
 
 

 

Kragujevac J. Sci. 37 (2015) 11-22.       UDC 531.15 

 
 
 
 

MATHEMATICAL MODEL IN A THIN NON-HOMOGENEOUS 
ROTATING DISC FOR ISOTROPIC MATERIAL  

WITH RIGID SHAFT BY USING SETH’S TRANSITION THEORY 
 
 

Pankaj Thakur 1, Jatinder Kaur 2, Satya Bir Singh2 

 
1Department of Mathematics, IEC University Baddi, Solan, Himachal Pradesh 174103, India 

2Department of Mathematics, Punjabi University Patiala, Punjab 147002, India 
E-mails: dr_pankajthakur@yahoo.com, sbsingh69@yahoo.com 

 
(Received April 22, 2014) 

 
 

ABSTRACT.  In this paper we investigate stresses and displacement in thin non-
homogeneous rotating disc has been derived by using Seth’s Transition theory and results 
have been discussed and depicted graphically. Non-homogeneity is assumed due to the 
variation of modulus of rigidity. As a numerical example, it has been seen that in the 
presence of non-homogeneity having values  k > 0 at the bore, reduces  stresses, 
displacement and the angular speed as compare to lesser value i.e. k <0 of non-
homogeneity. Radial stresses maximum at the internal surface. 
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INTRODUCTION 
 

Rotating discs are historically of interest to designers due to their vast spectrum of use 
in the aerospace industry. Gas turbine discs are an important example of such applications. In 
turbojet engines, rotating discs are simultaneously subjected to mechanical and thermal loads. 
A disc may be under internal pressure due to shrink fit on its mounting shaft; in addition an 
external tensile load may be applied to its outer edge resulting from the blade effects installed 
on its outer periphery. Rotating Discs form an essential part of the design of rotating 
machinery, namely rotors, turbines, compressors, flywheel and computer’s disc drive etc. 
Helicopter rotor blades are typically built-up composite structure and made of material that 
may be anisotropic and non-homogeneous. For wide class of materials such as hot rolled 
copper, aluminum and magnesium alloys some degree of non-homogeneity is presents. 
OLSZAK et al. [1] solved the problems of thick walled cylinder, non-homogeneous both 
elastically and plastically subjected to internal and external pressures and showed that plastic 
flow may start from either surface depending on the character and intensity of the non-
homogeneity. GHOSH [2] on the problem involving the study of elastic-plastic stress in a 
spherically pressure vessel of non-homogeneous material and MUKHOPADHYAY  [3 ] studied 
the effect of non-homogeneity on yields stress in a thick walled cylinder tube under pressure. 
Gupta et al. [4] solved the problems effect of non-homogeneity on elastic-plastic transition in 
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a thin rotating disc by using Seth’s transition theory and plane stress condition. This theory 
[5] does not required any assumptions like an yield condition, incompressibility condition and 
thus poses and solves a more general problem from which cases pertaining to the above 
assumptions can be worked out. It utilizes the concept of generalized strain measure and 
asymptotic solution at critical points or turning points of the differential equations defining 
the deformed field and has been successfully applied to a large number of problems [7-12, 14-
43]. SETH [5] has defined the generalized principal strain measure as: 
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where n  is the measure and ii
A

e .is the Almansi finite strain components. For n = -2, -1,0, 1, 2,  
it gives Cauchy, Green Hencky, Swainger and Almansi measures, respectively.  The rigidity 
modulus of a thin rotating disc is assumed to vary radially i.e. 

0
krµ µ −=                                                                                             (2) 

where 0µ  and k are real constants. In this research paper, we discuss mathematical model in a 

thin non-homogeneous rotating disc for isotropic material with shaft by using Seth’s transition 
theory. Result obtained have been numerically and depicted graphically. 
 
 

MATHEMATICAL MODELS AND GOVERNING EQUATION 
 
 We consider an annular disc of inner radius a and outer radius b rotating with an  
angular speed ω  about an axis perpendicular to its plane and passed through the center as 
shown in Figure 1. The annular disc is mounted on a rigid shaft. The disc is made of the 
material having constant density ρ  but variable modulus of rigidity ( )rµ µ= and thickness 

of disc is assumed sufficiently small so that it is effectively in a state of plane stress, that is, 
the axial stress zzT  is zero.  
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The displacement components in cylindrical polar co- ordinate are given by [6]:  
 

( )β−= 1ru , 0=v , .dzw =                                                                                  (3) 

whereβ  is function of 22 yxr +=  only and d is a constant. 

The finite strain components are given by Seth [6] as:  
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where   drdββ =′ .  
Substituting equation (4) in equation (1), the generalized components of strain are:  
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where  .r Pβ β′ =  
The stress –strain relations for isotropic material are given by [13]: 
 

ijijij eIT µλδ 21 +=
 
( )3,2,1, =ji ,                                                                                              (6) 

where  ijT and ije are the stresses and strain components, λ  are lame’s constant, ( )rµ µ= , 

kkeI =1  is the  first  strain invariant, ijδ  is the Kroncecker’s delta.  

Equations (6) for this problem become: 
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where λ  is a constant and ( ).rµ µ=
 Using equation (4) in equation (6), the strain components in terms of stresses are obtained as 

[16]: 
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where  
( )
( )µλ

µλµ
+
+= 23

E and 
µλ

µ
2

2
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Substituting equation (5) in equation (7), we get the stress as: 
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where  Pr ββ =′ . Equations of equilibrium are all satisfied except: 
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( ) 2 2 0rr

d
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where ρ  is the density of the material of the rotating disc. 
Using equation (9) and (10), we get a non- linear differential equation in β  as: 
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where  drdββ =′ ( P is function of β and β is function of r only). From equation (11), the 
transition points of β  are 1−=P  and ∞± . 
 
Boundary condition: The boundary conditions are given by: 

aratu == ,0 , bratTrr == ,0 .                     (12) 

where rrT  are the radial stresses and u are the displacement. 
 
 

SOLUTION THROUGH THE PRINCIPAL STRESSES 
 

  For finding the plastic stress, the transition function is taken through  the principal 
stress  (see SETH [5, 6],  HULSURKAR  [7], GUPTA etl.  [4, 10- 12],  SHUKLA  [8, 9 ] , THAKUR 
[14 – 42]) at the transition point  P → ±∞ . We take the transition function T  is defined as: 
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where T  is function of  r only. Taking the logarithmic differentiation of equation (13) with 
respect to r, we get: 
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Substituting the value of /dP dβ from equation (11) in equation (14) and taking the 
asymptotic value as ±∞→P , we get after integration: 
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where ( ) ( )1/ 2f r r C dr = − − ∫  and A  is a constant of integration and can be determined 

by the given boundary condition 
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From equations (13) and (15), we have: 
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Substituting equation (16) in equation (10) and integrating, we get: 
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where B1 is a constant of integration and can be determined by the given boundary condition 
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Substituting equations (16) and (17) in second equation of equation (8), we get: 
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Substituting equation (18) in equation (3), we get 
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where ( ) ( )2 3 2 / 2E C Cµ= − −  is the Young’s modulus. 

Using boundary condition (12 in equations (17) and (19), we get the values of constant of 
integration: 
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Substituting the values of constant of integration A and B from equations (16), (17), and (19) 
respectively, we get the transitional stresses and displacement as: 

 

( )
( )[ ] ( )

( )rI

drrIrfa

ab
T

b

a

ar









+

−=

∫=.exp3

332ρω
θθ ,

( ) ( )

( )[ ] ( )




























+

−
+−=

∫

∫

=

b

a

ar

b

r
rr

drrIrfa

drrIab

rb
r

T

.exp
3

33

33
2ρω

,
 

( ) ( ) ( )

( )[ ] ( )




























+









+−
+−









−
−−−=

∫

∫

=

b

a

ar

b

r

drrIrfa

drrIrfrab

br
rC

C

E
rru

.exp

exp.

32

12
1

33

33
2ρω

.                        (20)
 

Substituting eqn. (2) in equation (20), we get: 
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Initial yielding. From equation (21), it is seen that θθTTrr −  is maximum at the internal 

surface (that is at r = a), therefore yielding will take place at the internal surface of the disc 
and equation (21) are becomes: 
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angular velocity iω  required for initial yielding is given by: 
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Fully Plastic State. The angular speed ( )f iω ω>
 
at which the disc become fully plastic 

( )λ → ∞ is obtained from equation (21) as: 
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The angular velocity fω  for fully-plastic state is given by: 
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NUMERICAL ILLUSTRATION AND DISCUSSION 
 
 For calculating the stresses, angular speed and displacement based on the above 
analysis, the following values have been taken as k =  -1, 0.5, 2, E/Y = 1, 2 and  

0 / 2N µ λ= =    respectively. We considered two types of discs as shown in Table 1. 

• Discs having less non-homogeneity at the bore than at the rim, i.e. k < 0. 
• Discs having more non-homogeneity at the bore than at the rim, i.e. k > 0. 

It can be seen from Table 1, that   disc having more non-homogeneity values k > 0 at the bore 
than at the rim required higher percentage increase in angular speed to become fully plastic 
from its initial yielding as compared to rotating disc having lesser value of  non-homogeneity 
k < 0 at the bore. Curves have been drawn in fig. 1 between angular speed 2iΩ  required for 

initial yielding and various radii ratios baR /0 =  for k =  -1, 0.5, 2. 

 
Table 1: Angular speed required for initial yielding and fully plastic state 
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-1    ( k <  0) 
-0.5 ( k < 0) 
0.5   ( k > 0) 
1     ( k > 0) 
2     ( k > 0) 

1.99588204 
1.9658364 
1.901275326 
1.868495965 
1.806642201 

6.857143 
6.857143 
6.857143 
6.857143 
6.857143 

85.35494% 
86.76604% 
89.91055% 
91.56913 % 
94.82089 % 

 
It has been observed that discs having less non-homogeneity (i.e. k = -1) require higher 
angular speed to yield at the internal surface as compare to disc having more  non-
homogeneity at the bore than at the rim, i.e. k = 2. In fig. 3 and 4, curves have been drawn for 
stresses and displacement with respect to radii ratio R = r/b for elastic-plastic transition and 
fully plastic state respectively. Discs having less non-homogeneity at the bore required 
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maximum radial stresses and circumferential stresses as compared to disc have more non-
homogeneity at the bore than at the rim. It has been seen that radial stresses is maximum at 
the internal surface. Rotating disc likely fracture at the bore. 

 
 

Figure 2. Angular speed required for initial yielding at the internal surface of the rotating disc  
with rigid inclusion along the radii ratio baR /0 = for k = -1, 0.5, 2. 

 
 
Meaning: sigma theta θσ (circumferential stress); sigma r- rσ (Radial stress) and displacement-U 

 

 
 

Figure 3. Stresses and Displacement at the elastic-plastic transition of rotating disc  
along the radius R = r/b   
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Figure 4. Stresses and Displacement for fully-plastic state of rotating disc along the radius R = r/b.   

 
 

CONCLUSION 
 
 It has been observed that discs having less non-homogeneity ( k < 0 ) require higher 
angular speed to yield at the internal surface as compare to disc having more  non-
homogeneity at the bore than at the rim ( k >  2). Discs having less non-homogeneity at the 
bore required maximum radial stresses and circumferential stresses as compared to disc have 
more non-homogeneity at the bore than at the rim. It has been seen that radial stresses is 
maximum at the internal surface. 
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