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ABSTRACT. In this paper we investigate stresses and displaserm thin non-
homogeneous rotating disc has been derived by &etigjs Transition theory and results
have been discussed and depicted graphically. Mamegeneity is assumed due to the
variation of modulus of rigidity. As a numericalawple, it has been seen that in the
presence of non-homogeneity having valués> 0 at the bore, reduces stresses,
displacement and the angular speed as comparesserlevaluei.e. k <0 of non-
homogeneity. Radial stresses maximum at the intsuréace.
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INTRODUCTION

Rotating discs are historically of interest to desirs due to their vast spectrum of use
in the aerospace industry. Gas turbine discs aimpartant example of such applications. In
turbojet engines, rotating discs are simultaneosigshjected to mechanical and thermal loads.
A disc may be under internal pressure due to sHiindn its mounting shaft; in addition an
external tensile load may be applied to its outlgreeresulting from the blade effects installed
on its outer periphery. Rotating Discs form an e8ak part of the design of rotating
machinery, namely rotors, turbines, compressoysyhiéel and computer’s disc drive etc.
Helicopter rotor blades are typically built-up comsfie structure and made of material that
may be anisotropic and non-homogeneous. For widssobf materials such as hot rolled
copper, aluminum and magnesium alloys some degfeeon-homogeneity is presents.
OLszAK et al. [1] solved the problems of thick walled cylinderpn-homogeneous both
elastically and plastically subjected to internadl @xternal pressures and showed that plastic
flow may start from either surface depending on tharacter and intensity of the non-
homogeneity. @OSH [2] on the problem involving the study of elagpiastic stress in a
spherically pressure vessel of non-homogeneousriaas®d MJKHOPADHYAY [3 ] studied
the effect of non-homogeneity on yields stress ihiek walled cylinder tube under pressure.
Guptaet al. [4] solved the problems effect of non-homogeneityelastic-plastic transition in



12

a thin rotating disc by using Seth’s transitiondityeand plane stress condition. This theory
[5] does not required any assumptions like an yeeladition, incompressibility condition and
thus poses and solves a more general problem froiohwcases pertaining to the above
assumptions can be worked out. It utilizes the ephof generalized strain measure and
asymptotic solution at critical points or turningipts of the differential equations defining
the deformed field and has been successfully apphie large number of problems [7-12, 14-
43]. STH [5] has defined the generalized principal stragasure as:
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wheren is the measure angl .is the Almansi finite strain components. fFor -2, -1,0, 1, 2,
it gives Cauchy, Green Hencky, Swainger and Almamsasures, respectively. The rigidity
modulus of a thin rotating disc is assumed to vadyallyi.e.
M= for ™ (2)
where g, andk are real constants. In this research paper, veeigsgsmathematical model in a

thin non-homogeneous rotating disc for isotropidarial with shaft by using Seth’s transition
theory. Result obtained have been numerically apudcted graphically.

MATHEMATICAL MODELS AND GOVERNING EQUATION

We consider an annular disc of inner radtusand outer radiu® rotating with an
angular speedwv about an axis perpendicular to its plane and plads®ugh the center as
shown in Figure 1. The annular disc is mounted aigid shaft. The disc is made of the

material having constant densigy but variable modulus of rigiditw:,u(r)and thickness

of disc is assumed sufficiently small so that iefectively in a state of plane stress, that is,
the axial stresg,, is zero.
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Figure 1. Geometry of Rotating Disc.
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The displacement components in cylindrical polarardinate are given by [6]:
u=rl-4),v=0,w=dz ©)

whereg is function ofr = /x* + y* only andd is a constant.

The finite strain components are given by Sethafg]
2
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where B'=dg/dr.
Substituting equation (4) in equation (1), the gaheed components of strain are:

1 1] n 1 n l n
6, =[-8 +A)] ew=21-p] e = ol-@-0)] e, =e, e, =0 ©)
where r ' = SP.
The stress —strain relations for isotropic matearal given by [13]:
T; =401, + 21 (i’j = 12’3)’ (6)

where T, and g are the stresses and strain componemtsre lame’s constantu:,u(r),

I, = g, is the first strain invariang; is the Kroncecker’s delta.
Equations (6) for this problem become:

[err +eee]+ 21, Ty =

20U
T, = 1 +2 A+ 24 [err +eee]+2ﬂeee T,=Ty=T,=T,=0 (7)

where A is a constant angl = z(r).

Using equation (4) in equation (6), the strain comgnts in terms of stresses are obtained as
[16]:

_ou_1fouY' _1f (a gpl L[y (1-C
err_E Z[Grj [1 (rﬂ+18) |:Trr (Z—CJT‘%},
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€, = 02 2(62) - 2[1 (l d) ] E(Z_C) [Trr ng],erg €s =€z =0. (8)
where E :Mandc :2—'u.

(A +p) A+2u
Substituting equation (5) in equation (7), we gtet$tress as:
[3 2C - 3" {1 C+(2-c)P+2) }] T, [3 2C-p" {2 Cc+(1-c)(P+1) }]

Tr€:T€z:Tzr :Tzz:0 (9)

where rf' = P . Equations of equilibrium are all satisfied except
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a
dr
where p is the density of the material of the rotatingcdis

Using equation (9) and (10), we get a non- lineffierntial equation ing3 as:

(rT, ) =Ty + paFr?=0 (10)
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@
where B'=dg/dr ( P is function of fand Bis function ofr only). From equation (11), the
transition points of3 areP =-1 and+ .

Boundary condition: The boundary conditions are given by:
u=0atr=a, T, =0,atr =b. (12)
whereT,, are the radial stresses andre the displacement.

SOLUTION THROUGH THE PRINCIPAL STRESSES

For finding the plastic stress, the transitiondiion is taken through the principal
stress (seeESH [5, 6], HULSURKAR [7], GUPTAE€ll. [4, 10- 12], SIUKLA [8, 9], THAKUR
[14 — 42]) at the transition poinP - +co . We take the transition functioh is defined as:

T=%:[(3-zc)-/zn{z-c+(1-c)(p+])“}} (13)

whereT is function of r only. Taking the logarithmic differentiation of wafion (13) with
respect ta, we get:

o ) __|(2-c)+
2cr-crp{ie(P+1)} +ng P{(l—C)(P+1)n}

d(logT) _ | +n(1-C)B"™P(P+1)""dP /dB M (14)

' e loel] |

Substituting the value ofdP/df from equation (11) in eq_uation (14) and taking the
asymptotic value a3 - *co, we get after integration:

T= A[%} expf (r). (15)

where f (r)= —j[l/r(Z—C)] dr and A is a constant of integration and can be determined
by the given boundary condition
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From equations (13) and (15), we have:

1-C
T, =A —— |expf (r 16
. (Z_Cj pf(r) (16)
Substituting equation (16) in equation (10) aneégnating, we get:

3
(T, =B+ A1 (r)dr —p“:’;r (17)
whereB; is a constant of integration and can be determimethe given boundary condition
and | (r):(l_cjexpf (r).
Substituting equations (16) and (17) in second eguaf equation (8), we get:
2(1-C 1 pw'r? B

= 1-—| —— || Al expf(r)—=|1(r)dr |+ —-— 18
'8\/ E(Z—Cj{(p()rj()j 3 r} (18)
Substituting equation (18) in equation (3), we get

2(1-C 1 pa’r? B

=r-r [1-—| —— || Al expf (r)—=|1(r)dr |+ -— 19

N \/ E(Z—CJ{(Xp()rI()J 3 r} (19)

where E = 24(3- 2C) /( 2-C) is the Young’s modulus.

Using boundary condition (12 in equations (17) &b@), we get the values of constant of
integration:

,owz(a3—b3)jil (r)dr

,oaf(b3 a3) . 007b? )

3{[aexp.f (r)]r_a+§| (r)dr} 3 3{[aexp.f (r)]r:a+;fl (r)dr}

Substituting the values of constant of integrattoandB from equations (16), (17), and (19)
respectively, we get the transitional stressestismlacement as:

A=

[on

3) |(|"),T :ﬁ b® 3 r

_ p?b* -a
i 3{[aexp.f ()] + T I(r )dr}

a

(b3—a3){r .expf(r)+j'l(r)dr}_
Hlesa ()i |

Substituting eqn. (2) in equation (20), we get:

u=r-r 1—3(ﬁjﬂ r3—b®+ (20)

E\2-C) 3r
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Initial yielding. From equation (21), it is seen th|z'1’tr —T5,9| is maximum at the internal

surface (that is at = a), therefore yielding will take place at the intaksurface of the disc
and equation (21) are becomes:

o (b% - a3 K zi 2( gk y k 1-C/2-C
T, _T%L:azw 2_(a +/JO/AJ k[ (a + L/ )+a J (%) —v(sy)

3a b* + 14,/ 2(a"+,uo//1)
angular velocitya, required for initial yielding is given by:
(b3_a3) 2—(2:2 :,Uo//]j%{ 3a';+,uo/)l J
HolA) | 2(a + o 2)

and w :%\/Y We introduce the following non-dimensional comgots aR =r/b, R =
Jo,

alb, o, =T, 1Y,0,=T,I1Y, H=Y/ 1, andt =u/b.Equations (21) and (22) becomes:

_ 0 R-RY) Q?HR* b (R - R})

S, :g—é[@— R:)J1-5)-R +1] o =R- R\/l—

? 8R+N, J3R* +2N, |
2
k
(1-R}){2-s| S0 * N
2(RE+Ny)
1
) £
where Sz(R i N1j2k and N, = gb™ /4.
1+N,

Fully Plastic State. The angular speedy, (> a),) at which the disc become fully plastic
(A - =)is obtained from equation (21) as:

yol's (b3 - a3)
6b

The angular velocityw, for fully-plastic state is given by:

=Y",

|Trr _T99|r=b =
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Q2 = =‘ 24
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Q¢ |y" : .
where w, =—,|— .Stresses, displacement and angular speed for- fpligstic state
(/1 - oo) in non dimensional form are obtained from equati@i9 and (24) become:
2 QZ 1
f 3 2 f 3 2 3
o,=—| L R?2|,0 =—| 01— 1-R? |-R°+1],
[ A
QZ Rk—lbk R3 _p3 H w2b2
U, =R-R [1- R -R) Q=F L . A - (25)
9 Yoo -R)

NUMERICAL ILLUSTRATION AND DISCUSSION

For calculating the stresses, angular speed apthdesment based on the above

analysis, the following values have been takek=as-1, 0.5, 2E/Y=1, 2 and
N=u/A=2 respectively. We considered two types of discsheown in Table 1.

» Discs having less non-homogeneity at the bore #haime rim, i.ek < 0.

» Discs having more non-homogeneity at the bore #tdhe rim, i.ek > 0.
It can be seen from Table 1, that disc havingamam-homogeneity valués> 0 at the bore
than at the rim required higher percentage incre@assgular speed to become fully plastic
from its initial yielding as compared to rotating@having lesser value of non-homogeneity

k < 0 at the bore. Curves have been drawn in figetiveen angular speed’ required for
initial yielding and various radii ratioR, =a/b fork= -1, 0.5, 2.

Table 1 Angular speed required for initial yielding andly plastic state

Non- Angular Angular Speed Percentage
homogeneity| Speed required required for increase in
of disc for initial fully- plastic Angular speed
| yielding state 02
k Q? Q2 —L -1{x100
QF
Q
— -1 (k< 0) 1.99588204 6.857143 85.35494%
E‘]’: -0.5(k<0) 1.9658364 6.857143 86.76604%
N 05 (k>0) 1.901275326 6.857143 89.91055%
T} 1 (k > 0) 1.868495965 6.857143 01.56913 %
e 2 (k>0) 1.806642201 6.857143 94.82089 %

It has been observed that discs having less noregeneity (.e. k = -1) require higher
angular speed to yield at the internal surface @mpare to disc having more non-
homogeneity at the bore than at the rim,k.e.2. In fig. 3 and 4, curves have been drawn for
stresses and displacement with respect to radd Rat r/b for elastic-plastic transition and
fully plastic state respectively. Discs having lessn-homogeneity at the bore required
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maximum radial stresses and circumferential steessecompared to disc have more non-
homogeneity at the bore than at the rim. It hasilss®n that radial stresses is maximum at

the internal surface. Rotating disc likely fractatehe bore.
2.5
——k=-1 —a—k=0.5 k=2

Angular speed required for initial yielding

] 0.1 0.2 RoQ—’?é/b 0.4 0.5 0.6

Figure 2 Angular speed required for initial yielding at tinéernal surface of the rotating disc
with rigid inclusion along the radii rati®, = a/bfor k=-1, 0.5, 2.

Meaning: sigma thetao, (circumferential stress); sigma r-0, (Radial stress) and displacement-

1.4 —e—k =-1, sigma theta
—m—k =-1, Sigmar
—a—k = -1, displacement

= 1.2 —<—k =0.5, Sigma theta
g ’ k=0.5, Sigmar
5] —o—k =0.5,displacement
= —+——k =2,Sigma theta
= 1 ————k =2,Sigmar
s g
235 08
© o
s >
32 06
= £ [\
S 0.4
3
a
= 0.2 @ \
= . !
v Q— —
0 0.2 0.4 R9'§/b 0.8 1 1.2

Figure3. Stresses and Displacement at the elastic-plaatisition of rotating disc
along the radius R = r/b
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6 —— sigma theta 6 —— sigma theta

—@— Sigmar —@— Sigmar

displacement, k =-1 displacement, k=0.5

foy fully plastic state

Stresses distribution and displacement
foy fully plastic state

Stresses distribution and displacement

: 3 : N

0 05 p=y/p 1 1.5 0 05 p=y/p 1 1.5
Figure 4.Stresses and Displacement for fully-plastic stémtating disc along the radius Rrfb.

CONCLUSION

It has been observed that discs having less nomgeneity ( k < 0 ) require higher
angular speed to yield at the internal surface @wmpare to disc having more non-
homogeneity at the bore than at the rim ( k > #%cs having less non-homogeneity at the
bore required maximum radial stresses and circuenfe stresses as compared to disc have
more non-homogeneity at the bore than at the rinmas been seen that radial stresses is
maximum at the internal surface.

References:

[1] OLszak, W., URBANOWSKI, W., Non-homogeneous Thick walled cylinder sutgec
to internal and external pressufech. Mech. Stos. 3 (1955) 315-336.

[2] GHOsH, D., Study of elasticos-plastic stresses in a spdlepressure vessel of non-
homogeneous material, Sci. Engng. Resi. 7 (1963) 307-333.

[3] MUKHOPADHYAY, J., Effect of non-homogeneity on yield stressainhick walled
cylindrical tube under pressuiegtt. Appl. Engng. Sci. 20 (1982) 963-968.

[4] GUPTA S.K., SHUKLA, R K., Effect of non-homogeneity on elastic-plagtansition
in a thin rotating diskindian J. pure appl. Math. 25 (10) (1994) 1089-1097.

[5] SETH, B.R., Transition theory of Elastic-plastic Def@tion, Creep and Relaxation,
Nature 195 (1962) 896-897.

[6] SETH, B.R., Measure Concept in Mechanili®, J. Non-linear Mech. 1 (1) (1966) 35-
40.

[7] HULSURKAR, S., Transition theory of creep shells under unmf@ressureZAMM, 46
(1) (1966) 431-437.

[8] SHUKLA, R.K., Creep transition in a thin rotating non-horaogous disc)ndian
Journal of pure and applied mathematics 27 (56) (1996) 487-498.



20

[9] SHUKLA R.K., Elastic-Plastic transitional stresses inoa-homogeneous disc with
variable thickness, subjected to internal presdumaan Journal of Pure and Applied
Mathematics 31 (6) (2000) 713-720.

[10] GuPTA S.K, IANKAJ, Creep Transition in an isotropic disc having able thickness
subjected to internal pressuRepc. Nat. Acad. Sci. India, Sect. A 78 (1) (2008) 57-66.

[11] GupTA S.K., ANKAJ, Thermo elastic - plastic transition in a thotating disc with
inclusion, Thermal Science 11 (1) (2007) 103-118.

[12] GuPTA S.K., IANKAJ, Creep transition in a thin rotating disc withidignclusion,
Defence Science Journal 57 (2) (2007) 185-195.

[13] SOKOLINIKOFF, I.S.,Mathematical theory of Elasticity, Second edition , McGraw - Hill
Book Co., New York (1950) 70-71.

[14] PANKAJ THAKUR, Some Problems in Elastic-plastic and Creep Transition, Ph.D.
Thesis, Department of Mathematics, H.P.U. Shinmdid (2006).

[15] PANKAJ THAKUR, Elastic-Plastic Transition Stresses in a trarsatgrisotropic Thick -
walled Cylinder subjected to internal Pressure steddy - state Temperatufiermal
Science 13 (4) (2009) 107-118.

[16] PANKAJ THAKUR Pankaj Thakur, Elastic-plastic transition stressea thin rotating
disc with rigid inclusion by infinitesimal deformah under steady state Temperature,
Thermal Science 14 (1) (2012) 209-219.

[17] PANKAJ THAKUR , Creep Transition Stresses in a thin rotating digh shaft by finite
deformation under steady state temperaflinermal Science, 14 (2) (2010) 425-436.

[18] PANKAJ THAKUR, Elastic - Plastic Transition Stresses In Rotatiylinder By Finite
Deformation Under Steady- State Temperatlinermal Science 15 (2) (2011) 537-543.

[19] PaNnkAJ THAKUR, Creep Transition stresses of a Thick isotropikesical shell by
finitesimal deformation under steady state of terapee and internal pressufiéer mal
Science 15 (Suppl. 2) (2011) S157-S165.

[20] PANKAJ THAKUR, Steady thermal stress and strain rates in alaircylinder with non-
homogeneous compressibility subjected to thermead,[Bhermal Science 18 (Suppl. 1)
(2014) 81-92.

[21] PANKAJ THAKUR, Steady thermal stress and strain rates in aimgtatrcular cylinder
under steady state temperatuiieermal Science 18 (Suppl.1) (2014) 93-106.

[22] PANKAJ THAKUR, Stresses in a thin rotating disc of variablekhéss with rigid shaft
Journal for Technology of Plasticity 37 (1) (2012) 1-14.

[23] PANKAJ THAKUR, Elastic-plastic transition stresses in an isatrogdisc having
variable thickness subjected to internal pressiumgernational journal of Physical
Science, African Journa# (5) (2009) 336-342.

[24] PAaNKAJ THAKUR, GAURAV S., Creep transition stresses in thick walled timoga
cylinder by finitesimal deformation under steadyatst temperature)nternational
Journal of Mechanics and Solids, India 4 (1) (2009) 39-44.

[25] PANKAJ THAKUR, Elastic-Plastic Transition in a Thin Rotating ®isaving variable
density with InclusionStructural Integrity and life 9 (3) (2009) 171-179.

[26] PANKAJ THAKUR, Elastic-Plastic Transitional Stresses in a Thota®ng Disc with
Loading Edge,Proceeding of International conference on Advances in Modeling,



21

optimization and Computing (AMOC-2011), Department of Mathematics, Indian
Institute of Technology Roorkee, Roorkee, D&d.(2011) 318-326.

[27] PANKAJ THAKUR, Stresses in a spherical shell by using Lebesgeasure concept,
International Journal of the Physical Sciences 6 (28) (2011) 6537-6540.

[28] PANKAJ THAKUR, Effect of transition stresses in a disc havingalde thickness and
Poisson’s ratio subjected to internal pressVW&EAS Transactions on Applied and
Theoretical Mechanics 6 (4) (2011) 147-159.

[29] PANKAJ THAKUR, Creep transition stresses in a spherical sheleumternal pressure
by using lebesgue measure concdptgernational journal Applied Mechanics and
Engineering, Polandl6 (3) (2011) 83-87.

[30] Pankaj ThakurDeformation in a thin rotating disc having variabiieckness and edge
load with inclusion at the elastic-plastic trarsitl stresse§ructural Integrity and life
12(1) (2012) 65-70

[31] PaNnkAJ THAKUR, Thermo Creep Transition Stresses in a Thick-Vdal&ylinder
Subjected to Internal Pressure by finitesimal defron, Sructural Integrity and Life
12 (3) (2012) 165-173.

[32] PANKAJ THAKUR, Effectof Stresses in a thin Rotating disk Loading Edgeditierent
materials)nternational Journal for Technology of Plasticity 38 (1) (2013) 30-41.

[33] PANKAJ THAKUR, SNGH, S.B., ATINDER K., Thickness variation parameter in a thin
rotating disc by finite deformatioffME Transaction 41 (2) (2013) 96-102.

[34] PANKAJ THAKUR, Analysis of Stresses in a Thin Rotating Disc Witkblusion and
Edge Loadingscientific Technical Review 63 (3) (2013) 9-16.

[35] PANKAJ THAKUR, Stressesin a thick-walled circular cylinder ImaviPressure by
using concept of generalized strain measkragujevac Journal of Science 35 (2013)
41-48.

[36] PANKAJ THAKUR, SANDEEP K., Analysis of stresses in a Transversely Isotrdin
Rotating Disc with rigid inclusion having variabteensity parameteJSTP Open e-
journal, Japar® (1) (2013) 1-13.

[37] PANKAJ THAKUR, SNGH S. B., ATINDER K., Steady Thermal stresses in a rotating
disk with shaft having density variation paramesaijected to thermal loadSructural
Integrity and Life 13 (2) (2013) 109-116.

[38] PANKAJ THAKUR, Creep transitional stresses of Orthotropic ThidaHed cylinder
under combined axial Load under internal Pressiliacta Universities Series:
Mechanical engineering 11 (1) (2013) 13-18.

[39] PANKAJ THAKUR, Finitesimale deformation in a transversely ispicoThin rotating
disc with rigid shaft|nternational Journal for Technology of Plasticity 38 (2) (2013)
143-156.

[40] JATINDER KAUR, PANKAJ THAKUR, S.B. SNGH, Steady thermal stresses in a thin
rotating disc of finitesimal deformation with eddmading accepted for publication
Journal of Solid Mechanicgan7 (2) 2015.

[41] PANKAJ THAKUR, S. B. $\NGH, JATINDER K., Elastic-plastic transitional stress in a thin
rotating disc with shaft having variable thicknessder steady state temperature,
Kragujevac Journal of Science 36 (2014) 5 -17.



22

[42] PANKAJ THAKUR, ANUPAM S., Steady state thermal stresses in thin cirddisc by
deformation with variable Load for different matdsi by Concept of Seth’s Transition
Theory,Mathematical Sciences International Journal 3 (1) (2014) 421-431.



