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ABSTRACT.We consider the generalized transformation graphsGab and obtain expressions

for their first and second Zagreb indices and coindices. Analogous expressions are obtained

also for the complements of Gab.

1 Introduction: Transformation graphs and their

chemical applications

It is nowadays well known, and established almost a century ago, that graphs pro-

vide a natural representation of the structure of covalently bond molecules, thus of

practically all organic molecules [2, 9, 14]. The standard and most direct way how

a graph representation of a molecule is constructed is that each atom is replaced

by a vertex and each (covalent) chemical bond by an edge between the respective
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two vertices. Such a “molecular graph” in an obvious manner reflects the relevant

details of molecular structure, the so-called “molecular topology”. Molecular graphs

constructed in the above described manner found countless chemical applications and

have been considered in many thousands of papers. Such molecular graphs are the

object of study in the vast majority of currently produced papers in mathematical

chemistry.

However, there exist other, less immediate, ways in which molecular topology can

be represented by a graph. Namely, if G is a molecular graph, and if it can be trans-

formed in some way into another graph G∗, so that the correspondence between G

and G∗ is one-to-one, then the transformation G → G∗ preserves the entire informa-

tion on molecular topology contained in G. Consequently, the transformed graph G∗

could be used as an equally valid, yet less transparent, representation of molecular

structure.

In the chemical literature, there have been a few earlier attempts to shift from

ordinary molecular graphs to their transforms. The line graph and the iterated line

graphs were used in [15–17, 27]. Attempts to use graph complements were recently

reported [25].

The evident advantage of using transformation graphs instead of ordinary molec-

ular graphs lies in the applicability of their topological indices. A topological index

of the transformation graph will necessarily reflect other structural features than the

same topological index of the ordinary molecular graph. By this, using one and

the same class of topological indices, a variety of different structural properties of

the underlying molecules could be modeled. For a concrete application of this idea

see [15–17,27].

Zagreb indices belong among the best investigated topological indices, but their

properties and chemical applications were always studied for the case of ordinary

molecular graphs [3, 10–12, 21]. Recently, we focused our attention to the Zagreb

indices (and coindices) of certain transformation graphs [13,20]. The present work is

the continuation of research along the same lines, and is concerned with additional

types of transformation graphs.
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2 Introduction: Notation and definitions

Let G = (V,E) be a simple graph. The number of vertices and edges of G are denoted

by n and m respectively. As usual, n is said to be order and m the size of G. A graph

of order n and size m will be, for short, referred to as an (n,m)-graph.

If u and v are two adjacent vertices of G, then the edge connecting them will be

denoted by uv. The degree of a vertex v ∈ V (G) is the number of vertices adjacent

to v and is denoted by dG(v). The complement of G, denoted by G, is a graph having

the same vertex set as G, in which two vertices are adjacent if and only if they are

not adjacent in G. Thus, the size of G is
(
n
2

)
−m and dG(v) = n − 1 − dG(v) holds

for all v ∈ V (G).

For terminology not defined here we refer the reader to [19].

In this paper, we are concerned with two degree–based invariants, called first

Zagreb index M1 and second Zagreb index M2. These are defined as

M1(G) =
∑

v∈V (G)

dG(v)
2 and M2(G) =

∑
uv∈E(G)

dG(u) dG(u)

respectively. Their mathematical theory and chemical applications are nowadays well

elaborated; for details see [3, 12, 13, 21]. For historical data on the Zagreb indices

see [11]. For surveys on degree–based topological indices see [7, 10].

The first Zagreb index can be written also as [4, 5]

M1(G) =
∑

uv∈E(G)

[
dG(u) + dG(v)

]
.

Došlić [4] defined the first and second Zagreb coindices as

M1(G) =
∑

uv ̸∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv ̸∈E(G)

dG(u) dG(v)

respectively.

The following earlier established results will be needed for the present considera-

tions.

Theorem 2.1. [13, 26] For any (n,m)-graph G,

M1(G) = M1(G) + n(n− 1)2 − 4m(n− 1) .
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Theorem 2.2. [1, 13] Let G be any (n,m)-graph. Then

M1(G) +M1(G) = 2m(n− 1) .

Theorem 2.3. [1, 13] Let G be a simple graph. Then

M1(G) = M1(G) .

Theorem 2.4. [1, 13] Let G be a simple (n,m)-graph. Then

M2(G) = 2m2 −M2(G)− 1

2
M1(G) .

Theorem 2.5. [1, 13] Let G be a simple (n,m)-graph. Then

M2(G) = M2(G)− (n− 1)M1(G) +m (n− 1)2 .

3 Generalized transformation graphs Gab

Sampathkumar and Chikkodimath [22] defined the semitotal-point graph T2(G) as

the graph whose vertex set is V (G) ∪ E(G), and where two vertices are adjacent

if and only if (i) they are adjacent vertices of G or (ii) one is a vertex of G and

other is an edge of G incident with it. Many papers are devoted to semitotal-point

graphs [20,22–24]. Inspired by this definition, we now introduce some new graphical

transformations. These generalize the concept of semitotal-point graph.

Let G = (V,E) be a graph, and let α, β be two elements of V (G)∪E(G). We say

that the associativity of α and β is + if they are adjacent or incident in G, otherwise

is −. Let ab be a 2-permutation of the set {+,−}. We say that α and β correspond

to the first term a of ab if both α and β are in V (G), whereas α and β correspond to

the second term b of ab if one of α and β is in V (G) and the other is in E(G). The

generalized transformation graph Gab of G is defined on the vertex set V (G)∪E(G).

Two vertices α and β of Gab are joined by an edge if and only if their associativity in

G is consistent with the corresponding term of ab.

We denote the complement of the generalized transformation graph Gab by Gab.
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In view of above, one can obtain four graphical transformations of graphs, since

there are four distinct 2-permutations of {+,−}. Note that G++ is just the semitotal-

point graph T2(G) ofG, whereas the other generalized transformation graphs areG+−,

G−+ and G−−.

In other words, the generalized transformation graph Gab is a graph whose vertex

set is V (G) ∪ E(G), and α, β ∈ V (Gab). α and β are adjacent in Gab if and only if

either (∗) and (∗∗) holds:

(∗) α, β ∈ V (G), α, β are adjacent in G if a = + and α, β are not adjacent in G if

a = −.

(∗∗) α ∈ V (G) and β ∈ E(G), α, β are incident in G if b = + and α, β are not

incident in G if b = −.

The vertex vi of G
ab corresponding to a vertex vi of G is referred to as a point

vertex . The vertex ei of G
ab corresponding to an edge ei of G is referred to as a line

vertex .

In this paper, we obtain expressions for the first and second Zagreb indices and

coindices of the above defined generalized transformation graphs Gab and their com-

plements Gab.

4 Results

We start by stating the following propositions, needed for the proving our main results.

Proposition 4.1. Let G be an (n,m)-graph. Then the degrees of point and line

vertices in Gab are

(i) dG++(vi) = 2dG(vi) and dG++(ei) = 2.

(ii) dG+−(vi) = m and dG+−(ei) = n− 2.

(iii) dG−+(vi) = n− 1 and dG−+(ei) = 2.

(iv) dG−−(vi) = n+m− 1− 2dG(vi) and dG−−(ei) = n− 2.

Proposition 4.2. Let G be an (n,m)-graph. Then the order of Gab is (n+m).

(i) The size of G++ is 3m.

(ii) The size of G+− is m(n− 1).
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(iii) The size of G−+ is m+ 1
2
n(n− 1).

(iv) The size of G−− is 1
2
n(n− 1) +m(n− 3).

In the recent paper [20], the following two relations have been established.

Lemma 4.3. [20] Let G be an (n,m)-graph. Then

M1(G
++) = M1(T2(G)) = 4

[
m+M1(G)

]
.

Lemma 4.4. [20] Let G be an (n,m)-graph. Then

M1(G
++) = 2m (3m+ 3n− 5)− 4M1(G) .

We are now prepared to state and prove our main results.

Theorem 4.5. Let G be an (n,m)-graph. Then

M1(G++) = 4
[
M1(G) +m

]
+ (n+m− 1)

[
(n+m)(n+m− 1)− 12m

]
. (1)

Proof. From Theorem 2.1, it follows

M1(G++) = M1(G
++) + n1(n1 − 1)2 − 4m1(n1 − 1)

where n1 and m1 are the number of vertices and edges of G++. Eq. (1) is now

obtained by applying Lemma 4.3 and Proposition 4.2.

Theorem 4.6. Let G be an (n,m)-graph. Then

M1(G++) = 2m (3m+ 3n− 5)− 4M1(G) .

Proof. Apply Theorem 2.3 and Lemma 4.4.

Theorem 4.7. Let G be an (n,m)-graph. Then

M1(G
+−) = nm2 +m(n− 2)2 .

Proof. Since G+− has n+m vertices,

M1(G
+−) =

∑
uϵV (G+−)

dG+−(u)2 =
∑

uϵV (G+−)∩V (G)

dG+−(u)2 +
∑

uϵV (G+−)∩E(G)

dG+−(u)2 .

From Proposition 4.1, we have

M1(G
+−) =

∑
uϵV (G)

(m)2 +
∑

uϵE(G)

(n− 2)2 = nm2 +m(n− 2)2 .
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Corollary 4.8. Let G be an (n,m)-graph. Then

M1(G+−) = n(n− 1)2 +m(m+ 1)2 . (2)

Proof. From Theorem 2.1, M1(G+−) = M1(G
+−)+n1(n1−1)2−4m1(n1−1), where n1

and m1 are number of vertices and edges of G+−. Eq. (2) follows now from Theorem

4.7 and Proposition 4.2.

Corollary 4.9. Let G be an (n,m)-graph. Then

M1(G
+−) = m

[
2(n− 1)(m+ n− 1)− nm− (n− 2)2

]
. (3)

Proof. By Theorem 2.2, M1(G
+−) = 2m1(n1 − 1)−M1(G

+−), where n1 and m1 are

number of vertices and edges in G+−. Eq. (3) follows now from Proposition 4.2 and

Theorem 4.7.

Corollary 4.10. Let G be an (n,m)-graph. Then

M1(G+−) = m
[
2(n− 1)(n+m− 1)− nm− (n− 2)2

]
.

Proof. Apply Theorem 2.3 and Corollary 4.9.

Theorem 4.11. Let G be an (n,m)-graph. Then

M1(G
−+) = n(n− 1)2 + 4m .

Proof. Since G−+ has n+m vertices,

M1(G
−+) =

∑
uϵV (G−+)

dG−+(u)2 =
∑

uϵV (G−+)∩V (G)

dG−+(u)2 +
∑

uϵV (G−+)∩E(G)

dG−+(u)2 .

By Proposition 4.1,

M1(G
−+) =

∑
uϵV (G)

(n− 1)2 +
∑

uϵE(G)

(2)2 = n(n− 1)2 + 4m .

Corollary 4.12. Let G be an (n,m)-graph. Then

M1(G−+) = m3 + 3nm2 + n2m− 6m2 − 6nm+ 9m . (4)
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Proof. Theorem 2.1 implies

M1(G−+) = M1(G
−+) + n1(n1 − 1)2 − 4m1(n1 − 1)

where n1 and m1 are number of vertices and edges of G−+. Eq. (4) follows now from

Theorem 4.11 and Proposition 4.2.

The next two corollaries are deduced in a fully analogous manner.

Corollary 4.13. Let G be an (n,m)-graph. Then

M1(G
−+) = 2m2 − 6m+ n2m+ nm .

Corollary 4.14. Let G be an (n,m)-graph. Then

M1(G−+) = 2m2 − 6m+ n2m+ nm .

Theorem 4.15. Let G be an (n,m)-graph. Then

M1(G
−−) = 4M1(G) +m(n− 2)2 + (n+m− 1)[n(n+m− 1)− 8m] . (5)

Proof. Since G−− has n+m vertices,

M1(G
−−) =

∑
uϵV (G−−)

dG−−(u)2 =
∑

uϵV (G−−)∩V (G)

dG−−(u)2 +
∑

uϵV (G−−)∩E(G)

dG−−(u)2 .

In view of Proposition 4.1,

M1(G
−−) =

∑
uϵV (G)

[
n+m− 1− 2dG(u)

]2
+

∑
uϵE(G)

(n− 2)2

= n(n+m− 1)2+,M1(G)− 4(n+m− 1) · 2m+m(n− 2)2

and Eq. (5) follows.

Corollary 4.16. Let G be an (n,m)-graph. Then

M1(G−−) = 4M1(G) +m3 + 2m2 +m . (6)
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Proof. Theorem 2.1 results in

M1(G−−) = M1(G
−−) + n1(n1 − 1)2 − 4m1(n1 − 1)

where n1 and m1 are number of vertices and edges of G−−. Eq. (6) is then obtained

by bearing in mind Theorem 4.15 and Proposition 4.2.

The next two corollaries are deduced in a fully analogous manner.

Corollary 4.17. Let G be an (n,m)-graph. Then

M1(G
−−) = m(n+ 2)(n+m− 1)− 4M1(G)−m(n− 2)2 .

Corollary 4.18. Let G be an (n,m)-graph. Then

M1(G−−) = m(n+ 2)(n+m− 1)− 4M1(G)−m(n− 2)2 .

Theorem 4.19. Let G be an (n,m)-graph. Then

M2(G
++) = M2(T2(G)) = 4

[
M1(G) +M2(G)

]
.

Proof. Since G++ has n+m vertices and 3m edges,

M2(G
++) =

∑
uvϵE(G++)

dG++(u) dG++(v) =
∑

uvϵE(G++)∩E(G)

dG++ (u) dG++(v)

+
∑

uvϵE(G++)−E(G)

dG++(u) dG++(v) .

In view of Proposition 4.1, we have

M2(G
++) =

∑
uvϵE(G)

[2 dG(u) · 2 dG(v)] +
∑

uvϵE(G++)−E(G)

2 · 2 dG(v)

= 4M2(G) + 4
∑

vϵV (G)

dG(v)
2 .

Corollary 4.20. Let G be an (n,m)-graph. Then

M2(G
++) = 2m(9m− 1)− 6M1(G)− 4M2(G) . (7)
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Proof. From Theorem 2.4, M2(G
++) = 2m2

1 − M2(G
++) − 1

2
M1(G

++), where m1 is

number of edges in G++. Eq. (7) follows by applying Proposition 4.2, Theorem 4.19,

and Lemma 4.3.

The next two corollaries are deduced in a fully analogous manner.

Corollary 4.21. Let G be an (n,m)-graph. Then

M2(G++) = 2m[11m+ 2n− 3] + 2(2n+ 2m− 5)M1(G)− 4M2(G)

+ (n+m− 1)2
[(

n+m

2

)
− 9m

]
.

Corollary 4.22. Let G be an (n,m)-graph. Then

M2(G++) = 4M2(G)− 4(n+m− 2)M1(G)+m(3m2 − 10m+3n2 +6nm− 10n+7) .

Theorem 4.23. Let G be an (n,m)-graph. Then

M2(G
+−) = m3 +m2(n− 2)2 .

Proof. Since G+− has n+m vertices and m(n− 1) edges,

M2(G
+−) =

∑
uvϵE(G+−)

dG+−(u) dG+−(v) =
∑

uvϵE(G+−)∩E(G)

dG+−(u) dG+−(v)

+
∑

uvϵE(G+−)−E(G)

dG+−(u) dG+−(v) .

Proposition 4.1 implies

M2(G
+−) =

∑
uvϵE(G)

m ·m+
∑

uvϵE(G+−)−E(G)

m(n− 2) = m3 +m2 (n− 2)2 .

Corollary 4.24. Let G be an (n,m)-graph. Then

M2(G
+−) =

m

2

[
m(2n2 − 2m− 4− n)− (n− 2)2

]
.

Corollary 4.25. Let G be an (n,m)-graph. Then

M2(G+−) =
1

2

[
n4 +m4 − 3n3 +m3 + 4nm2 − 2n2m+ 8nm+ 3n2 − 5m2 − 7m− n

]
.
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Corollary 4.26. Let G be an (n,m)-graph. Then

M2(G+−) = m
[
n2m+ 2n2 − 3mn+ 2m− 5n+ 3

]
.

Theorem 4.27. Let G be an (n,m)-graph. Then

M2(G
−+) =

n− 1

2

[
n(n− 1)2 − 2m(n− 1) + 8m

]
.

Proof. Since G−+ has n+m vertices and 1
2
n(n− 1) +m edges,

M2(G
−+) =

∑
uvϵE(G−+)

dG−+(u) dG−+(v) =
∑

uvϵE(G−+)∩E(G)

dG−+(u) dG−+(v)

+
∑

uvϵE(G−+)−E(G)

dG−+(u) dG−+(v) .

Proposition 4.1 implies

M2(G
−+) =

∑
uvϵE(G)

(n− 1)(n− 1) +
∑

uvϵE(G−+)−E(G)

(n− 1)2

=
n− 1

2

[
n(n− 1)2 − 2m(n− 1) + 8m

]
.

Corollary 4.28. Let G be an (n,m)-graph. Then

M2(G
−+) = 2

[(
n

2

)
+m

]2
− (n− 1)

[
n

(
n

2

)
+ 5m−mn

]
− 2m .

Corollary 4.29. Let G be an (n,m)-graph. Then

M2(G−+) =
1

2
[4nm3 + 3n2m2 − 18nm2 − n2m+ 6nm− 9m3 +m4 + 27m2 − 9m] .

Corollary 4.30. Let G be an (n,m)-graph. Then

M2(G−+) =
1

2

[
(n+m)(n+m− 1)− 2m− n(n− 1)2

]
− 1

2

[
4nm3 + 3n2m2 − 15nm2 − 8m3 +m4 + 21m2

]
.
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Theorem 4.31. Let G be an (n,m)-graph. Then

M2(G
−−) = (n+m− 1)

{
(n+m− 1)

[(
n

2

)
−m

]
+m(n− 2)2 − 2M1(G)

}
+ 4M2(G)− 2(n− 2)

[
2m2 −M1(G)

]
. (8)

Proof. Since G−− has n+m vertices and
(
n
2

)
+m(n− 3) edges,

M2(G
−−) =

∑
uvϵE(G−−)

dG−−(u) dG−−(v) =
∑

uvϵE(G−−)∩E(G)

dG−−(u) dG−−(v)

+
∑

uvϵE(G−−)−E(G)

dG−−(u) dG−−(v) .

Proposition 4.1 implies

M2(G
−−) =

∑
uvϵE(G)

[
(n+m− 1)− 2dG(u)

][
(n+m− 1)− 2dG(v)

]
+

∑
uvϵE(G−−)−E(G)

(n− 2)
[
n+m− 1− 2dG(v)

]
from which Eq. (8) straightforwardly follows.

Corollary 4.32. Let G be an (n,m)-graph. Then

M2(G
−−) = 2(n+m− 1)M1(G)− 4M2(G)− 2(n− 1)M1(G)

+
1

2

[
m2n2 + 16m2 − 4m2n− 3mn2 + 4nm− 2m+ 2m3

]
.

Corollary 4.33. Let G be an (n,m)-graph. Then

M2(G−−) = 2(n+m− 1)M1(G)− 4M2(G) + 2M1(G)(n+ 2m− 1)

+
m

2

[
23m− 8nm− 8n2 + 16n− 9 +m2 +m3

]
.

Corollary 4.34. Let G be an (n,m)-graph. Then

M2(G−−) = 4M2(G)− 2(n+m− 1)M1(G)− 2(n+ 2m)M1(G)

+
1

2
[8m3 + 8nm2 + 8n2m− 16nm+ 8m] .
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