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ABSTRACT. The steady flow with heat transfer through a pormeslium of a non-
Newtonian power-law fluid due to the uniform rotetiof a disk of infinite extent is
studied. The porous medium is assumed to obey Bamydel which accounts for the
drag exerted linearly by the porous medium on teady flow. Von Karman similarity
transformation is used to transform the governiogirdary layer partial differential
equations to ordinary differential equation§herefore, the resulting momentum
equations as well as the energy equations inclutliegviscous dissipation term are
solved asymptotically for large values of the payogarameter and Prandtl number.
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INTRODUCTION

Von Karman rotating disk problem [1] is one of thkssical problems in fluid
mechanics that was introduced bgN KARMAN 1921 in the steady state. A similarity
transformation was used to reduce the governingapatifferential equations to ordinary
differential equations. G@CHRAN [2] obtained asymptotic solution for the reducgdtem of
ordinary differential equations. The extension oh\warman problem to the case of flow of
non-Newtonian power-law electrically conductingidisl under the action of an external
uniform magnetic field was introduced byNBERSON [3]. MiLLSAPS and ®HLHAUSEN [4]
and $ARROW and GREGG [5] studied the heat transfer from the surfaceaabtating disk
maintained at a constant temperature in the stetatg case for various values of Prandtl
numbers. The extensions of the heat transfer pmablstudied in [4,5] to the transient state
was done by ATIA [6] in the presence of uniform magnetic field.



In the present paper, the steady flow through aygomedium due to the rotation of
an infinite rotating infinite disk of a non-Newt@m power-law fluid with heat transfer is
investigated. The flow in the porous medium is assdi to be based on the Darcy’'s law
which accounts for the drag exerted by the poroadiom [7-8]. A similarity transformation
is used to transform the governing boundary lay®iinear partial differential equations to
nonlinear ordinary differential equations. An asyatig solution for the resulting nonlinear
governing momentum and energy equations includiegviscous dissipation is obtained for
large values of the porosity parameter and Pramadtiber.

THE GOVERNING EQUATIONS

In this paper we consider the non-Newtonian flilndttobeys the Ostwald-de Waele
power-law model given by [3]
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whereT is the sheer stress tensr,is the rate-of-strain tensog is the viscosity of fluid,
andK andn are the consistency coefficient and the powerialex, respectively.

The flow of the fluid is assumed to be in the fsgdhcez>0 above the infinite disk,
and is governed by the following boundary layer aguns for conservation of mass and
momentum,
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where ¢, ¢, 2) are the cylindrical coordinates, v, andw are the components in the radial,
azimuthal and axial directions, respectivety,js the pressure which is assumed to be a
function ofz only andu is the viscosity function given as
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which S|mpI|f|es to,u = K for the particular parameter valnel (for Newtonian fluids) and
kis the Darcy permeability [7-8]. The last terntlwe right-side of each of Egs. (3), (4) and (5)
represents the Darcy force exerted by the fiberth@fporous medium [7-8]. The boundary
conditions for the flow problem are given by

z=0:u=w=0,v=ar (7)
Z->o:uU->0v->0 (8)
Equation (5) can be used to determine the pressuoss the boundary layer when the axial
velocity component is known. Introducing the gatieed dimensionless similarity variable

n [3:
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together with the known von Karman similarity vites
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the boundary layer Egs. (2)-(4) transform into dihéinary differential equations [3]
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wherem is the porosity parameter and the primes dendferentiation with respect to the
similarity variabler
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The boundary conditions (7) and (8) transform to
n=0:F=0G=1H =0 (15)
N - F 0G0, (16)

Asymptotic solution for the flow equationsfor large m

Following the procedures given in [3] it is knowmat the Darcy body force tends to
reduce the radiaH) and azimuthal®) velocity components which, consequently, redubes
axial velocity {). For high values of the porosity parameterbothF andH may vanish,
whereass, close to the surface of the disk, remains fidite to the no-slip condition given in
Eq. (1). In the limitm - o, the azimuthal momentum Eq. (13) reduces to [3]
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Let us furthermore assume tHat< 0. Then, withG"dG = G'dG’, this becomes [3]
-n(-G")"dG’ = mGdG (18)
which by integration gives
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where it is assumed that both and G’ tend to zero sufficiently far away from the disk.
Integrated Eq. (19) to get the closed-form soluf&Jn

G(n) =exp(-v/my) forn=1, (20a)
G(7) =A+An)°® fornzl, (20b)
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Using Eq. (20) we find that
G'(n) =—JmexpJ/nvy) for n=1, (21a)
G'(7) = AB(L+ An)®* fornz1, (21b)
Also the wall-gradient can be estimated as [3]
n+1 1/(n+1)
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which gives the torque required to maintain theatioh of the disk with constant angular
velocity [3].

The energy equation including the viscous dissipatakes the form [4-5];
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whereT is the temperature of the fluid, is the specific heat at constant pressure oflthe, f
and k is the thermal conductivity of the fluid. The lmmlary conditions for the energy
problem are that, by continuity considerations,téraperature equalk, at the surface of the
disk. Far from the surface of the disk,tends toT, whereT, is the temperature of the
ambient fluid. In terms of the non-dimensionaliable
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and using von Karman transformations, Eq. (23)gake form;
@' -PrH@ +Prec((F')? +(G)?*) ™2 =0 (24)

where
n-1

Pr=u2™c (w’?)™ /kis the Prandtl number,

Ec=w’r?/c, (T, -T,) is the Eckert number.

The boundary conditions for the temperature proldesnexpressed in terms 6f as
6(0)=1,6 - 0as{ —» o« (25)

Asymptotic solution for the energy equation for largem and large Pr

For high values of the porosity parametar F may vanish, and accordingly’
vanishes. For very large values of Prandtl numbethe thermal boundary later is confined
to a smaller and smaller portion of the velocitybdary layer. This guides us to wrikin
terms of a series expansion abgut 0 [4,5]. Therefore, we obtain

H :H(0)+H'(0)/7+HT(O)/72+... (26)
Using the conditionsH (0) = H'(0) = 0, we get

H = H"(O)% (27)

For small values of7. Substituting forH from Eq. (27) into Eq. (24) we end up with a

second order inhomogeneous linear variable coefftsi ordinary differential equation which
can be solved under the boundary conditions giwekdp (25) and whose exact solution is
given by
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above an infinite rotating disk was studied in tlase of large values of due to the rotation of
an infinite disk through a porous medium was stiidiethe case of large values of porosity
parameter and Prandtl number.

Jexpe%)de

CONCLUSIONS

The steady flow with heat transfer through a pormedium of a power-law fluid

Von Karman similatignsformations were used to

transformed the set of governing partial differahtequations to ordinary differential
equations and then, an asymptotic solution forrédselting system of governing nonlinear

ordinary differential equations was obtained fagéa porosity parameter and large Prandtl

number.
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