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ABSTRACT. Steady thermal stresses in a rotating disc with shafh@alensity variation
parameter subjected to thermal load have been derived by ushig Bensition theory.
Neither the yields criterion nor the associated flow ruksssumed here. Results are depicted
graphically. It has been seen that compressible material @ddugher percentage increased
angular speed to become fully-plastic as compare to rotatingrdide of incompressible
material. Circumferential stresses are maximal at ther sutrface of the rotating disc. With
the introduction of thermal effect it decreases the valuadil and circumferential stresses
at inner and outer surface for fully-plastic state.
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INTRODUCTION

Disc plays an important role in machine design. Stress amalfysotating discs has an
important role in engineering design. Rotating discs are the eniistl part of rotors, turbines
motor, compressors, high speed gears, flywheel, sink fits, turbo jetesngnd computer’s disc
drive etc.The problem of thin rotating flat discs made of isotropaterial has been studied
extensively [1-3]. BAKRABARTY [1] and HEYMAN [2] solved the problem for the plastic state by
utilizing the solution in the elastic state and consider the plemtige with the help of Tresca’s
yield condition. Further, to obtain the elastic-plastic streskesgtauthors matched the elastic
and plastic stresses at the same radis of the disc. Perfectly elasticity and ideal plasticity are
two extreme properties of the material and the use of ad-h®dtkelyield condition amounts to
divide the two extreme properties by a sharp line, which is notigatlys possible. Seth’s
transition theory[4] does not required any assumptions like an vyigddi@n, incompressibility
condition, associated flow rule and thus poses and solves a more geoblam from which
cases pertaining to the above assumptions can be worked out. This/dhemitizes the concept
of generalized strain measure and asymptotic solution at tptdats or turning points of the
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differential equations defining the deformed field and has been ssialtg applied to a large
number of problems [4-19]e3H [5]has defined the generalized principal strain measure as:

A

e = ?[1— 26, }g_ld & =%{1—[1— 26, H i=12,3) L)

0

A

wheren is the measure andiis the almansi finite strain components. or-2, -1,0, 1, 2it
gives Cauchy, Green Hencky, Swainger and Almansi measures, respectively

In this research paper we discusselastic-plastic trandigtmeases in a thin rotating disk
with shaft having density variation parameter under steady tamtperature by using Seth’s
transition theory. The density of disc is assumed to vary along the radius in the form
p=p,(r/b)" 2
where p, is the constant density it b andmis the density variation parameter. Result obtained
have been numerically and depicted graphically.

MATHEMATICAL MODEL

Consider a thin disc of isotropic and homogeneous material having eadi@tsity with
central bore of inner radiua ;

and external radiusbh. The Q o
annular disc is mounted on g B Spoed)
rigid shaft. The disc is rotating /\{9

with angular speed « of

gradually increasing magnitud
about an axis perpendicular
its plane and passed through ti
center as shown in Fig. 1. Thg
thickness of disc is assumed {
be constant and sufficiently |
small so that it is effectively in
a state of plane stress, that |
the axial stressTZZis zero. We | Schematic diagram of a rotating disk with

concentric circular hole

assume that steady state tempe-
rature ©, is applied on the

internal surface of the disc. Figure 1. Geometry of Rotating Disc.
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Boundary conditions

The disk considered in the present study having variable densitgudmected to a
thermal load. The inner surface of the disk is assumed to be @xadhaft. The outer surface of
the disk is free from mechanical load. Thus, the boundary conditions pfdhkem are given
by:

(1) r=au=0
(i) r=b,T, =0 (3)
whereu andT,, denote displacement and stress along the radial direction.

For mulation of the Problem

Displacement components in cylindrical polar coordinéteé,z), as:



u=r(1-8),v=0,w=dz (4)

where £ is function ofr = /x> + y* only andd is a constant.

The finite strain components are given by Seth [5]:
2

grr = —E(QJ =%[1—(fﬁ'+ﬁ)2],gee E%—u—zzé[l_lgz]

“or 2lor or
2 A A A
QZZEG_W_E(O_WJ =11-a-d)?) @0 =en =6 =0 (5)
0z 2\ 0z 2

where 8' = dB/dr and meaning of superscript¥ is Aimansi.
Substituting eq.(5)in eq. (1), the generalized components of strain are given b

1 , n 1 n 1 n
¢ = -7+ e =—l-ple = T1-a-dr] e, meu =, =0 ©)
where 8’ =dg/dr .
The stress —strain relations for thermo elastic isotropic materighame by [20]:
Ty = A4l +2u -£04,, (i, ] = 123) W
whereT; is the stress component$,and 1 are Lame’s constants ande,, is the first strain
invariant, g; is the Kronecker’'s delta and = a(3) +2u),a being the coefficient of thermal
expansion and® is the rise of temperature. Furth®r,has to satisfy

020=0 (8)
Eqg. (7) for this problem becomes:
2Au 2ué O 2Au 2ué0©
= — T, = + + 2 -
rr A_'_Zﬂ[err"'eeﬁ]"'zﬂerr ()I+2,u)’ 60 )I+2,u[e” eee] €o0 (/1+2,u)'

Tr6 :THZ :Tzr :Tzz =0 (9)
Substituting eqg. (5) in eg. (6), the strain components in terms of stresses eredoddd 6]:

_ou_1(ou) _1[ (.. el 1[o (1-C
err_E E(Ej _2[1 (rlg'l'lg) _E|:Trr (Z—CJTHH}LGG’

u u 1 1 1-C
665:7_?:5[1_:82]=E THH_(Z_C)TH +a 0,

€y =€, =€, =0. (10)
where E is the Young’s modulus an@ is compressibility factor of the material in term of
Lame’s constant, there are given By= 1(34+2u) /(A+u) and C=2u/(A+2u).

Substituting eqg. (6) in eq. (9), one get

Ter :Q[3—2c—,3”{1—c+(2—c)(P +1)" +_”C59} ,
n 20"
Ty :27'“{3—20—&’“{2—C+(1—C)(P+ 1"+ ”2(;1";@}} |
Tr& :Tez :Tzr :Tzz :O' (11)

whererf' = fP.
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The equations of equilibrium are all satisfied except:

%(r'l’rr)—T99+pa)2r2 =0 (12)

where p variable density of the material of the rotating disc.
The temperature field satisfying Laplace eq. (8) with boundary condition

O=0,ar =a
©=0atr =h.
where ©, is constant, given by:
I b
0=0, n(r/b) (13)
in(a/b)
Using egs. (11), (12) and (13), one gets a non- linear differential equat®asn
2 1-(P+1)" 5
(2-C)ngmip(P+1)" I = nowt® o _NCEOs | 14

2u —nP{1-C+(2-C)(P+1} | 2

where é0=®olln(a/b)and rB3 =pBP (P is function of 8 and B is function ofr) and
B’ =dB/dr (P is function of 8 and 3 is function ofr only).

Solution through the Problem

For finding the plastic stress, the transition function is takesugh the principal stress
(see &TH's [4, 5] and RNKAJ THAKUR [6-21]) at the transition poinP — *oo. The transition
function r is defined as:

__N — __ — _ ) o_ _ n _nCEO
_Z[ng Cf@]—_(S 2C)-p {2 C+(1-C)(P+] } p } (15)
Taking the logarithmic differentiation of eq. (15) with respeat, tmne get:

- d
d(Iogr):_(nﬁ“Pj 2-C+(1-C)(P+1]) {(P+])+,3d;}
r (:a—zc:)—ﬂ“{2—(:+(1—(:)(F>+1)”}-”(35e

Substituting the val_uedP/d,B from eq. (14) in eq. (16) and taking the asymptotic value
P - +o0 and integrating, one get:

(16)
r

r=Ar"" (17)
where ¥ =1-C/2-Cand A is a constant of integration can be determined by boundary
conditions.
Egs. (15) and (17) gives:
Céo,In(r/b

ng :(QJAT'V_1+ f 0 n(r ) (18)

n In(a/b)
Substituting eq. (18) in eq. (12) then using eq. (2) and integrating, one get:

m, 2-m
T, :(Z_ﬂ) Ar"‘l——poafb r.B, C{O,In(r/b) _ C£O, (19)
nv (3-k) r In(a/b) In(a/b)

whereB is a constant of integrationcan be determined by boundary conditions.




Substituting egs. (18) and (19) in second equation of eq. (10), one get:

_ |, _2v| pefbr* ™ B, aEQ,(2-C) 2(2-C)aE@, In(r/b)
ﬁ_\/l E[ 3-m r ¥ In(a/b) ¥ In(a/b) (20)
where Cé =aE(2-C).
Substituting eq. (20) in eq. (4), one get:
or b [ paror _E+aE®O(2—C) .\ 2(2-C)aEQ, In(r /b) 21)
E 3-m r In(a/b) In(a/b)

whereE= 24(3- ) /( 2-C)is the Young’s modulus in term of compressibility factor can be

expressed as.
Using boundary condition (3) and (13) in egs. (19) and (21), one get:

e ot (b* " ~a* ") ,9EOQN(1-C)(b-a) aEQ,na

2u(3-

m)b”

2,U |n(a7/b) bl—C/Z—C

’ubl—c/ 2C

B = P aEQ,(2-C)a 2(2-C)aEOsa

(3-m)

In(a/b)

(1-C)

(22)

(23)

Substituting egs. (22) and (23) in egs. (18), (19), and (21) respectvedyget the transitional
stresses and displacement as:

. 3-m _|I’l(l’/b)_ 22 r 1-C/2-C 7]
T, = +aEQ,(2-C) e ||D MZ3(24)
(3-m)r N (1-C)(b-a) (rY™
I r(2—C)In(a/b)(Ej
v a
,Ooa)zbm (bS—m_a3—m)(%j +0'E®0(2—C) |n(f/b)+?—1+
) (3-m)r Cemom In(a/b) | (b-a)(r 1ejzc
Trr - r +ta r b 0O m#3 (25)
,20EQ,(2-C) E_E(LT_C/Z_C
(1-C) r r\b
(powzbm [rS-m_aS—m]J+aEO°(2_C)(r -a)
3- I b
u=r-r 1_& ( m)r rn(a/) O m#3 (26)

(1-C) in(a/b)

E |, 2(2-c)aEo, { In(r /b) ﬂ
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a)2b2 3-m v 3-m 3m |
—('go_m)R[(l—v)(l—R) JR =R +R™
_ 2R R i p e
andTrr—Tee—mE@ =y (1_C)R” +(1-R))R 0 m#3 (27)
° +(2—C)(R)—Rj
InR, R

where R, =a/band R=r /b in non dimensional form.

Initial Yielding: The maximum valuél'r, —ng| occurs at the radiuR = R (say), which depends

upon the value afm andC. For example if we tak€ = 0, 0.25, 0.5 yielding starts at the internal
surface form = -1.9, -1.6, -1.2 respectively and for values -5.1, -4.9, -3.9 yielding starts at

the mid surface. For the values=-3.1x 10, -2.9x10 , -1.6x 10;|T,, —T,,| become neither
maximum nor minimum values at the external surfRce 1 i.e. yielding does not occurs at the
external surface. For yieldingRt= R , eq. (27) becomes:

A

T ~Toglr, =
" +0’E60[ﬁ— 2R, Rf_l"'(l_Ro)R;_l"'(Z_C)(R)_Riﬂ

=Y(yidding say)

Rv (1-C) InR, R
whereY is the yielding stress.
The angular speed necessary for initial yielding is given by:

2 = e ]

3—-m .
whereS = ( )R and @ = Q /i :
|:(1_V)(1_ R)S—m) Rf _ R13—m + RQ3—m:| b IOO
We introduce the following non-dimensional components:

R=r/b,R=alb, 0 =T /Y ,0,=T,I/Y,U=u/b,0,=aEO,/Y,Q%=pwb?/Y
andH =Y/E.

Elastic-plastic transitional stresses, angular speed and aigpat from equations (24), (25),
(28) and (26) in non-dimensional form become:

QiZV (1_ R)S_m) RV:L}‘FOl(Z—C)l:(l_ RO)(]'_C) Rl/—l+ ln R _ 2F\)O Rv—1:| (29)

7o~ (3-m) (2-C)InR, nR, (2-C)
o [—Rr\R _ R _

g, = o [(1 R )R ]+—Ol(2 C)|InR+ R ! + 29 {&(1— RV)} (30)
R(3—m) R+ Rs—m InR, +(1_RO)RV_1 v | R
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2 2 v v
TR)_ (1_RCO:) R +(1_ RO) R
Q7 =||RS-|0,S (2-¢) (31)
* InR, (R-R)
Q—?[R?fm - R03-m]+ @1(2_0)(R_ Ro)
R(3-m) RINR
andU =R-R [1-2vH (32)
N 2(2-C)o,| InR R
(1-c) [IhR, R
Fully Plastic State: Stresses and
displacement at the inner boundary /
satisfied the inequality "\ Elastic

at the inner radius. For fully-plastic
state C - Oi.e.v=1/2. Two plastic
zones for fully plastic state were
considered as shown in Fig. 2. There
are two plastic zones:

(i) Inner-plastic zone:

T, >T,>T,(=0);asr<m,
or g, >0,>0,=0);R, <R<R.

(i) Outer-plastic zone:

T >T,>T,(=0),,<r<b
or g,>0, >0,(=0) R <Rs<1.
Wherer, is the radius of inner plastic
zone.

r
T, >T,>T,(=0)and yielding occurs /
/

\\\ zonc

£
N

Inner plastic zone
T >T,>T (=0)

:_Eiﬁphﬂcaﬁg]
| T>T.>T.(=0) :
! r=rsh g

Figure 2. Two different plastic zones around the disc
for fully plastic state.

ForInner-plastic zone, eq. (27) becomes:

) Pl 0’ (1-R°™)  gE@, )
e e AR

and the angular speed required for fully plastic state is given by:

. P J[2(3-m) R [ 2(3-”')} ~3R,+
Q. =—5 R o, (=R (4R~ 3R, +1]

Q .
wherew,, = — Y and aES)O =0,.
b\ p, Y

Using equation (33) in egs. (29), (30), (32) by takihig- Oi.e.v =1/2, we get the stresses and
displacement for theaner plastic zone as:

_(@0-RT)), [ a-R) . nR_R
”[m} Zel{z@nao R Jﬁ} (34)

=Y"(say)

(33)
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|9 [-RTWR| 20 [ L R AR)] SR
o—,_[R(B_m)[_RSerRO}m} InR([l R T } {E(l f)ﬂ (35)

—R- - Q?D 3-m_ o 3m Zel(R_ Ro) InR R
andeD_R R\/l H{F\’(B——rn)[R RO ]+W+4@1{ﬁ E}} (36)

For outer plastic zone eq. (27) becomes:

_ poafﬂbz (1_ Roa_m)
|Trr T9'9|R=1 - 2(3_ m)

and the and the required angular speed is given by:

= o 2R | re ey

=Y"(say)

2
+a'E@{R0+1+ﬁ(RO—1)}

2

(37)

\1 Ros "|
Q

Y and aED?
Ao Y
Using equation (37) in egs. (29), (30), (32) by takihg- Oi.e.v =1/ 2, one get the stresses and
displacement for theuter plastic zone as:

0-9,

where W=

m_ Q?Dﬂ(l_%}m) (1-R) . InR R,

% 7| 2(3-m)JR }Zg{zflna) nR, \/_} (38)

o 9 [RONR], 20[ 0 R 0R) ][Ry

g, _R(B_m)[—R3m+F§ InRO|:In R+—*2 R -1+ \/ﬁ :|+@1|:E(1 \/ﬁ):| (39)
-D_ _ Qi]ﬂ 3-m _ o 3-m 2@1(R_Ro) InR_F{)

andU . =R R\/l H{W[R R }+W+4e{ﬁ E}} (40)

RESULTSAND DISCUSSION

For calculating the stresses, angular speed and displacement based on the above analysis,
the following values have been takéh= 0.00, 0.25, 0.5 and 0.78, =70’F and a = 5.0 x

10 degF * for Methyl Methacrylate [21]@, =0,0.0175 and 0.07 respectively.

In Tab. 1, angular speed required for initial yieldi@jand fully-plastic stat®? in a
rotating disc having variable density for different valuesnp€C and ©, has been given. It can
be seen from the Tab. 1 that yielding occurs at any raBigsR or at the internal surface

R =0.5 or at the mid surfac& =0.7of the disc depending upon the valuestoéndC. For

example yielding occurs at the internal surface of the disterod compressible materiaC (=
0.25) at a angular speed 2.82511676nfior -1.6 whereas yielding occurs at the middle surface
at the angular speed 7.72178021rfor -3. It is also seen from tab.1 that rotating disc having
variable density and made of incompressible material yields laglzer angular speed as
compare to disc made of compressible material. Compressible mateotdtofg disc with shaft
having variable density required higher percentage increasedaargpded to become fully-
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plastic as compare to incompressible material. In Tab. 2, angpéd required for initial
yielding Q?and fully-plastic stateQ? of a rotating disc for different values of=0, 2.9 and
©, =0.00,0.0175,0.0 has been given. It is seen that with the effect of temperatia¢ing disc

required higher percentage angular speed to become fully plaséonrsth increase temperature
for m=2.9 but reverse in case=0.

Table 1. Angular speed for initial yieldir@i2 and fully plastic staté)f

of a rotating disc for different values of m, C a@¢ .

Temperature | Compressibility | Density | Yielding | Rotating Dhsc having Angular Angular Percentage mncrease 1n
varmtion | Occurs | Vanable density speed speed Angular speed
al required for | required for | %
p=plribf" initial fully -plastic
' vielding state
a C m R r=a r=b ¥ in vy {ﬁ—]hxim
0 0 -19 p=p(0267943) | p=p, | 358489172 | 10.13960499 | 68.1792831 %
00175 o -1.9 o= [0267943) A= 337831007 | 9617444093 | 68.7252503 %
007 0 19 p=p(0267943) | = | 375856513 | 8050961414 | 708371241 %
a 025 -l A= 0325877 | p=p, | ZB2511676 | 9.595673992 | B4.2975414 %
00175 | 0.25 -Lo p=p,(0329877) | A= | 205562129 | 9101524002 | 85,128801 %
- p=g,
047 0.25 Lo p=p|0329877) 214713488 | 7.619074033 | B8.3742052 %
: -5
L] |05 -12 = p=p0435275) | #=pg 20985369 BREIIFTIZE | 105744246 %
00175 0.5 a2 p=p,[0435275) g=pg, | 196565377 | BA2SRT0472 | 107039818 %%
) p=p, | 15069444 | 053470485 | 112165436 %
007 0.5 -1.2 p= [{I.-J-JSI?S} '
0 0 a5 p=p(0286974) | p=p, | 976022621 | 13.14523571 | 16.0524324 %
| p=p, | 703323933 [ 043746631 | 167817277 %
007 0 A5 p=p,(0286974)
03=R=1
0 0.25 -3 o= 0343} p=p | TT2ITR02] [ 1219047619 | 256468535 %
Rl P o= (0343) p=p | 731193343 | 1156270125 | 257516053 %
= GOBI39309 | 9.6TIITR422 | 26.1497655 %
0.07 0.25 3 =, (0343) = o
0 05 25 B=0T oo (0400063) | p=p, | SE5H24T7 | 1124856042 | 380137643 %
= 402443793 | E.9314846] JBHTIONNS T
007 05 25 p=p.(0400063) | A
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Table 2. Angular speed required for initial yieldiﬁlj and fully plastic staté)?
of a rotating disc fom=0.00, 2.9 and®, =0.00,0.0175,0.0 .

25

S

Stresses for fully plastic state

0.5

Temperature | Density | Yielding Rotating Disc having Angular speed Angular speed Percentage increase in
variation | Oceurs at Variable density required for initial | required for fully Angular speed
0, yielding plastic state
pzpll(r’lrb)- 0e
m R r=a r=h 0’ o [M"]“m“
0 0 p=p, p=p 242436611 48487322 41421356 %
0 R =03 - . 4.11524145 4560321 537211587 %
1175 ' F=F =F
osska | 0017 0 " PR 33004371 37310872 490336764 %
=4 =4, -
0.07
0 29 a=p,(2303151) | p=p, [_:}5:3&{]3 19 2986545235 68.17928 %
0.0175 :g R=01 | 23m1s1) | P=A g:‘:‘g‘l‘g;i 3.024246132 74.33508 %
007 p=p(2303151) | A=A 3.137348825 96.50145 %

In Figs. 3(a)-3(c), curves have been drawn between stresses argdrediR = r/b for
fully plastic state at different values of= 0, 2.9, 3.5. It is seen that from figs. 3(a) and 3(c),
radial stresses is maximum at the internal surface whdoem fig. 3(b), the circumferential
stresses is maximum at the outer surface of the rotating\Wisic the introduction of thermal
effect it decreases the value of radial and circumfereritedses at inner and outer surface for
fully-plastic state.

0.2

m=10

04 0B

03

=075

1

Figure 3(a). Stresses at fully-plastic state for different watfieemperature and=0.00

with respect to radii ratio R=r/b.
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Stresses for fully plastic state
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15
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m=29
| Y
! ey
), 1222250 i ple e | == == =
1!
_____ p it e L
o B =0
r
6 = 00175 . il
1" Jf".l dd-"H o175
L] i

o o7

a”
& = 04175

40178

‘|-1_ noT

02 04 0& 0.8 1 12

Figure 3(b). Stresses at fully-plastic state for different wabigemperature ami=2.9
with respect to radii ratio R=r/b.
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w \ # [

b? &, = 00175 . ‘,'l
" \ el -+
“ * i Fiae =i = (07
) ]
- \ o

02 0.4 05 08 1 12

Rz=rfh

Figure 3(c). Stresses at fully-plastic state for different vabtfiesmperature ana=3.5
with respect to radii ratio R=r/b.
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CONCLUSION

It has been seen that compressible material required higleempege increased angular
speed to become fully-plastic as compare to rotating disc madecarhpressible material.
Compressible material of rotating disc with shaft having varial#dasity required higher
percentage increased angular speed to become fully-plasttownagare to incompressible
material. Circumferential stresses are maximal at ther @tirface of the rotating disc. With
effect of thermal load value of radial and circumferentialssge at inner and outer surface for
fully-plastic state must be decrease.
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Nomenclature

a,b - Inner and outer radii of the disc [m],
7 - Angular velocity of rotation,§™]

u,v,w - Displacement components|

0 - Density of material, kgm™]

C - Compressibility, [ - ]

T,.§ -Stress kgm™s™] and Strain rate tensor
Y - Yield stress, kgm™s™]

Greek letters

R=r/b;R, =a/b Radii ratio, [-]
o, - Radial stress componert (/Y), [-]
o, - Circumferential stress componeiit(Y ), [-]

© - Temperature,’F ]

A B,d - Constants of integration, [ - ]
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