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ABSTRACT. Seth’s transition theory is applied to the problems of mechanical load in a 
thin rotating disc by finite deformation. Neither the yield criterion nor the associated flow 
rule is assumed here. The results obtained here are applicable to compressible materials. 
If the additional condition of incompressibility is imposed, then the expression for 
stresses corresponds to those arising from Tresca yield condition. It has been observed 
that rotating disc made of isotropic material required higher angular speed to yield at the 
internal surface as compared to disc made of transversely isotropic materials. Effect of 
mechanical load in a rotating disc with inclusion made of isotropic material as well as 
transversely isotropic materials increase the values of angular speed yield at the internal 
surface. With the introduction of mechanical load rotating disc made of Beryl material 
required maximum radial stress as compare to disc made of Mg and Brass materials at the 
internal surface. 
 
Keywords: Transversely isotropic, disc, shaft, stresses, displacement, yielding.  

 
 
 

INTRODUCTION 
 

This paper is concerned with finitesimal deformation of rotating thin circular disk 
made of transversely isotropic material. Finitesimal deformation consideration of problems of 
elasticity is often not easy to solve. There are many applications of rotating disks in science 
and engineering. As typical examples, we mention, steam and gas turbines, rotors, and 
flywheels. In the design of modern structures, increasing use is being made of materials which 
are transversely isotropic. The analysis of stress distribution in the circular disk rotating is 
important for a better understanding of the behavior and optimum design of structures. In the 
context of small deformation theory, the solutions for this problem of rotating disks made of 
isotropic material can be found in the most standard text books [1-4]. The analysis of thin 
rotating discs made of isotropic material has been discussed extensively by TIMOSHENKO and 
GOODIER [5] in the elastic range and by CHAKRABARTY  [6] and HEYMAN  [7] for the plastic 
range. Their solution for the problem of fully plastic state does not involve the plane stress 
condition, that is to say, we can obtain the same stresses and angular velocity required by the 
disc to become fully plastic without using the plane stress condition (i.e.zzT =0). A. P. 
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AKINOLA  et al. [8] solved large deformation of transversely isotropic elastic thin circular disk 
in rotation. THAKUR [9] solved problems in finitesimal deformation in a transversely isotropic 
thin rotating disc with rigid shaft by using Seth’s transition theory. This theory [10] does not 
required any assumptions like an yield condition, incompressibility condition and thus poses 
and solves a more general problem from which cases pertaining to the above assumptions can 
be worked out. It utilizes the concept of generalized strain measure and asymptotic solution at 
critical points or turning points of the differential equations defining the deformed field and 
has been successfully applied to a large number of problems [11-16]. SETH [10] has defined 
the generalized principal strain measure as: 
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where n is the measure and ii
A

e  are the Almansi finite strain components. In this research 
paper, we investigate the problem of elastic-plastic transitional stresses distribution and 
displacement for transversely isotropic circular disc with inclusion subjected to mechanical 
load by using Seth’s transition theory. Results have been discussed numerically and depicted 
graphically. 
 
 

MATHEMATICAL MODEL 
 
  We consider a thin disc of constant density with central bore of radius a  and external 
radius b. The annular disc is mounted on a rigid shaft. The disc is rotating with angular speed 
ω  about an axis perpendicular to its plane and passed through the center. The thickness of 
disc is assumed to be constant and is taken to be sufficiently small so that it is effectively in a 
state of plane stress, that is, the axial stress zzT  is zero.  
 
Boundary Condition: 
The disk considered  in the present study having constant density and mounted on rigid shaft. 
The inner surface of  the disk is assumed  to be fixed to a shaft. The outer surface of the disk 
is applied mechanical load. Thus, the boundary conditions of the problem are given by: 

(i) r = a , 0=u   
(ii)   r = b, 0TTrr =                                                                                                        (2) 

where u, 0T and rrT  denote displacement, Load and stress along the radial direction. 

 
Formulation of Problem: 
The components of displacement in cylindrical polar co-ordinates are given by [11]: 
 

( )1u r β= − ; 0v= ; w dz=                                                                                                    (3) 

where β  is position function, depending  on 22 yxr +=  only, and d is a constant. The 

finite strain components are given by [10] as:  
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, 21
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, 0.
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r z zre e eθ θ= = =           (4)  

where drdββ =′  and meaning of superscripts “A” is Almansi. By substituting equation (4) 
into equation (1), the generalized components of strain are:  
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The stress-strain relations for transversely isotropic material are: 
 

11 11 66 13( 2 )rr rr zzT C e C C e C eθθ= + − + , 11 66 11 13( 2 ) rr zzT C C e C e C eθθ θθ= − + + , 

13 13 33 0zz rr zzT C e C e C eθθ= + + = , 0.zr z rT T Tθ θ= = =                                                    (6)  

 
Using equation (4) in equation (6), the strain components in terms of stresses are obtained as: 
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0r z zre e eθ θ= = = ,                                                                                                       (7) 

where 
2
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 − −=  − 
is Young’s modulus. By substituting equations (5) into 

equations (6), we get:  
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where  ( )2
11 13 33 .A C C C= −  

Equations of equilibrium are all satisfied except: 
 

( ) 2 2 0rr
d

rT T r
dr θθ ρω− + =                                                                             (9) 

where ρ  is the density of material. By substituting equations (8) into equation (9), we gets a 
non-linear differential equation with respect toβ : 
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where r Pβ β′ = (P is function of β  and β  is function of r). The transition points of β  in 

equation (10) are 1P→ −  and P → ±∞ . 
 
 

SOLUTION THROUGH PROBLEM 
 

             It has been shown that the asymptotic solution through the principal stress [11-23] 
leads from elastic to plastic state at the transition point  P → ±∞ . If the transition function R 
is defined as: 
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Taking the logarithmic differentiation and substitute the value of /dP dβ  from equation (10) 
in equation (11), we get: 
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Asymptotic value of equation (12) as P → ±∞ and integrating, we get 
 

2
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CR K r−=  .                                                                                                        (13) 

where 2 662 /C C A= , ( )2
11 13 33A C C C= − and 1K  is a constant of integration, which can be 

determined by the boundary condition. 
Using equation (13) in equation (11), we have 
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By substituting equation (14) into equation (9), one gets: 
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where 2K  is a constant of integration, which can be determined by the boundary condition. 

Substituting equation (14) and (15) in second equation of (7), we get: 
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Substituting equation (16) in equation (3), we get 
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where 
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, ( )66 22 2 .E C C= −  is the Young’s modulus. By 

applying boundary conditions (2) in equations (15) and (17), we gets: 2 3
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(14), (15), and (17) respectively, we get the transitional stresses and displacement as: 
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From equations (18) and (19), we get 
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Initial Yielding. From equation (21), it is seen that rrT Tθθ−  is maximum at the internal 

surface (that is at r = a), therefore yielding will take place at the internal surface of the disc 
and equation (21) gives: 
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where Y is the yielding stress. Angular velocity iω  required for initial yielding is given by: 
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Fully-plastic state. The disc become fully plastic state ( )2 1/ 2; 0C C→ →   at the external 

surface and equations (21) becomes:    
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where Y∗  is the yielding stress. The angular velocity fω  for fully-plastic state is given by: 
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where f
f

Y

b
ω

ρ

∗Ω
= . We introduce the following non-dimensional components as:

 

0/ , /R r b R a b= =  /r rrT Yσ = , / ,T Yθ θθσ = Y /H E∗ ∗= , /H Y E= , YT /00 =σ and 

/ .U u b=  Elastic-plastic transitional stresses, displacement and angular speed  from equations 
(18),(19), (20) and (22) in non-dimensional form become: 
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Stresses, displacement and angular speed for fully- plastic state( )2 1/ 2; 0C C→ →  are 

obtained from equation (24) and (23) become: 
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Isotropic Case.   For isotropic materials, the material constants reduce to two only, i.e. 11C =

22 33C C= , 12 21 13 31 23 32 11 66( 2 ),C C C C C C C C= = = = = = −  and 1 2α α= 3α= α= .In term 

of constants λ  and µ , these can be written as: 12C λ= , 11 2C λ µ= +  and 

 ( )66 11 12
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2
C C C µ= − ≡                        (27) 

Elastic-plastic transitional stresses are obtained by using equation (27) in equations (18) - (20) 
and (22) in non dimensional form become: 
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where ( ) ( )22 2 ,1 1 / 2C C C Cµ λ µ= + − = − −  .  

 
Fully-plastic state (isotropic case). For fully plastic state ( 0C → ), equations (28) and 
(29) become: 
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 The disc become fully plastic state ( )2 1/ 2 0C or C→ →   at the external surface and 

equations (21) becomes:  
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where  0 /R a b=  and .f
f

Y

b
ω

ρ

∗Ω
=   

 
Table 1. Elastic constants ijC  (in units of 1010 N/m2) 

 
Materials 44C  11C  12C  13C  33C  

Transversely Isotropic 
Material  

( 2C =0.69, Beryl) 

0.883 2.746 0.980 0.674 4.69 

Isotropic Material  
( 33.0=σ , 2C  = 0.50, Brass) 

0.999997 3.0 1.0 1.0 3.0 

Transversely Isotropic 
Material  

( 2C =0.64, Magnesium) 

1.64 5.97 2.62 2.17 6.17 

 
 

Table 2. Angular speed required for initial yielding and fully plastic state 
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increase in Angular 

speed 

1001
2
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×
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






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Ω

Ω

i

f  

Magnesi
um 

2C = 0.64 

 
 

Transversely 
Isotropic 
Material 

0 
1 

1.9 

3.437748 
6.8663194 
9.952034 

6.857143 
3.428571 
0.342857 

41.23248 % 
-29.3366 % 
-81.439 % 

Beryl 
2C = 0.69 

0 
1 

1.9 

3.080019 
6.508591 
9.594305 

6.857143 
3.428571 
0.342857 

49.20896 
-27.4206 
-81.0962 

Brass 
2C = 0.5 

Isotropic 
Material 

0 
1 

1.9 

4.848732 
8.277304 
11.36303 

6.857143 
3.428571 
0.342857 

18.92072% 
-35.6406 % 
-82.6296 % 

 
 

NUMERICAL ILLUSTRATION AND DISCUSSION 
 

As a numerical example, elastic constants ijC  have been given in Table 1 for 

transversely isotropic materials (Magnesium and Beryl) [19] and isotropic material [20] 
(Brass, 33.0=σ ). Curves have been drawn in figure 1 between angular speed 2

iΩ required for 
initial yielding along the radii ratios 0R = a/b. It has been observed that rotating disc made of 
isotropic material required higher angular speed to yield at the internal surface as compared to 
disc made of transversely isotropic materials. Effect of mechanical load in a rotating disc with 
inclusion made of isotropic material as well as transversely isotropic materials increase the 
values of angular speed yield at the internal surface. It can also be seen from Table 2, that 
rotating disc made of transversely isotropic materials (i.e. Mg and Beryl) required high 
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percentage increase in angular speed to become fully plastic as compared to disc made of 
isotropic material.  
 

 
Figure 1. Angular speed required for initial yielding along the radii ratio 0R  = a/b. 

 

Meaning of: Sigma r= rσ , Sigma theta =θσ  , Displacement = U 

               0σ = 0(without load)                                  0σ = 1       

 
0σ = 1.9 

 
R = r/b 

 

Figure 2. Stresses distribution and displacement for initial yielding along the radius ratio R = r/b. 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5
12

-1.11E-15 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
n

gu
la

r 
sp

ee
d

 r
eq

u
ire

d
 fo

r 
in

iti
a

l y
ie

ld
in

g

Ro  = a/b

Magnesum, C2 = 0.64, L = 0 Beryal Material, C2 = 0.69, L = 0

isotropic material, C2 = 0.5, L = 0 Magnesum, C2 = 0.64, L = 1

Beryal Material, C2 = 0.69, L =1 Isotropic Material, C2 = 0.5, L =1

Magnesum, C2 = 0.64, L =1.9 Beryal Material, C2 = 0.69, L =1.9

Isotropicl Material, C2 = 0.5, L =1.9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0.4 0.5 0.6 0.7 0.8 0.9 1

S
tr

es
se

s 
 a

n
d

 d
is

p
la

ce
m

en
t f

or
 fu

lly
-p

la
st

ic
 

st
a

te

0.4 0.5 0.6 0.7 0.8 0.9 1

Sigma theta, Magnesium ( Transversely isotropic material)

Sigma r, Magnesium ( Transversely isotropic material)

Displacement, Magnesium ( Transversely isotropic material)

Sigma theta, Beryal material ( Transversely isotropic material)

sigma r Beryal material ( Transversely isotropic material)

Displacement, Beryal material ( Transversely isotropic material)

Sigma theta, Brass (Isotropic Material)

Sigma r, Brass (Isotropic Material)

Displacement, Brass (Isotropic Material)

0.4 0.5 0.6 0.7 0.8 0.9 1



31 
 

In figures 2 and 3, curves have been drawn between stresses distribution and 
displacement for initial yielding and fully plastic state along the radius ratio R = r / b . Form 
fig. 2, it has been observed that rotating disc made of Brass, Mg and Beryl materials required 
maximum radial at the internal surface. With the introduction of mechanical load rotating disc 
made of Beryl material required maximum radial stress as compare to disc made of Mg and 
Brass materials at the internal surface. In figure 3, it is seen that radial stresses maximum for 
Beryl material at the internal surface. Therefore, rotating disc made of isotropic material is on 
the safer side of the design as compared to disc made transversely isotropic material. 

 

Meaning of: Sigma r= rσ , Sigma theta =θσ  , Displacement = U 
 

0σ = 0(without load)                                  0σ = 1       

 

 

0σ = 1.9 
 

 
 

Figure 3. Stresses distribution and displacement for fully-plastic state along the radius ratio R = r/b. 
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Nomenclature 
a,b           -   Inner and outer radii of the disc   
ω             -   Angular velocity of rotation 
u,v,w        -   displacement components 
ρ             -   Density of material 

ijij eT ,       -   Stress and Strain rate tensor 

Y               -  Yield  stress 
0σ             -   Load 

dKK ,, 21 - constants 
 
 
Non dimensional quantities: 

0/ ; /R r b R a b= = -Radii ratio; 0 0 /T Yσ =  - load  ; Yb /222 ρω=Ω -angular speed ;rσ  = YTrr / -

Radial stress component ;θσ = YT /θθ   - Circumferential stress component . 
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