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ABSTRACT. An analysis of an unsteady MHD convective flow of an electrically 
conducting viscous incompressible fluid through porous medium filled in a vertical 
porous channel is carried out. The two porous plates are subjected to a constant injection 
and suction velocity as shown in Fig. 1a, b. The temperature of the plate at �∗ = +��  is 
assumed to be varying in space and time as �∗��∗, 
∗, �∗� = �
��∗� + ��� −�
� cos���∗� ��∗�∗�. A magnetic field of uniform strength is applied perpendicular to the 
plates of the channel. The temperature difference between the plates is high enough to 
induce the heat due to radiation. It is also assumed that the conducting fluid is optically-
thin gray gas, absorbing/ emitting radiation and non-scattering. The Hall current effects 
have also been taken into account. Exact solution of the partial differential equations 
governing the flow under the prescribed boundary conditions has been obtained for the 
velocity and the temperature fields. The primary and secondary velocities, temperature 
and the skin-friction and Nusselt number for the rate of heat transfer in terms of their 
amplitudes and phase angles have been shown graphically to observe the effects of 
suction parameter λ, Grashof number Gr, Hartmann number M, Hall parameter H, the 
permeability of the porous medium K, Prandtl number Pr, radiation parameter N, pressure 
gradient A and the frequency of oscillation ω. The final results are then discussed in 
detail in the last section of the paper with the help of figures.  
 
Keywords: Hall current, injection/suction, convective flow, magnetohydromagnetic 
(MHD), spanwise fluctuating, porous medium, radiation.  

 
 

INTRODUCTION 
 

The study of MHD free convection flow for electrically conducting fluid has attracted 
the attention of many scholars in view of its applications in many engineering problems such 
as meteorology, solar physics, motion of earth's core and chemical engineering etc. At the 
same time, these days the convective flows through porous medium is also receiving 
considerable attention due to its application in geophysical and astrophysical importance. The 
subject of geophysical dynamics nowadays has become an important branch of fluid 
dynamics due to the increasing interest to study environment. In astrophysics it is applied to 
study the stellar and solar structure, inter planetary and inter stellar matter, solar storms and 
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flares etc. In engineering it finds its application in MHD generators, ion propulsion, MHD 
bearings, MHD pumps, MHD boundary layer control of re-entryof space vehicles etc. 
Literature related to hydromagnetic channel flows is reported by several scholars viz. 
CRAMMER and PAI  [8], FERRARO and PLUMPTON [9], SHERCLIFF [22] on account of their 
varied importance. MHD channel or duct flows are important from its practical point of view. 
CHANG and LUNDGREN [6] studied a hydromagnetic flow in a duct. YEN and CHANG [29] 
analyzed the effect of wall electrical conductance on the magnetohydrodynamic Couette flow. 
ATTIA  [4] discussed unsteady MHD Couette flow of a viscoelastic fluid with heat transfer. 
ATTIA  and KOTB [5] investigated MHD flow between two parallel porous plates with heat 
transfer. HASSANIEN and MANSOUR [12] studied an unsteady magnetic flow through a porous 
medium between two infinite parallel plates.  

 In certain engineering devises the fluid such as gas ionized due to high temperature 
becomes electrical conductor. The ionized gas or plasma can be made to interact with the 
magnetic field. This interaction alters the heat transfer and friction characteristic. Nowadays 
many scholars have shown interest in studying the effect of magnetic field on the flow when 
the fluid is not only an electrical conductor but is capable of emitting and absorbing thermal 
radiation. ALAGOA et al. [2] have studied magnetohydrodynamic optically-transparent free- 
convection flow with radiative heat transfer in porous media and time-dependent suction 
using an asymptotic approximation, showing that thermal radiation exerts a significant effect 
on the flow dynamics. MEBINE [15] investigated the radiation effects on MHD Couette flow 
with heat transfer between two parallel plates. GUPTA and GUPTA [10] investigated the effects 
of radiation on the free and forced convection of an electrically conducting fluid flowing 
inside an open ended vertical channel. HAKIEM  [11] studied an oscillatory MHD flow on free 
convection radiation through a porous medium with constant suction. MAKINDE  and MHONE 
[14] studied combined effects of transverse magnetic field and thermal radiation on MHD 
oscillatory flow in a channel filled with porous medium. SANYAL  and ADHIKARI  [20] 
analyzed heat radiation effect on MHD vertical channel. RAPTIS et al. [18] investigated 
Hydromagnetic free convection flow through a porous medium between two parallel plates.  
An exact solution of an unsteady periodic Poiseuille flow transpiration cooling and thermal 
radiation is obtained by SINGH [26]. MEBINE and GUMUS [16] investigated the steady MHD 
thermally radiating and reacting thermosolutal viscous flow through a channel with porous 
medium. SINGH and GARG [23] studied radiative heat transfer in MHD oscillatory flow 
through porous medium bounded by two vertical porous plates. VISKANTA  [28] investigated 
the effects of transverse magnetic field on heat transfer to an electrically conducting and 
thermal radiating fluid flowing in a parallel channel. SINGH [25] analysed MHD mixed 
convection visco-elastic slip flow through a porous medium in a vertical porous channel with 
thermal radiation. 

 When the strength of the magnetic field is strong, one cannot neglect the effects of 
Hall current. The radiative convective flow of an electrically conducting fluid in the presence 
of a magnetic field is encountered in geophysical and cosmical fluid dynamics. It is also 
important in the solar physics involved in the sunspot development. In an ionized gas where 
the density is low and/or the magnetic field is very strong, the conductivity normal to the 
magnetic field is reduced due to the free spiraling of electrons and ions about the magnetic 
lines of force before suffering collisions and a current is induced in a direction normal to both 
the electric and the magnetic fields. This current, well known in the literature, is called the 
Hall currents. Due to Hall currents the electrical conductivity of the fluid becomes anisotropic 
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and this causes the secondary flow. Hall effect is important when the Hall parameter, which is 
the ratio between the electron- cyclotron frequency and the electron-atom-collision frequency, 
is high. This happens when the magnetic field is high or when the collision frequency is low. 
Hall currents are of great importance in many astrophysical problems such as Hall accelerator 
and flight MHD as well as flows of plasma in a MHD power generator. REDDY et al. [19] 
presented Hall effects on MHD Couette flow through a porous straight channel. ATTIA  [3] 
studied Hall current effects on velocity and temperature fields of an unsteady Hartmann flow. 
AHMED and ZUECO [1] obtained an exact solution to the problem of heat and mass transfer in 
a rotating vertical porous channel with Hall current. SINGH and KUMAR [27] analysed 
combined effects of Hall current and rotation on free convection MHD flow in a porous 
channel. The unsteady hydromagnetic free convection flow with Hall current and mass 
transfer along an accelerated porous plate with time dependent temperature and concentration 
has been studied by SATTAR and HOSSAIN [21]. KINYANJUI et al.[13] have presented the 
magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past 
an impulsively started infinitely long vertical porous plate with Hall current and radiation 
absorption. SINGH et al. [24] have studied heat and mass transfer in an unsteady MHD free 
convective flow through a porous medium bounded by vertical porous channel in the presence 
of heat radiation and Hall current.   

The aim of the present work is to analyse the MHD convective flow of viscous, 
incompressible and electrically conducting fluid through a porous medium filled in a vertical 
porous channel. The porous plates of the channel are subjected to constant injection and 
suction so that the fluid injected through one porous plate is sucked through the other with 
same velocity. A magnetic field of uniform strength is applied transverse to the channel 
plates. The temperature of one of the plates varies both in space and time. The Hall current 
effects have also been taken into account. A closed form solution of the partial differential 
equations governing the flow under the prescribed boundary conditions has been obtained for 
the velocity and the temperature fields. The final results are then discussed in the last section 
of the paper with the help of figures in detail.  

 
 

MATHEMATICAL FORMULATION OF THE PROBLEM 
 

Consider an unsteady flow of a viscous, incompressible and electrically conducting 
fluid through a highly porous medium in a vertical channel. The insulated plates of the 
channel are at distance 'd' apart. The X*- axis is oriented vertically upwards along the 
centreline of the channel. The Y*-axis taken perpendicular to the planes of the plates and a 

strong transverse magnetic field of uniform strength ��� = �0, ��, 0� is applied along this axis. 
The porous walls of the vertical channel are lying in the �∗ = ±�� planes and the fluid is 
injected through the left porous plate with constant velocity (V) and simultaneously sucked 
through the other plate with the same velocity (V). As shown in Figure 1b, the 
spanwisecosinusoidal temperature of the plate at  �∗ = +��  varying both in space and time is 
assumed to be of the form 

�∗ = �
 + ��� − �
� cos���∗� ��∗�∗�.     (1) 

Since the plates of the channel are of infinite extent, all the physical quantities except the 

pressure are independent of x*. The equation of Continuity ∇. "�� = 0 for the constant 

injection/suction at the plates of the channel integrates to#∗ = ", where  "�� = �$∗, #∗, %∗� 
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represents the velocity components in the directions (X*, Y*, Z*) respectively. The physical 
configuration of the problem is shown in Figure 1a & 1b 

        X*                   X* 

     

         V      V 

B0 

     Y*             Z* 

 Z* 
 
          V    V   

 

             

The solenoidal relation for the magnetic field  ∇. ��� = 0 , gives �&∗ = ��	�()*+�,*�� where  ��� = ��-∗, �&∗, �.∗� . Similarly if  /� = �/-∗ , /&∗ , /.∗� are the components of electric current density /� 
then the equation of conservation of electric charge gives, /&∗ = ()*+�,*�. This constant is 
zero i.e. /&∗ = 0  for the electrically non-conducting plates. Under the usual assumptions that 
the electron pressure (for a weakly ionized gas), the thermoelectric pressure, ion slip and the 
external electric field arising due to polarization of charges are negligible. Taking Hall current 
into account the generalized Ohm’s law (COWLING [7]) is of the form 

0�+ �12134 �0�× ���� = 6�7�� + 89"�� × ����.          (2) 

where "�� is the velocity vector,���is the magnetic field, 0�is the current density, 7��is the electric 
field, σ is the electrical conductivity, 89is the magnetic permeability, :9is the cyclotron 
frequency, and  ;9is the electron collision time.   

Under the usual assumptions that the electron pressure (for a weakly ionized gas), the 
thermoelectric pressure, ion slip and the external electric field arising due to polarization of 
charges are negligible. It is assumed that no applied and polarized voltage exists. This 
corresponds to the case where no energy being added or extracted from the fluid by electrical 

means (MEYER [17]) i.e. electric field 7�� = 0. Therefore, equation (2) takes the form: 

0�+ �12134 �0�× ���� = 6�"�� × ����,      (3)  

Taking into account /&∗ = 0, equation (3) can be written in component form as 

 

<-∗ − :9;9<.∗ = −6��%∗	 	 	 <.∗ + :9;9	<-∗ = 6��$∗,	 	 (4)	
Solving	equations	�4�	for	jL∗ 	andjN∗	,	we	get		
<-∗ = P34�
QR�� �S$∗ − %∗�	 and<.∗ = P34�
QR�� �$∗ + S%∗�,		 	 	 	 	 (5)	

Porous Medium 

O 

Fig. 1a. Hot vertical channel. Fig. 1b. Spanwise cosinusoidal plate temperature. 
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where  H = ωVτV  is the Hall parameter.  

Thus, within the frame work of these assumptions and taking into account the usual 
Boussinsq’s approximation the magnetohydrodynamic (MHD) forced and free convection 
flow through porous medium in the vertical porous channel in the presence of Hall current 
and thermal radiation is governed by the following momentum and energy differential 
equations:   

XY∗

X�∗ + " XY∗

X&∗ = − 

Z

X[∗

X-∗   + \ ]X�Y∗

X&∗� + X�Y∗

X.∗�^ − P34��Y∗QR_∗�
Z�
QR�� − `

a∗ $∗ + bc��∗ − �
�, (6)

  0 = − 

Z

X[∗

X&∗,         (7) 

X_∗

X�∗ + " X_∗

X&∗ = − 

Z

X[∗

X.∗ + \ ]X�_∗

X&∗� + X�_∗

X.∗� ^ − P34��_∗�RY∗�
Z�
QR²� − `

a∗ %∗   (8) 

e([ ]Xf∗

X�∗ + " Xf∗

X&∗^ = g ]X�f∗

X&∗� + X�f∗

X.∗�^ − Xh∗

X&∗ ,      (9) 

where  \  is the kinematic viscosity. The last term in equation (9) stands for heat due to 
radiation and is given by 

Xh∗

X&∗ = 4,∗6∗��∗i − �

i�,        (10) 

for the case of an optically thin gray gas. Here a* is the mean absorption coefficient and σ
* is 

Stefan- Boltzmann constant. We assume that the temperature differences within the flow are 
sufficiently small such that T*4 may be expressed as a linear function of the temperature. This 
is accomplished by expanding T*4 in a Taylor series about T1 and neglecting higher order 
terms, thus 

�∗i ≅ 4�

∗k�∗ − 3�


i.          (11) 
Substituting (11) into (10) and simplifying, we obtain 

Xh∗

X&∗ = 16,∗6∗�

k��∗ − �
�.        (12) 

The substitution of equation (12) into the energy equation (9) for the heat due to radiation, we 
get 

e([ ]Xf∗

X�∗ + " Xf∗

X&∗^ = g ]X�f∗

X&∗� + X�f∗

X.∗�^ − 16,∗6∗�

k��∗ − �
�.   (13) 

Equation (7) shows the constancy of the hydrodynamic pressure along the axis 
perpendicular to the plates. The boundary conditions for the problem are 

�∗ = −�
�:     $∗ =  %∗ = 0,    �∗ = �
,         (14) 

�∗ = �
�:     $∗ = %∗ = 0,   �∗ = �
 + ��� − �
� cos���∗

� ��∗�∗�   (15) 

Where  ω*  is the frequency of oscillations.  

Introducing the following non-dimensional quantities 

 p, �, 
 = -∗,&∗,.∗

q , $, % = Y∗,_∗

r  , s = f∗�ft
f��ft

, � = �∗r
q , : = �∗q

r , u = [∗

Zr�,  (16) 

into equations (6), (8) and (13), we get  
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 v ]XY
X� + XY

X&^ = −v X[
X- + ]X�Y

X&� + X�Y
X.�^ − w��YQR_�

�
QR�� − Y
a + xy	s	 ,   (17)

 v ]X_X� + X_X&^ = −v X[X. + ]X�_X&� + X�_X.�^ − w²�_�RY��
QR²� − _a ,     (18) 

 vzy ]X{X� + X{X&^ = ]X�{X&� + X�{X.�^ − |�s ,      (19) 

where  ‘*’ represents the dimensional physical quantities,  

v = rq̀
is the injection/suction parameter,    

 } = ��~���is the Hartmann number, 

 S = :9;9is the Hall parameter, 

 � = a∗q�is the permeability of the porous medium, 

 xy = ��q��f��ft�`r is the Grashof number, 

 zy = ���� is the Prandtl number, 

 | = 4~��∗P∗ft�� is the radiation parameter. 

The boundary conditions in the dimensionless form become 

� = − 
� :	$ = % = 0, s = 0,        (20) 

� = 
� :	$ = % = 0, s = cos��
 − :��.      (21) 

 
 

SOLUTION OF THE PROBLEM 
 

In order to obtain the solution of this unsteady problem we combine equations (17) 
and (18) into a single equation by introducing a complex function of the form, F=u+iw, we 
get 

v ]X�X� + X�X&^ = −v ] XX- + � XX.^u + ]X��X&� + X��X.�^ − w��
��R��
QR�� � − ��
� + xy	s.  (22) 

For convenience sake let us adopt complex variable notations for velocity, temperature 
and pressure. Thus, we write velocity, temperature and pressure as  

���, 
, �� = ���������.����,s��, 
, �� = s��������.����,−] XX- + � XX.^u = 	�����.����, (23) 

where A is a constant.  The boundary conditions in equations (20) and (21) can also be written 
in complex notations as 

� = − 
� :	� = 0, s = 0,        (24)

 � = 
� :	� = 0, s = ����.����.        (25) 
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Substituting expressions (23) into equations (22) and (19), we get 

q��4
q&� − v q�4

q& − �w��
��R�
�
QR�� + �� + ��
 − �:v� �� = −v� − xy	s� ,    (26) 

q�{4q&� − vzy q{4q& − ��� + |� − �:vzy�s� = 0,     (27) 

with transformed boundary conditions  

� = −t�:					�� = 0,			s� = 0 ,        (28)

 � = t�:				�� = 0,			s� = 1 .          (29) 

The ordinary differential equations (26) and (27) are solved under boundary conditions (28), 
(29) and the solutions for the velocity and temperature fieldsare obtained, as  

���, 
, �� =

��
��
��
��
�� 
���������� �

��
��
��
� � ������¡�¢� �£¤

¥ ¦9¡�¢�§t − 9�¡�¢�§� ¨]�©&��� − ��&��� ^
+ ]§t�§�§t§� ^ ]�©&Q�� − ��&Q�� ^ ��ª«¡� ¬­

®

+ �¯°�9�±�������9�±������ �²³��t�´µ��t¶µ�� Q��Qa�t���¯· ¹̧¹
¹¹
¹º

+ ¯°
²³��t�´µ��t¶µ�� Q��Qa�t���¯·− � ������¡�¢� �¦9¡±�¢�§t − 9¢±�¡�§� ¨ ¹̧¹

¹¹
¹¹
¹¹
º
����.����, (30) 

��, 
, �� = ¦9¡±�¢��9¢±�¡�������¡�¢� � ¨ ����.���� ,        (31)

 where      

 » = ¯Q¼¯�Qi²³��t�´µ��t¶µ�� Q��Qa�t���¯·
�  ,    * = ¯�¼¯�Qi²³��t�´µ��t¶µ�� Q��Qa�t���¯·

�  , 

 y = ¯½ Q¾¯�½ �Qi���Q¿�Q��¯½ ��  ,   + = ¯½ �¾¯�½ �Qi���Q¿�Q��¯½ �� , 

À
 = y� − vy − �w��
��R��
QR�� +�� + ��
 − �:v� , 
 À� = +� − v+ − �w��
��R��
QR�� +�� + ��
 − �:v�. 
From the velocity field solution (30) we can obtain the skin-friction  ;Á  at the left wall in 
terms of its amplitude  |F|  and the phase angle as  

;Á = ]X�X&^&Ä�t� = |F| cos�πz − ωt + φ�,       (32) 

with 
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 �  + �	�� = 
���������� �
��
��
��
� � ������¡�¢� �£¤

¥ ¦9¡�¢�§t − 9�¡�¢�§� ¨ �» − *���ª� +
]§t�§�§t§� ^ ]»������ − *����� ^ ��ª«¡� ¬­

®

+ �¯°È©9��� ��������1���¢É�Ê�� Ë
²³��t�´µ��t¶µ�� Q��Qa�t���¯· ¹̧¹

¹¹
¹º
.  (33) 

    − � ������¡�¢� � ]  §t − �§�^ ��ª«¡�  .      

The amplitude and the phase angle of the skin-friction are respectively given by  

|F| = ¾FÌ� + FÍ�, and φ = tan�
 ]ÎÏÎÐ^.        (34) 

Similarly, from the temperature field given in equation (31) the heat transfer coefficient Nu 
(Nusselt number) in terms of its amplitude|S| and the phase angle Ñcan be obtained as  

|$ = ]X{X&^&Ä�t� = cos��
 − :� + Ñ�,        (35) 

whereS  + �	S� = � ���9�ª«¡��	�����¡�¢� �.          (36) 

The amplitude  |S| and the phase angle ψ of the heat transfer coefficient Nu (Nusselt number) 
are given by   

|S| = √Sy� +S��andÑ = tan�
 R�R respectively.      (37) 

 
 

RESULTS AND DISCUSSION 
 

A closed form solution of the problem of magnetohydrodynamic convective flow in a 
vertical porous channel filled with porous medium is obtained. The two porous plates are 
subjected to constant injection and suction. The temperature of one of the channel plates 
varies span-wise cosinusoidally. It is also assumed that the electrically conducting fluid is 
optically-thin gray gas, absorbing/ emitting radiation and non-scattering. The analytical 
results obtained in the previous section are evaluated numerically for different sets of values 
of the parameters involved in the flow field. In order to have a better insight of the influence 
of parameters on the velocity and temperature fields these numerical values are then 
illustrated through figures. The influence of each of the parameters on the physical quantities 
like the velocity, the temperature, the amplitude and the phase of the skin-friction are depicted 
through these figures.   

 The variations of the primary and secondary velocity components against the variable 
y with respect to each of the flow parameters are presented in Figs. 2 to 10. The primary 
velocity u(y, z, t) is shown by smooth curves while the secondary velocity w(y, z, t) is shown 
by dotted curves. The effects of the injection/suction λ on the velocity are presented in Fig 2. 
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It is quite obvious that with the increasing injection/suction both the primary and secondary 
velocities increase. Similarly the velocity behavior with the Grashof number is presented in 
Figure 3. It is also found from this figure that the primary velocity u(y, z, t) and the secondary 
velocity w(y, z, t) increase with increasing Grashof number Gr. The maximum of the primary 
velocity profiles shifts toward right half of the channel due to the greater buoyancy force in 
this part of the channel because of the presence of hotter plate of the channel.  

          

             

 

The effect of the Hartmann number M on the velocity field is exhibited in Fig. 4. The 
Hartmann number has opposing effects on the primary and secondary velocities. The primary 
velocity increases while the secondary velocity decreases with increasing Hartmann number 
M. This means that the Lorentz force due to the applied magnetic field has a dragging effect 
on u(y, z, t) while the secondary flow w(y, z, t) generated by the Hall current accelerates. 
Figure 5 shows that the increase of Hall parameter H increases the primary velocity but 
decreases the secondary velocity. The variations of the velocity profiles with the permeability 
of the porous medium K are presented in Fig. 6. It is noticed from this figure that the primary 
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Fig. 2. Velocity profiles for Gr=1, M=2, H=1, 
K=0.2, Pr=0.7, N=1, A=2, ω=1, z=0.5 and 

t=π/2. 

Fig. 3. Velocity profiles for λ=0.5, M=2, H=1, 
K=0.2, Pr=0.7, N=1, A=2, ω=1, z=0.5 and 

t=π/2. 

Fig. 4. Velocity profiles for λ=0.5, Gr=1, H=1, 
K=0.2, Pr=0.7, N=1, A=2, ω=1, z=0.5 and 

t=π/2. 

Fig. 5. Velocity profiles for λ=0.5, Gr=1, M=2, 
K=0.2, Pr=0.7, N=1, A=2, ω=1, z=0.5 and 

t=π/2. 
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velocity and the secondary velocities increase with the increasing permeability of the porous 
medium K. 

        

           
             

Physically it means that the resistance posed by the porous matrix reduces with increasing 
permeability which leads to the increase of u(y, z, t) and w(y, z, t). The effects of Prandtl 
number on the velocity are shown in Fig.7. The two values of Pr (= 0.7 and 7) have been 
chosen to represent real fluids i.e. air and water respectively. It is inferred from this figure that 
with the increase of Prandtl number Pr the primary velocity decreases, however, there is no 
significant effect on the secondary velocity. The primary velocity is less in water (Pr = 7) than 
in air (Pr = 0.7). The variation of the velocity profiles with the radiation parameter N is 
presented in Fig.8. The primary velocity and the secondary velocity decrease with increasing 
radiation parameter N. From Fig.9 it is evident that the primary velocity u(y, z, t) and the 
secondary velocity w(y, z, t) go on increasing with the increasing favourable pressure gradient 
A (>0). It is also observed from Fig.10 that the primary velocity decreases with increasing 
frequency ω and secondary velocity first increase as the frequency of oscillations increase 
from 1 to 5 but then it reverses for ω=10.  
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Fig. 6. Velocity profiles for λ=0.5, Gr=1,M=2, 
H=1, Pr=0.7, N=1, A=2, ω=1, z=0.5 and t=π/2. 

Fig. 7. Velocity profiles for λ=0.5, Gr=1, M=2, 
H=1, K=0.2, N=1, A=2, ω=1, z=0.5 and t=π/2. 

Fig. 8. Velocity profiles for λ=0.5, Gr=1,M=2, 
H=1, K=0.2, Pr=0.7, A=2, ω=1, z=0.5 and 

t=π/2. 

Fig. 9. Velocity profiles for λ=0.5, Gr=1,M=2, 
H=1, K=0.2, Pr=0.7, N=1, ω=1, z=0.5 and 

t=π/2. 
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The skin-friction in terms of its amplitude |F|and phase angle has been shown in Figs. 
11 and 12 respectively. The sets of values of parameters listed in Table 1 are presented 
graphically in these figures. The effect of each of the parameter on  |F|  and is assessed by 
comparing each curve with dotted curves in these figures. In Fig.11 the comparison of curves 
II, III, V, VI and IX with dotted curve I (---) indicates that the amplitude increases with the 
increase of injection/suction parameter λ, Grashof number Gr, Hall parameter H, the 
permeability of the porous medium K and the pressure gradient parameter A. It is expected 
physically also because due to the increase of these parameters the primary velocity increases 
and consequently the faster flows give rise to more skin-friction. Similarly, the comparison of 
other curves IV, VII and VIII with the dotted curve I (---) depicts that the skin-friction 
amplitude decreases with the increase of Hartmann number M, Prandtl number Pr and the 
radiation parameter N because the primary velocity due to these parameters decreases and for 
slow flows skin-friction is less. It is obvious that amplitude  |F|  remains almost constant with 
increasing frequency of oscillations.  

      

 

It is clear from Figure 12 showing the variations of the phase angle Ó of the skin-
friction that there is always a phase lead because the values of φ remain positive throughout. 
Here again the comparison of curves II, III, IV and VI with the dotted curve I (---) indicates 
that the phase increases with the increase of injection/suction parameter λ Grashof number Gr, 
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Fig. 10. Velocity profiles for λ=0.5, Gr=1,M=2, 
H=1, K=0.2, Pr=0.7, N=1, A=2, z=0.5 and 

t=π/2. 

Table 1. Sets of parameter values plotted in 
Figs.11 & 12. 

 
  λ   Gr M  H   K    Pr   N  A  Curves 
0.5  1    2   1   0.2   0.7   1   2    I (---) 
1.0  1    2   1   0.2   0.7   1   2    II 
0.5  5    2   1   0.2   0.7   1   2    III 
0.5  1    4   1   0.2   0.7   1   2    IV 
0.5  1    2   5   0.2   0.7   1   2    V 
0.5  1    2   1   1.0   0.7   1   2    VI 
0.5  1    2   1   0.2   7.0   1   2    VII 
0.5  1    2   1   0.2   0.7   5   2    VIII 
0.5  1    2   1   0.2   0.7   1   3    IX 

Fig. 11. Amplitude of skin-friction. Fig. 12. Phase angle of skin-friction. 
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Hartmann number M and the permeability of the porous medium K respectively. The 
comparison of the rest of the curves namely V, VII, VIII and IX with dotted curve I reveals 
that the phase angle decreases with the increase of Hall parameter H, Prandtl number Pr, 
radiation parameter N and the pressure gradient A. It is also noticed from this figure that the 
phase lead goes on increasing with increasing frequency of oscillations ω.   

Figure 13 illustrates the variation of the temperature field with the variation of 
different flow parameters. The comparison of different curves with the dotted curve reveals 
that there is a decrease in temperature with increasing parameters like the injection/suction λ 
or the Prandtl number Pr or the radiation parameter N or frequency of oscillations ω.  

The amplitude |S| and the phase angle Ñof the rate of heat transfer against the 
frequency of oscillations ω are illustrated in Figures 14 and 15 respectively. It is evident from 
Fig. 15 that the amplitude  |S|  decreases with the increase of injection/suction parameter λ, 
Prandtl number Pr and the radiation parameter N. The amplitude in the case of water (Pr =7) 
becomes negligible for larger values of oscillations ω. The increase of radiation parameter 
stabilizes the amplitude with increasing frequency of oscillations ω.  It is noticed from Fig.15 
that the phase lead with increasing radiation remains linear with the increasing frequency of 
oscillations ω. A decrease in phase angle Ñ is also observed with the increase of radiation 
parameter N. The phase angle   of the Nusselt number starts oscillating between the phase lag 
and the phase lead as the injection/suction parameter or the Prandtl number are increased. For 
the values of injection/suction parameter the amplitude remains linear initially for smaller 
oscillations but oscillates thereafter for larger ω.  
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Fig. 15. Phase angle of Nusselt number. 

y 

θ 

 Λ    Pr   N  ω 

0.5 0.7  1   1 

0.5 0.7  1   1 

0.5 0.7  1   1 

0.5 0.7  1   1 

0.5 0.7  1   1 |S|

ω 

Λ    Pr   N 

0.5   0.7   1 

1.0   0.7   1 

0.5   7.0   1 

0.5   0.7   5 

 

Ñ 

ω 

Λ   Pr   N 

0.5 0.7  1 

1.0 0.7  1 

0.5 7.0  1 

0.5 0.7  5 



61 
 

CONCLUSIONS 

An unsteady hydromagnetic convective flow of viscous incompressible and 
electrically conducting fluid in a vertical porous channel is investigated when the temperature 
of one of the plates varies spanwise cosinusoidally. The entire system consisting of channel 
plates and the fluid rotates about an axis perpendicular to the plates. A closed form solution of 
the problem is obtained. Following features are concluded from the mathematical analysis: 

(i) The primary velocity u(y, z, t) and the secondary w(y, z, t) both increase with the 
increase of the injection/suction parameter λ, Grashof number Gr, permeability of the 
porous medium K and the favorable pressure gradient A.   

(ii)  There are opposing effects on primary and secondary velocities due to the increasing 
Hartmann number M, Hall parameter that is, u(y, z, t) and w(y, z, t) decrease and 
increase respectably.   

(iii)  Due to increasing radiation primary and secondary velocities decrease.   
(iv)  The flow in the channel reverses for large frequency of oscillations ω.  
(v)  The amplitude |F| of the skin-friction increases due to the increase of those 

parameters because of which the primary and secondary velocities increase.   
(vi) Similarly, the amplitude |F| of the skin-friction decreases due to the increase of those 

parameters because of which the primary velocity decreases.   
(vii)  In other words faster flows lead to more skin-friction and for slow flows skin-friction 

is less.   
(viii)  The temperature and the amplitude of the rate of heat transfer decrease with the 

increase of any of the parameters that appear.   
(ix) The phase of the rate of heat transfer oscillates between phase lag and lead for 

increasing injection/suction parameter and the Prandtl number.   
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