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ABSTRACT. Let G be an n−vertex graph with degree sequence d1, d2, …, dn. The 

harmonic index H(G) is defined as )(/ GIn , where .)/(∑ =
n

1i id1 = I(G)  In this paper the top 

ten values of harmonic index in the set of all chemical trees of order n are determined. 
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INTRODUCTION 
 

We use West [1] for terminology and notation not defined here and consider finite 
simple connected graphs only. Suppose G is such a graph with V(G) = {v1, v2, …, vn}. If we 
sort vertices of G in such a way that deg(v1) ≤ deg(v2) ≤ … ≤ deg(vn) then the sequence (d1, d2, 
…, dn) is called a degree sequence for G, where di = deg(vi), 1 ≤ i ≤ n.  

A graph invariant is any function on a graph that does not depend on a labeling of its 
vertices. A big number of different invariants have been employed to date in chemistry for 
solving some chemical problems. Here we are interested to the harmonic index defined as 

H(B) = n/I(B), where I(B) = ( )∑ =
n
i id1 /1 , for a graph B. This topological index was introduced 

by Narumi [2]. 
A chemical tree is a tree in which every vertex has degree at most 4. We denote by 

ℊ(n), the set of all n−vertex chemical trees. It is easy to see that if A and B are two elements of 
ℊ(n) with the same degree sequence then H(A) = H(B). This is motivation for defining an 
equivalence relation ~ on ℊ(n) by A ~ B if and only if A and B have the same degree 

sequence. Suppose �(n) denotes the set of all equivalence classes of ~ on �(n) and T1, T2 
∈ �(n). Define T1 ≼ T2  if and only if for each element A ∈ T1 and B ∈ T2, we have H(A) ≤ 

H(B).  
 The aim of this paper is to compute the first 10 maximum value of harmonic index. 
We encourage the reader to consult [3−8] for basic computational techniques on the problem.  
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MAIN RESULTS 
 

In this section, we are analyzing chemical trees with kth, 1 ≤ k ≤ 10, maximum values 
for the harmonic index. In order to formulate our results, we need introduce some graph 
notations used in this paper. Define:  

T1,H (n) = {M ∈ CT(n) | ∀T∈ CT(n) ; H(T)  ≤  H(M)}, 
and for each i, 1≤ i ≤ r = |CT(n)|, we have: 

Ti,H(n) = {M ∈ CT(n) – T1 ∪ … ∪ Ti−1} | ∀T∈ CT(n) – T1 ∪…∪ Ti−1 ; H(T) ≤ H(M)},  
where r is the number of n−vertex chemical trees. The elements of Ti,H(n) are called i th 
maximum class of chemical trees with respect to H index.  
 

Lemma 1. Let Tn be an n−vertex chemical tree and 'nT  is an n−vertex chemical tree obtained 

from Tn by deleting a pendant vertex and appending a pendant vertex to another pendant 
vertex of Tn. Then I( 'nT ) ≤ I(Tn). 
 

Proof. Suppose uv is a pendant edge of Tn, deg(v) = 1, deg(u) ≥ 2 and w is a pendant vertex of 
Tn such that 'nT  is obtained by deleting uv and appending it to w. Then 

,1)w(deg1)w(deg '
nn TT −==  1)(deg)(deg ' += uu

nTnT  and for another vertex x different 

from u and w, ).x(deg)x(deg '
nn TT =  On the other hand, )( nTI  = ∑ ≠ wux

xd,
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proving the lemma.                                                                              ◄ 
 

Corollary 2. Let T be an n−vertex chemical tree then I(T) ≥ 1 + n/2 with equality if and only 
if T is a path of length n. The second−minimum value of I index is 4/3 + n/2 and it is attained 

if and only if T is isomorphic to *
nP , where *

nP  is a tree with exactly three pendant vertices.  

 
Lemma 3. Let Tn be an n−vertex chemical tree containing vertices u, z such that degT(u) = 2 
and degT(z) = 2 or 3. Suppose T1 and T2 are maximal subtrees of Tn containing u as a pendant 

vertex and z ∈ V(T2), Figure 1. If *
nT  is the chemical tree constructed from T1 and T2 by 

identifying u and z then I(Tn) ≤ I( *
nT ), Figure 2. 

 

Proof. It is easy to see that ,1)u(deg,2)u(deg *
nn TT ==  1)z(deg)z(deg

n*
n

TT
+=  and for 

another arbitrary vertex x, ).x(deg)x(deg *
nn TT =   

 

 

Figure 1. The Chemical Tree Tn Containing a Subtree T1.  
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Figure 2. The Chemical Tree *nT  Constructed from T1 and T2. 
 

Therefore, =)( nTI  ∑ ++≠ uzx
zdudxd,

111
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 proving the lemma.                                                                              ◄ 

 
Lemma 4. Let Tn be an n−vertex chemical tree containing vertices u and z of degree 3. We 
also assume that T1, T2 and T3 are maximal subtrees of Tn with u as a pendant and z ∈ T3. If 

"
nT  is the chemical tree constructed from T1 and T2 by identifying u and z then I(Tn) ≤ I( "

nT ). 
 

Proof. By our assumption ,2)u(deg,3)u(deg "
nn TT ==  3)z(deg

nT =  and .4)z(deg "
nT

=  

Thus,  

∑= ≠ uzx
xdnTI ,

1
)(  
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11 ++  ∑
≠

++=
uzx xd, 3

1

3

11
, 

∑= ≠ uzxn
xd

TI ,
" 1
)(  

4

1

2

1 ++ ,  

which implies that I(Tn) ≤ I( *
nT ).                                                                                    ◄ 

 

 

 
Figure 3. The Chemical Tree Tn. Figure 4. The Chemical Tree Tn″. 

 
Remark 5. Suppose T is a chemical tree with maximum I index and r(i), i ≤ 4, denotes the 
number of vertices of degree i. Then by Lemmas 3 and 4, r(2) + r(3) = 0, 1.  
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 In what follows ℊ(n) denotes the set of all n−vertex chemical trees. 
 

Corollary 6. An n−vertex chemical tree T has the maximum value of I index in ℊ(n),  if T has 
the maximum number of pendants in ℊ(n) and non−pendant vertices satisfying r(2) + r(3) ≤ 1. 
 

 In Table 1, the number of pendants, the number of vertices of degree 2, the number of 
vertices of degree 3 and the number of vertices of degree 4 are computed for the maximal 
chemical trees with respect to I index, when the number of vertices are at most 16. In Table 2, 
the n−vertex chemical trees with respect to I index, 4≤ n ≤ 13, are depicted. 
 

Table 1. The Number of Vertices of Each Degree in 
       n−Vertex Chemical Trees, 4 ≤ n ≤16. 

 

N 
# 

Pendants 
# Vertices of 

Degree 4 
# Vertices 

of Degree 3 
# Vertices 

of Degree 2 
4=3×1+1 3 0 1 0 

5=3×1+2 4 1 0 0 

6=3×1+3 4 1 0 1 
7=3×2+1 5 1 1 0 

8=3×2+2 6 2 0 0 

9=3×2+3 6 2 0 1 
10=3×3+1 7 2 1 0 

11=3×3+2 8 3 0 0 

11=3×3+3 8 3 0 1 
13=3×4+1 9 3 1 0 

14=3×4+2 10 4 0 0 

15=3×4+3 10 4 0 1 
16=3×5+1 11 4 1 0 

 

Table 2. The Maximal Chemical Trees with respect to I Index, 4 ≤ n ≤ 13. 
 

n=4 
 

n=5 
 

n=6 
 

n=7 
 

n=8 
 

n=9 
 

n=10 
 

n=11 
 

n=12 
 

n=13 
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 From Table 2, it is natural to ask whether or not the maximal tree with respect to I 
index is unique. In the following example we respond negatively to this question. 
 
Example 7. Consider the graphs A and B depicted in Figures 5 and 6, respectively. By simple 
calculations, one can see that A and B are non-isomorphic graphs with the same I index. This 
shows that the maximum of I index can be occurred in more than 2 chemical trees.  
 

 
 

Figure 5. The Graph A. Figure 6. The Graph B. 

 
 Suppose ℊ(n) denotes the set of all n−vertex chemical trees, n = 3k + t, 1 ≤ t ≤ 3, n ≥ 3 
and T ∈ ℊ(n) is an n−vertex chemical tree having maximum I index. One can easily seen that 
r(1) = 2k + 2 − 1/t and r(2) + r(3) = 1. If t = 3 then r(2) = 1, r(3) = 0, and if t = 1 then r(2) = 
0 and r(3) = 1. Therefore, r(4) = n – r(1) – r(2) – r(3) = n – (2k + 2 − 1/t ) – (r(2) + r(3)) = 3k 
+ r – 2k – 2 + 1/t − 1 = k + t – 3 + 1/t. 
 
Remark 8. Suppose T ∈ ℊ(n), n = 3k + t, 1 ≤ t ≤ 3, and n ≥ 3. Then the maximum of I index 
is occurred if r(1) = 2k + 2 − 1/t, r(2) + r(3) = 1 and r(4) = k + t – 3 + 1/t. In this case, the 
value of I index is computed by I(T) = 2k + 2 − 1/t + ¼(k + r – 3 + 1/r) + r(2)/2 + r(3)/3. 
Moreover, if n = 3k + 3 then r(2) = 1, r(3) = 0 and if n = 3k + 1 then r(2) = 0 and r(3) = 1.  
 
Corollary 9. Suppose T is an n−vertex chemical tree having maximal I index in ℊ(n), n ≥ 4. 
Construct the chemical tree S from T by deleting a pendant connected to vertex v of degree 4 
in T and connecting to a vertex of degree 2. If there is not a vertex of degree 2 then we 
connect it to a pendant. Then the chemical tree S attain the second maximum value of I index.  
 
Example 10. In this example two chemical trees C and D are constructed such that the 
number of pendants of C is greater than D, but I(D) < I(C). These are depicted in Figures 7 
and 8. It is easy to calculate I(D) = 17 + 1/4 < 17 + 1/6 = I(C).   

 

Figure 7. The Graph C. 

 

 

Figure 8. The Graph D. 
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We now compute the first ten values of harmonic index in the class of all chemical 

trees. At first, it is an easy fact that the path Pn and the chemical tree *nP  have the maximum 

and second maximum harmonic index, respectively.  

 

Figure 9. The Graph *
nP . 

 
 To find the third maximum value of harmonic index, we consider two classes Xn and 
Yn of chemical trees with exactly four pendant vertices in which Xn has exactly two vertices 
of degree 3 and remaining vertices of degree 2, and Yn has exactly one vertex of degree 4 and 
remaining vertices has degree 2.   
 

Remark 11. The third and fourth maximum values of harmonic index in the class of chemical 
trees will attain in Xn and Yn, respectively. 
 

 We are now ready to compute the fifth and sixth values of harmonic index in the class 
of chemical trees. We consider n−vertex chemical trees with five pendant vertices. These are 
in the form of graphs which are depicted in Figures 10 or 11. These values for the fifth and 
sixth maximum values of n−vertex chemical trees, n ≥ 8, are 2n/(n+4) and 12n/(6n+25), 
respectively.  

 

  

 

Figure 10.  
 
 
 

Figure 11. 
 
 
 

  

Figure 12. Figure 13.  
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Figure 14. Figure 15.  

 
Apply again our algorithm to compute the seventh, eighth and ninth maximum values 

in the class of all n−vertex chemical trees. These chemical trees have exactly six pendants and 
can be drawn as Figures 12−14. The tenth maximum value can be occurred in chemical trees 
having seven pendants. This chemical tree is depicted in Figure 15. 

 

We record our main result in the following theorem: 
 

Theorem 12. For each δ, 1 ≤ δ ≤ 10, }A{)n(T n,H, δδ = , where chemical trees Aδ,n are 

depicted in Table 3.  
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Table 3. The kth Maximum of Harmonic Index of Chemical Trees, 3 ≤ k ≤ 10. 
 

Names K #Vertices H Index
 

The kth Maximum of Harmonic 
Index 

A3,5 k = 3 n = 5 20/17
 

 

A3,n k = 3 n ≥ 6 6n/(3n+10)
 

 

A4,n k = 4 n ≥ 6 4n/(2n+7)
 

 

A5,7 k = 5 n = 7 84/67
 

 

A5,n k = 5 n ≥ 8 2n/(n+4)
 

 

A6,n k = 6 n ≥ 8 12n/(6n+25)
 

 

A7,8 k = 7 n = 8 16/13
 

 

A7,9 k = 7 n = 9 108/83
 

 

A7,n k = 7 n ≥ 10 6n/(3n+14)
 

 

A8,9 k = 8 n = 9 9/7 
 

A8,n k = 8 n ≥ 10 12n/(6n+29) 
 

A9,n k = 9 n ≥ 10 2n/(n+5) 
 

A10,10 k = 10 n = 10 60/47 
 

A10,11 k = 10 n = 11 4/3 
 

A10,n k = 10 n ≥ 12 6n/(3n+16) 
 

 


