the spectral density of the bath while ⟨n(ω)⟩
is the mean number of the bosons for the thermal state of the bath with the frequency ω.

Following the recipe of Section 2:

L =


0 0 0 0

0 −2r 0 0

0 0 −2r 0

0 0 0 0

 , (50)

F =


1 0 0 0

0 e−2rt 0 0

0 0 e−2rt 0

0 0 0 1

 , (51)

S =


1 + e−2rt 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1− e−2rt

 , (52)

which give rise to the following Kraus operators:

E1 =

( √
1−e−2rt√

2
0

0 −
√
1−e−2rt√

2

)
, (53)

E2 =

( √
1+e−2rt√

2
0

0
√
1+e−2rt√

2

)
. (54)

These matrices are the σ̂z = |0⟩⟨0| − |1⟩⟨1| representations of the well known Kraus

operators for the PD channel [2]:

Ê0 =

√
1− p(t)

2
Î , Ê1 =

√
p(t)

2
σ̂z (55)

where p(t) ≡ 1− e−2rt while the completeness relation
∑

k Êk(t)
†Êk(t) = Î is satisfied.

From Kraus operators, eqs.(53) and (54) easily follows

ϕτ (Î) = Î , (56a)

ϕτ (σ̂x) = e−2rtσ̂x , (56b)

ϕτ (σ̂y) = e−2rtσ̂y , (56c)

ϕτ (σ̂z) = σ̂z . (56d)

Hence the solution of eq.(48):

ϕτ (ρ̂) = 1
2
[Î + e−2rt sin v cosuσ̂x + e−2rt sin v sinuσ̂y

+ cos vσ̂z] .
(57)



51

for the initial state ρ̂ = 1
2

(
Î + n⃗ · ˆ⃗σ

)
; n = (nx, ny, nz). Notice diagonalizability of the

state eq.(57) for long times (t → ∞) in the σ̂z eigenbasis, which becomes the “pointer

basis” for the decoherence process [1] induced by the environment.

5. CONCLUSION

Detailed microscopic analysis of the differential form of the amplitude damping and

phase damping processes on a single qubit gives rise to the Kraus operators that describe

exactly the same process as the standard Kraus operators widely used for these processess.
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[5] B. Bylicka, D. Chruściński, S. Maniscalco, Non-Markovianity and reservoir memory

of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720

(2014).

[6] D. C. Marinescu and G. M. Marinescu, Classical and Quantum Information Elsevier,

Amsterdam, (2012).

[7] A.B. Klimov and L.L. Sanchez-Soto, Depolarization for quantum channels with higher

symmetries, Physica Scripta T140, 014009 (2010).

[8] E. Andersson, J. D. Cresser, and M. J. W. Hall, J. Mod. Opt. 54, 1695 (2007).



52
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