
Kragujevac J. Sci. 36 (2014) 5-17.       UDC 531.15 

 
 
 
 

ELASTIC-PLASTIC STRESSES IN A THIN ROTATING DISK  
WITH SHAFTHAVING DENSITY VARIATION PARAMETER  

UNDER STEADY-STATE TEMPERATURE 
 
 

Pankaj Thakur1, Satya Bir Singh2 and Jatinder Kaur3 
 

1Department of Mathematics, IEC University Baddi, 
Solan, Himachal Pradesh 174103, India 

E-mails: pankaj_thakur15@yahoo.co.in, dr_pankajthakur@yahoo.com 
2Department of Mathematics, Punjabi University Patiala, Punjab 147002, India 

3Department of Applied Science, Rayat Institute of Engineering & Information Technology, 
Ropar, Punjab, India 

 
 

(Received June 8, 2013) 
 

 
ABSTRACT. Steady thermal stresses in a rotating disc with shaft having density variation 
parameter subjected to thermal load have been derived by using Seth’s transition theory. 
Neither the yields criterion nor the associated flow rule is assumed here. Results are depicted 
graphically. It has been seen that compressible material required higher percentage increased 
angular speed to become fully-plastic as compare to rotating disc made of incompressible 
material. Circumferential stresses are maximal at the outer surface of the rotating disc. With 
the introduction of thermal effect it decreases the value of radial and circumferential stresses 
at inner and outer surface for fully-plastic state. 
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INTRODUCTION 
 

 Disc plays an important role in machine design. Stress analysis of rotating discs has an 
important role in engineering design. Rotating discs are the most critical part of rotors, turbines 
motor, compressors, high speed gears, flywheel, sink fits, turbo jet engines and computer’s disc 
drive etc.The problem of thin rotating flat discs made of isotropic material has been studied 
extensively [1-3]. CHAKRABARTY  [1] and HEYMAN  [2] solved the problem for the plastic state by 
utilizing the solution in the elastic state and consider the plastic range with the help of Tresca’s 
yield condition. Further, to obtain the elastic-plastic stresses, these authors matched the elastic 
and plastic stresses at the same radius r = c of the disc. Perfectly elasticity and ideal plasticity are 
two extreme properties of the material and the use of ad-hoc rule like yield condition amounts to 
divide the two extreme properties by a sharp line, which is not physically possible. Seth’s 
transition theory[4] does not required any assumptions like an yield criterion, incompressibility 
condition, associated flow rule and thus poses and solves a more general problem from which 
cases pertaining to the above assumptions can be worked out. This theory [4] utilizes the concept 
of generalized strain measure and asymptotic solution at critical points or turning points of the 
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differential equations defining the deformed field and has been successfully applied to a large 
number of problems [4-19].SETH [5]has defined the generalized principal strain measure as: 
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where n is the measure and ii
A

e is the almansi finite strain components. For n =-2, -1,0, 1, 2it 
gives Cauchy, Green Hencky, Swainger and Almansi measures, respectively.  
 In this research paper we discusselastic-plastic transitional stresses in a thin rotating disk 
with shaft having density variation parameter under steady state temperature by using Seth’s 
transition theory. The density of disc is assumed to vary along the radius in the form: 

( )0 /
m

r bρ ρ −=           (2) 

where 0ρ  is the constant density at r = b and mis the density variation parameter. Result obtained 

have been numerically and depicted graphically. 
 
 

MATHEMATICAL MODEL 
 

Consider a thin disc of isotropic and homogeneous material having variable density with 
central bore of inner radius a 
and external radius b. The 
annular disc is mounted on a 
rigid shaft. The disc is rotating 
with angular speed ω  of 
gradually increasing magnitude 
about an axis perpendicular to 
its plane and passed through the 
center as shown in Fig. 1. The 
thickness of disc is assumed to 
be constant and sufficiently 
small so that it is effectively in 
a state of plane stress, that is, 
the axial stress zzT is zero. We 

assume that steady state tempe-
rature 0Θ  is applied on the 

internal surface of the disc. 
 
Boundary conditions 
 

  The disk considered in the present study having variable density and subjected to a 
thermal load. The inner surface of the disk is assumed to be fixed to a shaft. The outer surface of 
the disk is free from mechanical load. Thus, the boundary conditions of the problem are given 
by: 

(i) r = a 0=u  
(ii)  r = b, 0=rrT          (3)   

where u and rrT  denote displacement and stress along the radial direction.  
 
Formulation of the Problem 
 

Displacement components in cylindrical polar coordinates ( ), ,r zθ , as: 
 

Figure 1. Geometry of Rotating Disc. 
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( )β−= 1ru , 0=v , dzw =          (4) 

where β  is function of 22 yxr +=  only and d is a constant. 

The finite strain components are given by Seth [5]: 
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where drdββ =′  and meaning of superscripts “A” is Almansi. 
Substituting eq.(5)in eq. (1), the generalized components of strain are given by: 
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where drdββ =′ . 
The stress –strain relations for thermo elastic isotropic material are given by [20]: 
 

1 2 ,ij ij ij ijT I eλδ µ ξ δ= + − Θ ( )3,2,1, =ji        (7) 

where ijT  is the stress components, λ  and µ  are Lame’s constants and kkeI =1  is the first strain 

invariant, ijδ  is the Kronecker’s delta and ( )µλαξ 23 += ,α  being the coefficient of thermal 

expansion and Θ  is the rise of temperature. Further,Θ  has to satisfy   
 

2 0∇ Θ =            (8) 
Eq. (7) for this problem becomes: 
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Substituting eq. (5) in eq. (6), the strain components in terms of stresses are obtained as [6]: 
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where E is the Young’s modulus and C is compressibility factor of the material in term of 

Lame’s constant, there are given by ( ) ( )3 2 /E µ λ µ λ µ= + +
 
and ( )2 / 2C µ λ µ= + .  

Substituting eq. (6) in eq. (9), one get 
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where Pr ββ =′ . 
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The equations of equilibrium are all satisfied except: 
 

( ) 2 2 0rr

d
rT T r

dr θθ ρω− + =            (12)  

where ρ  variable density of the material of the rotating disc. 
The temperature field satisfying Laplace eq. (8) with boundary condition 

0Θ = Θ atr = a 

0Θ = atr = b. 
where 0Θ  is constant, given by: 

( )
( )0

ln

ln

r b

a b
Θ = Θ             (13) 

Using eqs. (11), (12) and (13), one gets a non- linear differential equation in β  as: 
 

( ) ( )
( )

( )( ){ }
2 2

11 0
1 1

2 1
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   (14) 

where ( )0 0 / ln /a bΘ = Θ and r Pβ β′ =  (P is function of β  and β  is function of r) and

drdββ =′ ( P is function of β  and β  is function of r only). 
 
Solution through the Problem 
 

  For finding the plastic stress, the transition function is taken through the principal stress 
(see SETH’s [4, 5] and PANKAJ THAKUR [6-21]) at the transition point ±∞→P . The transition 
function τ  is defined as: 
 

[ ] ( ) ( )( ){ }3 2 2 1 1
2
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     (15) 

Taking the logarithmic differentiation of eq. (15) with respect to r, one get: 
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     (16) 

Substituting the value βd/dP  from eq. (14) in eq. (16) and taking the asymptotic value 
±∞→P  and integrating, one get: 

 
1Arντ −=              (17) 

where CC −−= 2/1ν and A  is a constant of integration can be determined by boundary 
conditions. 
Eqs. (15) and (17) gives: 
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          (18) 

Substituting eq. (18) in eq. (12) then using eq. (2) and integrating, one get: 
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where B is a constant of integrationcan be determined by boundary conditions. 
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Substituting eqs. (18) and (19) in second equation of eq. (10), one get: 
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  (20) 

where ( )2C E Cξ α= − . 

Substituting eq. (20) in eq. (4), one get: 
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where E= ( ) ( )2 3 2 / 2C Cµ − − is the Young’s modulus in term of compressibility factor can be 

expressed as. 
Using boundary condition (3) and (13) in eqs. (19) and (21), one get: 
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Substituting eqs. (22) and (23) in eqs. (18), (19), and (21) respectively, one get the transitional 
stresses and displacement as: 
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and

( ) ( )( )
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where 0 /R a b= and /R r b=  in non dimensional form. 

 
Initial Yielding: The maximum value rrT Tθθ−  occurs at the radius 1R R= (say), which depends 

upon the value of m and C. For example if we take C = 0, 0.25, 0.5 yielding starts at the internal 
surface for m = -1.9, -1.6, -1.2 respectively and for values m = -5.1, -4.9, -3.9 yielding starts at 

the mid surface. For the values 93.1 10m = − × , 92.9 10− ×  , 91.6 10− × ; rrT Tθθ− become neither 

maximum nor minimum values at the external surface 1 1R =  i.e. yielding does not occurs at the 

external surface. For yielding at 1R R= , eq. (27) becomes: 
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where Y is the yielding stress. 
The angular speed necessary for initial yielding is given by: 
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where
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We introduce the following non-dimensional components: 
 

/ ,R r b= 0 / ,R a b= /r rrT Yσ = , /T Yθ θθσ = , /u u b= , 1 0 /E YαΘ = Θ , 2 2 2
0 /b Yρ ωΩ =  

and / .H Y E=  
Elastic-plastic transitional stresses, angular speed and displacement from equations (24), (25), 
(28) and (26) in non-dimensional form become: 
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  (30) 
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and 
( )
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   (32) 

 
Fully Plastic State: Stresses and 
displacement at the inner boundary 
satisfied the inequality 

( 0)rr zzT T Tθθ> > = and yielding occurs 

at the inner radius. For fully-plastic 
state 0C → i.e. 1/ 2.ν =  Two plastic 
zones for fully plastic state were 
considered as shown in Fig. 2. There 
are two plastic zones: 

(i) Inner-plastic zone: 
( 0)rr zzT T Tθθ> > = ; 1a r r≤ ≤  

or ( 0)r zθσ σ σ> > = ; 10 RRR ≤≤ . 

(ii)  Outer-plastic zone: 
( 0)rr zzT T Tθθ > > = , 1r r b≤ ≤  

or ( 0)r zθσ σ σ> > = 11 ≤≤ RR . 

Where 1r  is the radius of inner plastic  

zone.  
 
 
For Inner-plastic zone, eq. (27) becomes: 
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and the angular speed required for fully plastic state is given by: 
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Using equation (33) in eqs. (29), (30), (32) by taking 0C → i.e. 1/ 2ν = , we get the stresses and 
displacement for the inner plastic zone as: 
 

( )
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1
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1 1 ln
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ln2 3 2 ln
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      (34) 

Figure 2. Two different plastic zones around the disc  
for fully plastic state. 
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For outer plastic zone eq. (27) becomes: 
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and the and the required angular speed is given by: 
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Using equation (37) in eqs. (29), (30), (32) by taking 0C → i.e. 1/ 2ν = , one get the stresses and 
displacement for the outer plastic zone as: 
 

( )
( )

( )2 3
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1
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and 
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RESULTS AND DISCUSSION 
 

For calculating the stresses, angular speed and displacement based on the above analysis, 
the following values have been taken: C = 0.00, 0.25, 0.5 and 0.75, 0

0 700 FΘ =  and α = 5.0 ×
510− 1degF −

 for Methyl Methacrylate [21], 1 0,Θ = 0.0175 and 0.07 respectively. 

In Tab. 1, angular speed required for initial yielding 2
iΩ and fully-plastic state 2

fΩ  in a 

rotating disc having variable density for different values of m, C and 1Θ  has been given. It can 

be seen from the Tab. 1 that yielding occurs at any radius 1R R= or at the internal surface 

1 0.5R =  or at the mid surface 1 0.7R = of the disc depending upon the values of m and C. For 

example yielding occurs at the internal surface of the disc made of compressible material (C = 
0.25) at a angular speed 2.82511676 for m = -1.6 whereas yielding occurs at the middle surface 
at the angular speed 7.72178021 for m = -3. It is also seen from tab.1 that rotating disc having 
variable density and made of incompressible material yields at a higher angular speed as 
compare to disc made of compressible material. Compressible material of rotating disc with shaft 
having variable density required higher percentage increased angular speed to become fully-
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plastic as compare to incompressible material. In Tab. 2, angular speed required for initial 

yielding 2
iΩ and fully-plastic state 2

fΩ  of a rotating disc for different values of m=0, 2.9 and 

1 0.00,0.0175,0.07Θ =  has been given. It is seen that with the effect of temperature, rotating disc 

required higher percentage angular speed to become fully plastic state with increase temperature 
for m=2.9 but reverse in case m=0. 
 

Table 1. Angular speed for initial yielding 2iΩ  and fully plastic state 2
fΩ   

of a rotating disc for different values of m, C and 1Θ  . 
 

 
 
  



14 

  

Table 2. Angular speed required for initial yielding 2iΩ  and fully plastic state 2
fΩ   

of a rotating disc for m=0.00, 2.9 and 1 0.00,0.0175,0.07Θ =  . 
 

 
 

In Figs. 3(a)-3(c), curves have been drawn between stresses and radius ratio R = r/b for 
fully plastic state at different values of m = 0, 2.9, 3.5. It is seen that from figs. 3(a) and 3(c), 
radial stresses is maximum at the internal surface whereas form fig. 3(b), the circumferential 
stresses is maximum at the outer surface of the rotating disc. With the introduction of thermal 
effect it decreases the value of radial and circumferential stresses at inner and outer surface for 
fully-plastic state. 

 

 
 

Figure 3(a). Stresses at fully-plastic state for different values of temperature and m=0.00  
with respect to radii ratio R=r/b. 
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Figure 3(b). Stresses at fully-plastic state for different values of temperature and m=2.9  
with respect to radii ratio R=r/b. 

 

 
 

Figure 3(c). Stresses at fully-plastic state for different values of temperature and m=3.5  
with respect to radii ratio R=r/b. 
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CONCLUSION 
 

It has been seen that compressible material required higher percentage increased angular 
speed to become fully-plastic as compare to rotating disc made of incompressible material. 
Compressible material of rotating disc with shaft having variable density required higher 
percentage increased angular speed to become fully-plastic as compare to incompressible 
material. Circumferential stresses are maximal at the outer surface of the rotating disc. With 
effect of thermal load value of radial and circumferential stresses at inner and outer surface for 
fully-plastic state must be decrease. 
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Nomenclature 
 
a,b - Inner and outer radii of the disc [m], 
ω  - Angular velocity of rotation, [ 1s− ] 
u,v,w - Displacement components, [m] 
ρ  - Density of material, [ 3kgm− ] 
C  - Compressibility, [ - ] 

ijij eT ,  -Stress [ 1 2kgm s− − ] and Strain rate tensor 

Y - Yield stress, [ 1 2kgm s− − ] 
Greek letters 

0/ ; /R r b R a b= =  Radii ratio, [-] 

rσ  - Radial stress component ( YTrr / ), [-] 

θσ    - Circumferential stress component ( YT /θθ ), [-] 

Θ     - Temperature, [0 F ] 
 

, ,A B d  - Constants of integration, [ - ] 
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