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ABSTRACT. The steady flow with heat transfer through a porous medium of a non-
Newtonian power-law fluid due to the uniform rotation of a disk of infinite extent is 
studied. The porous medium is assumed to obey Darcy's model which accounts for the 
drag exerted linearly by the porous medium on the steady flow. Von Karman similarity 
transformation is used to transform the governing boundary layer partial differential 
equations to ordinary differential equations. Therefore, the resulting momentum 
equations as well as the energy equations including the viscous dissipation term are 
solved asymptotically for large values of the porosity parameter and Prandtl number. 
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INTRODUCTION 
 

Von Karman rotating disk problem [1] is one of the classical problems in fluid 
mechanics that was introduced by VON KARMAN  1921 in the steady state. A similarity 
transformation was used to reduce the governing partial differential equations to ordinary 
differential equations. COCHRAN [2] obtained asymptotic solution for the reduced system of 
ordinary differential equations. The extension of von Karman problem to the case of flow of 
non-Newtonian power-law electrically conducting fluids under the action of an external 
uniform magnetic field was introduced by ANDERSON [3]. MILLSAPS and POHLHAUSEN [4] 
and SPARROW and GREGG [5] studied the heat transfer from the surface of a rotating disk 
maintained at a constant temperature in the steady state case for various values of Prandtl 
numbers. The extensions of the heat transfer problems studied in [4,5] to the transient state 
was done by ATTIA  [6] in the presence of uniform magnetic field. 
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In the present paper, the steady flow through a porous medium due to the rotation of 
an infinite rotating infinite disk of a non-Newtonian power-law fluid with heat transfer is 
investigated. The flow in the porous medium is assumed to be based on the Darcy’s law 
which accounts for the drag exerted by the porous medium [7-8]. A similarity transformation 
is used to transform the governing boundary layer nonlinear partial differential equations to 
nonlinear ordinary differential equations. An asymptotic solution for the resulting nonlinear 
governing momentum and energy equations including the viscous dissipation is obtained for 
large values of the porosity parameter and Prandtl number. 
 
 

THE GOVERNING EQUATIONS 
 

In this paper we consider the non-Newtonian fluid that obeys the Ostwald-de Waele 
power-law model given by [3] 
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where τr  is the sheer stress tensor, D
r

 is the rate-of-strain tensor, µ  is the viscosity of fluid, 
and K and n are the consistency coefficient and the power-law index, respectively. 
 The flow of the fluid is assumed to be in the half-space z>0 above the infinite disk, 
and is governed by the following boundary layer equations for conservation of mass and 
momentum,  
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where (r,ϕ , z) are the cylindrical coordinates, u, v, and w are the components in the radial, 
azimuthal and axial directions, respectively, p is the pressure which is assumed to be a 
function of z only andµ  is the viscosity function given as 
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which simplifies to K=µ  for the particular parameter value n=1 (for Newtonian fluids) and 
k is the Darcy permeability [7-8].  The last term in the right-side of each of Eqs. (3), (4) and (5) 
represents the Darcy force exerted by the fibers of the porous medium [7-8]. The boundary 
conditions for the flow problem are given by 

rvwuz ω==== ,0:0                                                                                          (7) 
0,0: →→∞→ vuz                                                                                              (8) 

Equation (5) can be used to determine the pressure across the boundary layer when the axial 
velocity component is known.  Introducing the generalized dimensionless similarity variable 
η  [3]: 
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together with the known von Karman similarity variables 
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the boundary layer Eqs. (2)-(4) transform into the ordinary differential equations [3] 
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where m is the porosity parameter and the primes denote differentiation with respect to the 
similarity variable η  

ρωk
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The boundary conditions (7) and (8) transform to 
0,1,0:0 ==== HGFη                                                                                          (15) 

,0,0: →→∞→ GFη                                                                                              (16) 
 
 

Asymptotic solution for the flow equations for large m 
 

Following the procedures given in [3] it is known that the Darcy body force tends to 
reduce the radial (F) and azimuthal (G) velocity components which, consequently, reduces the 
axial velocity (H).  For high values of the porosity parameter m, both F and H may vanish, 
whereas G, close to the surface of the disk, remains finite due to the no-slip condition given in 
Eq. (1).  In the limit ∞→m , the azimuthal momentum Eq. (13) reduces to [3] 

.))(( 2/)1(2 mGGG n =′′′ −                                                                                              (17) 
Let us furthermore assume that 0≤′G .  Then, with GdGdGG ′′=′′ , this becomes [3] 
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which by integration gives 
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where it is assumed that both G and G′ tend to zero sufficiently far away from the disk.  
Integrated Eq. (19) to get the closed-form solution [3] 
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Using Eq. (20) we find that 
)exp()( ηη mmG −−=′   for ,1=n                                                                          (21a)  
1)1()( −+=′ BAABG ηη    for ,1≠n                                                                          (21b) 

Also the wall-gradient can be estimated as [3] 
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which gives the torque required to maintain the rotation of the disk with constant angular 
velocity [3].   
 
The energy equation including the viscous dissipation takes the form [4-5]; 
 



8 
 

})(){()
1

()( 22
2

2

z

v

z

u

r

T

rrr

k

z

T
k

z

T
w

r

T
uc p ∂

∂+
∂
∂+

∂
∂

∂
∂+

∂
∂=

∂
∂+

∂
∂ µρ                                 (23) 

 
where T is the temperature of the fluid, cp is the specific heat at constant pressure of the fluid, 
and k is the thermal conductivity of the fluid.  The boundary conditions for the energy 
problem are that, by continuity considerations, the temperature equals Tw at the surface of the 
disk.  Far from the surface of the disk, T tends to T∞ where T∞ is the temperature of the 
ambient fluid.  In terms of the non-dimensional variable 
θ(ζ )= (T- T∞)/( Tw-T∞)  
and using von Karman transformations, Eq. (23) takes the form; 
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The boundary conditions for the temperature problem are expressed in terms of  θ  as 
0,1)0( →= θθ  as ∞→ζ                                                                                      (25)  

 
 

Asymptotic solution for the energy equation for large m and large Pr 
 

For high values of the porosity parameter m, F may vanish, and accordingly F ′  
vanishes. For very large values of Prandtl number Pr, the thermal boundary later is confined 
to a smaller and smaller portion of the velocity boundary layer. This guides us to write H in 
terms of a series expansion about 0=η  [4,5]. Therefore, we obtain 
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Using the conditions, 0)0()0( =′= HH , we get 
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For small values of η .  Substituting for H from Eq. (27) into Eq. (24) we end up with a 
second order inhomogeneous linear variable coefficients ordinary differential equation which 
can be solved under the boundary conditions given by Eq. (25) and whose exact solution is 
given by 
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CONCLUSIONS 
 

The steady flow with heat transfer through a porous medium of a power-law fluid 
above an infinite rotating disk was studied in the case of large values of due to the rotation of 
an infinite disk through a porous medium was studied in the case of large values of porosity 
parameter and Prandtl number. Von Karman similarity transformations were used to 
transformed the set of governing partial differential equations to ordinary differential 
equations and then, an asymptotic solution for the resulting system of governing nonlinear 
ordinary differential equations was obtained for large porosity parameter and large Prandtl 
number.  
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