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ABSTRACT. Seth’s transition theory is applied to the probleshsechanical load in a
thin rotating disc by finite deformation. Neithéetyield criterion nor the associated flow
rule is assumed here. The results obtained herepmi&cable to compressible materials.
If the additional condition of incompressibility isnposed, then the expression for
stresses corresponds to those arising from Tregté gondition. It has been observed
that rotating disc made of isotropic material reggdihigher angular speed to yield at the
internal surface as compared to disc made of texesly isotropic materials. Effect of
mechanical load in a rotating disc with inclusioada of isotropic material as well as
transversely isotropic materials increase the wabfeangular speed yield at the internal
surface. With the introduction of mechanical loathting disc made of Beryl material
required maximum radial stress as compare to daenof Mg and Brass materials at the
internal surface.
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INTRODUCTION

This paper is concerned with finitesimal deformatiof rotating thin circular disk
made of transversely isotropic material. Finitedideformation consideration of problems of
elasticity is often not easy to solve. There araymapplications of rotating disks in science
and engineering. As typical examples, we mentideara and gas turbines, rotors, and
flywheels. In the design of modern structures,easing use is being made of materials which
are transversely isotropic. The analysis of stdisgibution in the circular disk rotating is
important for a better understanding of the behaaia optimum design of structures. In the
context of small deformation theory, the solutidoisthis problem of rotating disks made of
isotropic material can be found in the most stashdaxt books [1-4]. The analysis of thin
rotating discs made of isotropic material has ba#isoussed extensively byMOSHENKO and
GOODIER [5] in the elastic range and byHEXKRABARTY [6] and HEYMAN [7] for the plastic
range. Their solution for the problem of fully diasstate does not involve the plane stress
condition, that is to say, we can obtain the satresses and angular velocity required by the
disc to become fully plastic without using the m@astress condition (i.€,,=0). A. P.
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AKINOLA et al [8] solved large deformation of transverselyligpic elastic thin circular disk

in rotation. THAKUR [9] solved problems in finitesimal deformationartransversely isotropic
thin rotating disc with rigid shaft by using Sethransition theory. This theory [10] does not
required any assumptions like an yield conditimrompressibility condition and thus poses
and solves a more general problem from which cpsdaining to the above assumptions can
be worked out. It utilizes the concept of genemlistrain measure and asymptotic solution at
critical points or turning points of the differeatiequations defining the deformed field and
has been successfully applied to a large numberaiflems [11-16]. 8tH [10] has defined
the generalized principal strain measure as:

gi A 2_1 A 1 A 2
qi:J.{l—ZGi} de == 1—[1—2@) , (=1,2,3) (1)
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wheren is the measure anéin are the Almansi finite strain components. In ttesearch
paper, we investigate the problem of elastic-ptastansitional stresses distribution and
displacement for transversely isotropic circulascdwith inclusion subjected to mechanical
load by using Seth’s transition theory. Resultsehbgen discussed numerically and depicted
graphically.

MATHEMATICAL MODEL

We consider a thin disc of constant density wehtral bore of radiua and external
radiusb. The annular disc is mounted on a rigid shaft. dise is rotating with angular speed
« about an axis perpendicular to its plane and plagseugh the center. The thickness of
disc is assumed to be constant and is taken taffieisntly small so that it is effectively in a
state of plane stress, that is, the axial stfess zero.

Boundary Condition:
The disk considered in the present study havimgtemt density and mounted on rigid shaft.
The inner surface of the disk is assumed toxmfto a shaft. The outer surface of the disk
is applied mechanical load. Thus, the boundary itimnd of the problem are given by:

0] r=a,u=0

(i) r=b T, =T, 2
whereu, T,and T, denote displacement, Load and stress along tla dicection.

Formulation of Problem:
The components of displacement in cylindrical polaordinates are given by [11]:

u=r(1-4); v=0; w=dz (3)

where g is position function, depending on=,/x*>+y? only, andd is a constant. The
finite strain components are given by [10] as:

érr =%|:1—(IB+ rﬂ')z} ,266 =%|:1—,82i|,gzz Z%[l—(l— d)z]gm = 292 = Aér =0. (4)

where ' =dg/dr and meaning of superscripty’is Almansi. By substituting equation (4)
into equation (1), the generalized componentsrafrsare:
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& =21-(p+18) | =18 =1 gy == e =0

The stress-strain relations for transversely igptronaterial are:

Te = Cu& +(CG1-2Ge @ + G3£.Tp= (C1-2Cs)6 + G168 + G3 8,
T;2= Caet Qa@ot G €=0,T, =Ty, =Ty =0. (6)

Using equation (4) in equation (6), the strain comgnts in terms of stresses are obtained as:

ou 1(au) 1 7 1 C.C..-C--2C..C
=__ | = - = 1_ r '+ - T —- 1133 13 66 33 T ,
i or Z(OI‘J 2[ ( d ﬁ) J E{ ! ( Cllc33_ci3 j 99}

EH—U_Z = 1[1—ﬁ2 :_1{1-% _(Cllcaa_ Cfg‘ZCGGC%J T } ,

E CllCSS - Ci3 !

2 — 2 _—
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C11C33_ Cis_ C66C3
C11C33_ Cis
equations (6), we get:
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TrS = TSz = Tzr = Tzz: 0. (8)
where A=G;,~(Chy/Cyy).

Equations of equilibrium are all satisfied except:

where E = 4C66( 3] is Young'smodulus. By substituting equations (5) into

d
E( (T, ) ~Tee+pafr* =0 ©)

where p is the density of material. By substituting equasi¢8) into equation (9), we gets a
non-linear differential equation with respecjo

dg A
where r 8' = BP (P is function of 8 and g is function ofr). The transition points of3 in
equation (10) ard® - -1 and P - *oo.

n+ n1 dP _ ,szrz n) 2C n n
BT (1+P) 1_{ + {n—ﬁAﬁ[H nP- (1+ P)’- A 1+ (1+ P)}JH (10)

SOLUTION THROUGH PROBLEM

It has been shown that the asymptiction through the principal stress [11-23]
leads from elastic to plastic state at the tramsigioint P — *oo . If the transition functiorR
is defined as:
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R=T, :%[2—,3”{1+(1+ P)"H— 2C—r6]6[1—ﬁ"( ¥R (11)

Taking the logarithmic differentiation and subdgtihe value ofdP/ dg from equation (10)
in equation (11), we get:
—[J’nP{1+(1+ P)n} + 2Ce6 B" - 2C66ﬂn(1+ P)" + 4Ce6 P3"
d A nA nA A
ar 9= pafr?  ACE 4C2 2C (12)
+ -—% ”{1— 1+P ”}——GGP N 2266 Het r?
Asymptotic value of equation (12) & — o0 and integrating, we get

R= K< . (13)
where C, =2C,/ A, A= Cll—(Cfg/ng) and K, is a constant of integration, which can be

determined by the boundary condition.
Using equation (13) in equation (11), we have

THH = Kll’_cz (14)
By substituting equation (14) into equation (9)e @ets:

-G, 2
Trr :&+K1 r _'OCJZr

r 1-C, 3
where K, is a constant of integration, which can be deteemiiby the boundary condition.
Substituting equation (14) and (15) in second daquoaif (7), we get:

(15)

201-C,)[ petr? _K,
= |1- -—< 16
o \/ E { 3 r (16)
Substituting equation (16) in equation (3), we get
2(1-C 2
u=r-r [1- (1-Cp)| parr® K, : 17)
E 3 r
— 2 —
where 1-C, :(CHC% i 2ZCGGC33J,E =2C¢(2-C,). is the Young’'s modulus. By
CCyis—Cp

applying boundary conditions (2) in equations (B (17), we getsK, = pa?a®/3 ,

T, = (1—C2){T0 +%(b3 - aﬂ(ij_cz (18)
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T =0 b° _aSXBj rat-r? +TO[EJ (19)
2(1-C,) paf(r3-a
u:r—r\/— ( 2)3Er( ) (20)
From equations (18) and (19), we get
1-C, -G,
T -T, = %{(ﬁ - a{%j C,+a’ —rQ} +T0(%j C, (21)

Initial Yielding. From equation (21), it is seen tHa?;r —THH| is maximum at the internal

surface (that is at = a), therefore yielding will take place at the intarsurface of the disc
and equation (21) gives:

T -T, = P9 (i —a%ﬁjl_czc T, [Ej_cz C
rr 09| r=a 3a b 2 0 b 2
whereY is the yielding stress. Angular velocity required for initial yielding is given by:

_ pafo? _| 3aly? _(Ej 3aly?
& (b® -a%)c, (a/b)™ b*-a’)(a/b)

Y
and w, ——\/7

Fully-plastic state. The disc become fully plastic stafe, — 1/2;C -~ 0) at the external
surface and equations (21) becomes:

=Y(say)

(22)

of
|Trr - T9€| r=| 106b

where Y" is the yielding stress. The angular velocity for fully-plastic state is given by:

=Y"(say)

(6 -7)s 2

,oasz N: (T j
Q% = 1-=| 2 23
) ol )
Q; |y- . . . .
where —T — . We introduce the following non-dimensional comeois as:
Yo,
R=r/b R=alt o =T. 1Y, 0,=Tyl!Y,H'=YE H=Y/E,0,=T,/Yand

U =u/ b, Elastic-plastic transitional stresses, displacdéraad angular speed from equations
(18),(19), (20) and (22) in non-dimensional forncdme:

09=(1—C2){00+Q—3‘(1— F\’Oe’)}R‘CZ, _2—;[(1 RI)R™ +R: - R+ 0,R,

U=R- R\/l— 2-C)HO' R -Ry) (24)

3R
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Stresses, displacement and angular speed for fpligstic statéC2 -1/2;,C > 0) are
obtained from equation (24) and (23) become:

Q 3 Uo
0, N—[ - RO} -2 [o-RNR+R - 2

2 (p3 _ p3
Uf=R—R\/1——HQf(R R)

3R
, _Pb® | 6 (_1 j
and Q7 = v _i(l—Rg)l 200

Isotropic Case. For isotropic materials, the material constantsicedo two onlyj.e. C;; =
of constants)l and i, these can be written aS;, =1, C;; =1 +2u and

Ces :%(Cll‘ C)=u (27)

Elastic-plastic transitional stresses are obtalmedsing equation (27) in equations (18) - (20)
and (22) in non dimensional form become:

(26)

O = ( )[ 0 —(1 Ro):|R‘1/(2—C),a-r QZ[(]_ RO)Rlc/zc+RO R3]+00R1’(ZC)

2-C) 3 3R
1-C)HQ? (R - R
F’i/ f2- c) : )

pcqzbz |12 C 1/(2-C) 300 |
v ol - Roi -R)
whereC =2u/(A+2u),1-C,=(1-C/2-C) .

and Q7= 29}

Fully-plastic state (isotropic case). For fully plastic state € — 0), equations (28) and
(29) become:

"9:%{”°+Q_§(1_R°3)}R_M’”f 2 -rRe s R-R]e R, (30)
U, =R- R\/l % (31)

The disc become fully plastic stat(e:2 -1/2o0rC > O) at the external surface and
equations (21) becomes:

=2 =)




where R, = a/ b and o :T —.

Q; |YF

Table 1 Elastic constant&; (in units of 16° N/n)

Yo,

29

Materials on Ci1 Cpo Cia Ca3
Transversely Isotropic 0.883 2.746 0.980 0.674 4.69
Material
(c,=0.69, Beryl)
Isotropic Material 0.999997 3.0 1.0 1.0 3.0
(o0 =033,C, =0.50, Brass)
Transversely Isotropic 1.64 5.97 2.62 2.17 6.17
Material
(c,=0.64, Magnesium)
Table 2. Angular speed required for initial yielgliand fully plastic state
Angular Angular Percentage
Materials Speed Speed | increase in Angular
C, Load | required for| required speed
Oy initial for fully- 02
yielding plastic [J:;—1]x100
Q? state Qi
Q7
—
Vv | Magnesi 0 3.437748 | 6.857143 41.23248 %
o um 1 6.8663194 | 3.428571 -29.3366 %
v| C,=0.64| Transversely| 1.9 9.952034 | 0.342857 -81.439 %
g Beryl |SOUOP'C 0 3.080019 | 6.857143 49.20896
Cc,=0.69 Material 1 6.508591 | 3.428571 -27.4206
1.9 9.594305 | 0.342857 -81.0962
Brass Isotropic 0 4.848732 | 6.857143 18.92072%
c,=05 Material 1 8.277304 | 3.428571 -35.6406 %
1.9 11.36303 | 0.342857 -82.6296 %

NUMERICAL ILLUSTRATION AND DISCUSSION

As a numerical example, elastic constas have been given in Table 1 for

transversely isotropic materials (Magnesium andyB€dil9] and isotropic material [20]
(Brass, o = 033). Curves have been drawn in figure 1 between amgeedq? required for
initial yielding along the radii ratiog, = a/b. It has been observed that rotating disc nodde
isotropic material required higher angular speegetd at the internal surface as compared to
disc made of transversely isotropic materials. &féd mechanical load in a rotating disc with
inclusion made of isotropic material as well asi$tgersely isotropic materials increase the
values of angular speed yield at the internal serfdt can also be seen from Table 2, that
rotating disc made of transversely isotropic matsrii.e. Mg and Beryl) required high
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percentage increase in angular speed to becomepiastic as compared to disc made of
isotropic material.

1115 ~~~~~~ L Magnesum, C2 =0.64,L =0 — B — Beryal Material, C2=0.69,L =0
i1 ——aA— isotropic material, C2=0.5,L=0 - ) QN Magnesum, C2=0.64,L=1
101'(5) — % — Beryal Material, C2 = 0.69, L =1 ——@— Isotropic Material, C2 = 0.5, L. =1

9~g Magnesum, C2 = 0.64, L =1.9 Beryal Material, C2 = 0.69, L =1.9
8.5 Isotropicl Material, C2 = 0.5, L =1.9
8
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Angular speed required for initial yielding
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Ro =a/b
Figure 1.Angular speed required for initial yielding alorgetradii ratioR, = a/b.

Meaning of: Sigma rg, Sigma theta g, , Displacement = U
o,= 0(without load) o,=1

—— 4 — Sigma theta, Magnesium ( Transversely isotropic material)
7 e e Sigma r, Magnesium ( Transversely isotropic material)

6.5 | e Ao Displacement, Magnesium ( Transversely isotropic material)
6 — % = Sigma theta, Beryal material ( Transversely isotropic material)

5.5 ——¥——sigma r Beryal material ( Transversely isotropic material)

Stresses and displacement for fully-plastic
state
S

Figure 2. Stresses distribution and displacemantftial yielding along the radius ratio R = r/b.
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In figures 2 and 3, curves have been drawn betwsezsses distribution and
displacement for initial yielding and fully plaststate along the radius rattd=r /b . Form

fig. 2, it has been observed that rotating disc enaftBrass, Mg and Beryl materials required
maximum radial at the internal surface. With thieaduction of mechanical load rotating disc
made of Beryl material required maximum radial sgras compare to disc madeMd and
Brass materials at the internal surface. In figdiré is seen that radial stresses maximum for
Beryl material at the internal surface. Therefoogating disc made of isotropic material is on
the safer side of the design as compared to disiertransversely isotropic material.

Meaning of: Sigma rz, Sigma theta &, , Displacement = U

o,= 0(without load) o,=1

3.226567104

material . . . .
——¥%—— r Beryal material.( Tr ersely isotropic material)
Displacement, Beryal'mat

material) .
Sigma theta, Brass (Isotropic.M

( Transversely isotropic

Sigmar, Brass (Isotropic Material)

°
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Figure 3.Stresses distribution and displacement for fullyspk state along the radius ratio R = r/b.
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Nomenclature

a,b - Inner and outer radii of the disc
@ - Angular velocity of rotation

u,v,w - displacement components

0 - Density of material

T,. - Stress and Strain rate tensor

Y -Yield stress

oo - Load

K,,K,,d- constants

Non dimensional quantities:
R=r/b; R = a/ b-Radii ratiojg, =T, /Y - load Q%= peb®/Y -angular speedg, =T, /Y-
Radial stress component,;=T,,/Y - Circumferential stress component .
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