Kragujevac J. Sci36 (2014) 111-120 UDC 004.651:57.087:574.583

PREDICTIVE MODELSFOR MONITORING
AND ANALYSISOF THE TOTAL ZOOPLANKTON

Milica Obradovi¢™*, Ivana Radojevi¢!, Aleksandar Ostoji¢* and Nenad Stefanovié?

Ynstitute of Biology and Ecolog§institute of Mathematics and Informatics, FaculfySaience,
University of Kragujevac, Radoja Domanéwil2, 34000 Kragujevac, Republic of Serbia.
*Corresponding authpe-mail: milica-obradovic@live.com

(Received April 1, 2014)

ABSTRACT. In recent years, modeling and prediction of totalankton abundance have

beenperformed by various tools and techniques, amonighwtiata mining tools have been

less frequent. The purpose of this paper is toraatically determine thdependency degree

and the influence of physical, chemical and bialafjparameters on the total zooplankton
abundance, througtiesign of the specific data mining models. For thigpose, the analysis

of key influencers was used. The analysis is basethe data obtained from the SeLaR
information system — specifically, the data frone ttwwo reservoirs (Gruza and Gro3nica)
with different morphometric characteristics andptric state. The data is transformed into
optimal structure for data analysis, upon whichtadaining model based on the Naive
Bayes algorithm is constructed. The results of dhalysis imply that in both reservoirs,

parameters of groups and species of zooplanktoe Ha greatest influence on the total
zooplankton abundance. If these inputs (group amoblankton species) are left out,

differences in the impact of physical, chemical attier biological parameters in dependen-
ces of reservoirs can be noted. In the Gro3nioarves, analysis showed that the temporal
dimension (months), nitrates, water temperaturepital oxygen demand, chlorophyll and
chlorides, had the key influence with strong remtimpact. In the Gruza reservoir, key
influence parameters for total zooplankton aretiapdimension (location), water tempera-

ture and physiological groups of bacteria. The ltesshow that the presented data mining
model is usable on any kind of aquatic ecosystethcam also serve for the detection of
inputs which could be the basis for the future gsialand modeling.

Keywords: abundance of total zooplankton; predictive mokey; influencers.

INTRODUCTION

The freshwater zooplankton include representatir@a the Protozoa, the Rotifera, and
the Crustacea, as well as some less common buivgtéspread and often important members
from such groups as the Insecta. Zooplankton ctneisherbivorous, carnivorous, or perhaps
most frequently, omnivorous animals. They make wme ¢o several trophic levels in lake
ecosystems (KENS, 2010; THERSand RssIK, 2009):

* Their role as herbivores has been particularly steitlied (effects of zooplankton grazing
on reducing algal abundance);
» They play important role in ‘grazing chain’ and thecrobial loop’;



112

» Zooplankton actively participates in nutrient cycknd simultaneously stimulates algae
and microbes by nutrient remineralization, whiletliie same time zooplankton reduces
algal and microbial populations by consuming thereatly; and

* Many fish species feed on zooplankton.

In recent years, in aquatic ecosystems, data mimreghods have been usddr
monitoring different communities more frequentlyhely are also known as knowledge-
discovery in databases that implies automatic arimgtomatic research and analysis of great
amount of data, in order to discover patterns atations hidden among the dataafHet al,
2010).

The Gruza and the GroSnica reservoirs are imporsanrces of water supply for
Kragujevac city and itenvironment. In the previous period, these resesweere thesubjects
of various hydro-biological researches, which idelwzooplankton{omi¢c and GToJt 2005;
OsToJr 2000, 2008; GToJc et al, 2005, 2007).

Analysis, modeling and prediction of the total zlamfxton abundance were performed by
various statistical tools, among which data miniogls were less frequent. Artificial neural
networks were used for modeling zooplankton dengryups in the Coquerio Lake in the
northern Pantanal of Brazil ANTIN-CRUZ et al, 2010). Artificial neural networks were used in
modeling and prediction of zooplankton dynamics {RNAGEL et al, 1998) and for prediction
of surface zooplankton biomass ¢&db-WALKER et al, 2001).Vertical behavior of zooplankton
was modeled as a stimuli-response process whelaghes from the environment (light, food,
and predators) are used as decision parametewse(Bnd RAIRSI, 2001). Authors used simple
neural networks to control behavior and optimizatay genetic algorithms.

The aim of this paper is to automatically determdependency degree and the influence
of physicochemical and biological parameters omdbuace and dynamics of total zooplankton,
throughdesign of specific data mining models. The analigsisased on the data obtained from
the information system of the two reservoirs wiiffedent morphometric characteristics and
trophic state.

MATERIALSAND METHODS

Study area and water quality data

The Gruza and the GroSnica reservoirs are the mgipliers of fresh water for residents
of Kragujevac city (Figure 1). These reservoirsénaifferent morphometric and trophic state
parameters (8roJc et al, 2007).

The data set used in this study was generated ghroonitoring water quality of the
Gruza and the GroSnica reservoirs. The data sktdes the data of the laboratory for water
quality inspection of the public service companyater supply and sewerage in Kragujevac.
Monthly sampling was being carried out during theo tyears period (2009-2011). Three
permanent sampling sites were selected for quabtadnd quantitative sampling for the
GroSnica Reservoir and five sampling sites for @raza Reservoir (Figure 1). Samples were
taken at each 5 m of depth. Qualitative samplgslarfkton were taken by plankton net (mesh
size 25um), while quantitative samples were collected Hitet-Ruttner hydrobiological bottle
and then filtered through the plankton net. Samplese preserved with 4% Formalin at the
collection site. Analyses were performed by usitagn@ard methods (APHA, 1998).

Physicochemical, microbiological and other paramsetesed for modeling are the same
for both reservoirs. They were taken from the infation system of Serbian lakes and
reservoirs (SeLaR). Database overview and it siracare described in detail in the papers
RADOJEVIC et al.(2008) and $EFANOVIC et al (2012).

Data set for the Gruza Reservoir includes 167 sagplof the total zooplankton
(ind/dnT). The input parameters that we'een using for the analysis of key influencers on
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modeling and prediction of the total zooplanktoe: anonth (temporal dimension), location and
depth (spatial dimension), water temperature (°t@hidity (° Sl scale), pH, dissolved oxygen
(mg/cnt), manganese (Mn) (mg/ém iron (Fe) (mg/cr), chlorides (mg/crd), nitrates
(mgl/cnt), nitrites (mg/crm), ammonia (mg/cr), total phosphates (mg/ém chlorophyll-a
(mg/n?), chemical oxygen demand (COD) (mgAnb-day biological oxygen demand (BOD)
(mg/cnT), index of phosphatase activity (IPA)njol/s/dnt), total bacteria (bact/c) hetero-
trophic bacteria (psihrophile and mesophile) (afif); total coliforms (MPN/100cr), Clostri-
dium perfringens(N°/dn?), nitrogen fixing bacteria (cfu/cty) cellulolytic bacteria (cfu/c),
proteolytic bacteria (cfu/ch), amilolityc bacteria (cfu/cf) and phosphorus minerilizing bacteria
(cfu/cn?). In the analysis we have been using zooplanktonmy- Protozoa, Rotifera, Cladocera,
Copepoda (ind/df), and data of number species that have been fdmsmina coregoni, B.
longirostris cornuta, B. longirostris similis, Bramnus angularis, B. diversicornis diversicornis,
B. diversicornis homoceros, Carchesium polypinumgplihia cucullata, Diaphanosoma
brachyurum, Eudiaptomus gracilis, Filinia longiset&Kellicottia longispina, Keratella
cochlearis, K. cochlearis hispida, K. cochlearis arecantha, K. cochlearis micracantha, K.
cochlearis tecta, K. quadrata, K. quadrata frenzélecane closterocerca, Leptodora kindti,
Polyarthra dolichoptera, P. major, Synchaega, Tintinnidium fluviatile, Tintinnopsis lacustris,
Trichocerca similigind/dnt).
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Figure 1.The Gruza Reservoir and the GroSnica Reservoir seithpling points
(1 — Dam, 2 — Center, 3 — Bridge, 4 — The moutthefBor& River, 5 — The mouth of the GruzZa River).

Data set for the GrosSnica reservoir includes 12@psags of the total zooplankton
(ind/dn), with parameters: month (temporal dimension)atimn and depth (spatial dimension),
water temperature (° C), turbidity (° Sl scale),, missolved oxygen (mg/chh manganese (Mn)
(mgl/cn?), iron (Fe) (mg/cr), chlorides (mg/crf), electrical conductivity ((S/cm), nitrates
(mgl/cnT), nitrites (mg/crm), ammonia (mg/cr), total phosphates (mg/ém chlorophyll-a
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(mg/nt), total chlorophyll (mg/drf), chemical oxygen demand (COD) (mgfymb5-day
biological oxygen demand (BOD) (mg/&mn index of phosphatase activity (IPA)ngol/s/dn?),
total bacteria (bact/cfjy heterotrophic bacteria (psihrophile and mese@phi(cfu/cnd),
facultative oligotrophic bacteria (cfu/émand phosphorus minerilizing bacteria (cfufgnThe
data set includes parameters: Protozoa, Rotifdsalo€era, Copepoda (ind/dmas well as
number of detected zooplankton specisichionus diversicornis diversicorniB. diversicornis
homoceros Carchesium polypinum Daphnia cucullata Diaphanosoma brachyurum
Eudiaptomus gracilis Filinia longiseta Gastropus stylifer, Kellicottia longispinaKeratella
cochlearis K. cochlearis hispidaK. cochlearis macracanthe. cochlearis micracanthak.
cochlearis tectaK. quadrata Lecane closterocerc¢d.eptodora kindti Polyarthra dolichoptera
P. vulgaris Synchaetasp., Tintinnidium fluviatile Tintinnopsis lacustrisTrichocerca similis

(ind/dn).

Data analysis, method and models

During the design and development, we used a mhéised approach process for data
mining as shown in Figure 2 SARER, 2000).

Business v Data
Understanding B Understanding
Data
Preparation
Deployment === m f— Modeling

Figure 2. Phases of the CRISP-DM reference model.

The initial phase focuses on understanding thectibbgs and requirements, then con-
verting this knowledge into a data mining problegtfiition and a preliminary plan designed to
achieve the objectives. The data understandingepinakides: data collection, data quality ana-
lysis and discovering first insights into the daad/or detection ahteresting subsets to form
hypotheses regarding hidden information. Data pegfwa phase includes tasks such as table,
record, and attribute selection, as well as transftion and cleaning data for modeling tools.
During the modeling phase, various modeling teamesgare selected and applied, and their
parameters are calibrated to optimal values. Ajtelding the model, it is important to thoro-
ughly evaluate it and review the steps executedréate it, to be certain the model properly
achieves the preset objectives. Finally, the kndg#gegained needs to be organized and presen-
ted in a way that the end-user can consume andibene

Data analysis has the aim to determine hidden @&nawin correlation (dependence)
between the attributes of entities, common chariatites of the entities’ attributes and prediction
of their behavior in the future. It enables makawyclusions and taking appropriate measures in
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accordance with the objectives set. In the databalteelevant changes on the entities are
registered by date and location which providesyamaby temporal and spatial dimensions.

The data analysis is accomplished by using Anal$&s/ices component of the SQL
Server 2008 (ANG and MACLENNAN, 2008). The data from relational databases amra&et,
transformed and loaded (ETL) into appropriate eateechouse through the special ETL package
that is designed and executed via SQL Server lategr Services component. This means that
the appropriate data structures, which have besrsformed from a database, are available to
the user without any additional engagement. An @ggr with data warehouse provides
integrated and optimized data source for advannafjtcs such as data mining.

Data mining offers a variety of options for datalgsis (HART, 2008). Typical analysis
has the following steps: modeling, realization leé model and obtaining the report. Modeling
involves determining the characteristics includedhie model, which depends on the objective
of the analysis. Prior to the algorithexecution it is necessary to check and clean tkes atad
determine the parameters of algorithms that hawen bepplied. Realization of the model
represents execution of the appropriate algorithmtiee model. In this case, Naive Bayes
algorithm was used. For realization of appointedsaihe analysis of key influencers was used.

The analysis of key influencers

The analysis of key influencers is used to show kolumn values in a data set might
determine the values of a specified target colulnenables selecting the variable (column,
parameter) which contains the desired outcome rgetavalue. Samples within a dataset are
analyzed in order to determine which factors hdaestrongest influence on the outcome. The
designed data mining model enable automated asallysdugh training and testing steps, as
well as automatic discovery of hidden relationshis example, if we have the total number of
zooplankton in the column with the values from thast year, we can analyze the table to
determine the parameters that have the key impgdetre is a choice of several possible
outcomes and their comparison, which helps us iterdegning the potential decision
parameters.

The results of key influencers analysis are the data tables that report on the factors
associated with each outcome and graphically staiv probabilistic relations. Tables can be
filtered out from various factors and outcomes,tlsat the results are researched at several
levels. If the target column contains continual eramvalues, the model automatically allots the
numeric values into the groups. These groups repteslusters of objects with similar
characteristics. However, numeric values are nsiriduted in typical limits. The analysis of
key influencers comprises the following steps:

1. Creating the DM structure (data source) that stkegsnformation about the data;

2. Creating a model in the OLAP (On-Line AnalyticaloPessing) server by using
Naive Bayes algorithm; and

3. Issue a prediction query for each pair of attributieat you specify to identify the
factors that strongly distinguish the two targétiladites.

The tool sets all parameters automatically afterdoating an analysis of the data to
determine the optimum settings.

RESULTSAND DISCUSSION

The tool automatically adjusts all the parametdtsr erforming the data analysis to
determine optimum settingShe created reports include four columns with ti®Wwing infor-
mation: differences factor, assessment of the villaeis strongly associated with the objective,
favoring of the outcome or target value predictgdhe factor and the relative impact which
points to the association strengthafHet al.,, 2010).
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In both reservoirs, values of total zooplanktonadatre classified into five classes (by
using Decision Trees algorithm). In the Gro$nicad®eoir: | class: less than 854 ind/of
zooplankton; Il class: 854-1483 ind/dnll class: 1483 — 2555 ind/dinlV class: 2555 — 4403
ind/dn and V class: more than 5803 indfirm the GruZa Reservoir: | class: less than 1116
ind/dn?; Il class: 1116 — 2385 ind/dimlll class: 2385 — 4386 ind/dinlV class: 4386 — 5803
ind/dn?® and V class: more than 5803 ind&im

Based on the results of the analysis we can coadhdt if we allow selection of all
available parameters collected in the database, @halysis with most influence will connect
parameters of groups (Protozoa, Rotifera, Clado€¢aspepoda) and species of zooplankton with
total zooplankton. In the GroSnica Reservoir (Taldleand 2), analysis showed that the temporal
dimension (months), water temperature, chemicalgerydemand, chlorophyll, nitrates and
chlorides, also had the key influence with stroelgtive impact, while in the Gruza Reservoir
(Table 4) physiological groups of bacteria werduential (amilolityc and proteolytic).

Table 1. Key Influencers Report and their impaatrate values of total zooplankton (indRim
with zooplankton groups and species for the Gr@SRieservoir.

Parameter (unit measure) Value Favors Relative | mpact
Rotifera (ind/dn) <733 <854 100
Keratella cochlearigind/dnT) <72 < 854 81
Cladocera (ind/dr) <40 <854 71
Keratella cochlearis micracanth@nd/dnT) 7-23 1483 — 2555 88
Keratella cochlearis hispidénd/dnt) 337 - 435 1483 — 2555 88
Month 7 1483 — 2555 63
Chlorides (mg/cr) 56-6.3 1483 — 2555 53
Trichocerca similigind/dn?) <35 1483 — 2555 52
Copepoda (ind/df) 345 - 689 1483 — 2555 50
Copepoda (ind/di 188-345 2555 — 4403 100
Keratella cochlearis micracanth@nd/dnt) >= 23 2555 — 4403 90
Leptodora kindtiind/dnT) 1 2555 — 4403 86
Carchesium polypinurgind/dnt) 165 2555 — 4403 74
Lecane closterocerc@nd/dnt) 2 2555 — 4403 74
Gastropus stylifeind/dnT) 48 - 118 2555 — 4403 69
Eudiaptomus graciligind/dnt) 11 -39 2555 — 4403 62
Keratella cochlearis hispidénd/dnt) >= 435 2555 — 4403 55
Protozoa (ind/dr) >= 859 2555 — 4403 55
Daphnia cucullatgind/dnt) 298 - 409 2555 - 4403 55
Gastropus stylifeind/dnT) >= 199 2555 — 4403 55
Protozoa (ind/dr) 542 - 859 2555 — 4403 50
Tintinnopsis lacustrigind/dnt) 72 - 388 >= 4403 100
Keratella cochlearis tectéind/dnt) 32-68 >= 4403 80
Keratella cochlearigind/dnt) >= 554 >= 4403 55
Copepoda (ind/df 345 - 689 >= 4403 51
Polyarthra vulgaris(ind/dnr) 9 >= 4403 50
Leptodora kindtiind/dnt) 3 >= 4403 50

The analysis also classifies key influencers inesavclasses. In the tables (1 and 2) it

can be seen that the same influential parametendfan a number of different classes, can have
different relative impact on total zooplankton. Fexample, in the GroSnica Reservoir, group
Copepoda in the range of 345 — 689 ind/dsminfluential parameter on class Il of total
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zooplankton (1483 — 2555 ind/dywith relative impact 50. At the same time, theneagroup in
the range of 188 — 345 ind/dns influential parameter on class IV of total ztoykton (2555 —
4403 ind/dm) with relative impact 100. Since, in this case,abserve influential parameters on
total zooplankton, we did not specify the classaition of key influencers.

In the GroSnica Reservoir, we can expect that wittreasingabundance of group
Rotifera, especially species likgeratela spp., abundance of total zooplankton will have a
tendency to grow. When the abundance of total zodgbn is high, we expect high values of
number of specimens within group Protozoa (espgciahtinnopsis lacustris Low abundance
of total zooplankton will most certainly point odbw abundance of group Copepoda.
Furthermore, similar could be seen in the groupd@dara (specieBosmina longirostrig but
with significantly lower relative impact. Group Reta, especiallyKeratella spp., can predict
the presence of average classes (ll, Ill, 1V) dataooplankton, with high values of relative
impact, when abundance I§ératellaspecies are at maximum level (Table 1).

Table 2. Key Influencers Report and their impaatrahe values of total zooplankton (indfjm
without zooplankton groups and species for the @BcasReservoir.

Parameter (unit measure) Value Favors Relative | mpact
Month 6 < 854 100
Chemical oxygen demand (mg/&m <84 <854 96
Month 3 < 854 85
Nitrates (mg/cr) 0.9 <854 83
Water temperature (°C) <8 < 854 77
Chlorophyll-a (mg/m) 3.22-4.39 < 854 65
Conductivity 1S/cm) >= 458 < 854 62
Total chlorophyll (mg/dr) 0.13-0.17 <854 57
Month 2 < 854 52
Month 5 <854 52
Month 7 854 - 1483 100
Total chlorophyll (mg/dr) <0.07 854 - 1483 59
Chemical oxygen demand (mg/@m  10.3-12.3 854 - 1483 49
Month 7 1483 - 2555 100
Chlorides (mg/crd) 5.6- 6.3 1483 - 2555 85
Nitrates (mg/cr) 0-0.2 1483 - 2555 67
Dissolved oxygen (mg/cf 8-10 1483 - 2555 50
Month 7 2555 - 4403 86
Location 5 2555 - 4403 56
Month 8 >= 4403 100
Water temperature (° C) >=21 >= 4403 97

High values of Protozoa abundance do not necegsadicate high abundance of total
zooplankton,but the averagelf the abundance of the speci€archesium polypinunhas
extreme high values, it necessarily points to laghndance of total zooplankton (Table 3).

It appears that high abundance of group Protozoainthcate, with great significance,
the average abundance of total zooplankton folGh&a Reservoir (Table 3), while its species
C. polypinumin extreme abundance point to high abundancetaf mmoplankton. Connection
between extremely high values of physiological grof bacteria and extremely high values of
total zooplankton is shown by the results of thalysis (Table 4).
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Table 3. Key Influencers Report and their impaatrate values of total zooplankton (ind&im
with zooplankton groups and species for the GruzseR/oir.

Relative
Parameter (unit measure) Value Favors I mpact
Copepoda (ind/di <234 <1116 100
Polyarthra dolichoptergind/dnt) <132 <1116 75
Bosmina longirostris similignd/dnt) <16 <1116 57
Cladocera (ind/dr) <204 <1116 51
Tintinnopsis lacustrigind/dnt) 72 - 156 1116 - 2385 95
Rotifera (ind/dr) 375 - 1230 1116 - 2385 90
Copepoda (ind/di 234 - 575 1116 - 2385 53
Rotifera (ind/dr) >= 1230 2385 - 4386 100
Keratella cochlearis tectéind/dnt) >= 384 2385 - 4386 72
Protozoa (ind/dr) >= 492 2385 - 4386 64
Copepoda (ind/di 234 - 575 2385 - 4386 58
Cladocera (ind/dr) 899 - 1513 2385 - 4386 53
Bosmina longirostris cornuténd/dnt) 601 - 1295 2385 - 4386 53
Brachionus angularigind/dnt) >= 03 4386 - 5803 100
Keratella cochlearis tecténd/dnt) >= 384 4386 - 5803 81
Rotifera (ind/dr) >= 1230 4386 - 5803 77
Bosmina longirostris cornuténd/dnt) 65 - 406 4386 - 5803 58
Lecane closterocercgnd/dnt) 6 4386 - 5803 56
Carchesium polypinurfind/dnt) >= 386 >= 5803 100
Brachionus diversicornis diversicornfmd/dnt) 342 - 1061 >= 5803 89
Diaphanosoma brachyururfind/dnt) 32-84 >= 5803 67
Leptodora kindt{ind/dnT) 18 >= 5803 67
Brachionus diversicornis homocertind/dnT) >=123 >= 5803 67
Leptodora kindt{ind/dnT) 24 >= 5803 67
Amilolityc bacteria (cfu/cr) >= 4970 >= 5803 53
Diaphanosoma brachyurugind/dnt) >= 84 >= 5803 53
Proteolytic bacterigcfu/cnt) >= 4144 >= 5803 53

Table 4. Key Influencers Report and their impaatraie values of total zooplankton (ind&im
without zooplankton groups and species for the &RZservoir.

Relative
Parameter (unit measure) Value Favors I mpact
Location Dam <1116 100
Water temperature (° C) 18 — 22 1116 — 2385 100
Water temperature (° C) >=22 2385 — 4386 100
Amilolityc bacteria (cfu/cr) 3448 - 4970 4386 — 5803 100
Amilolityc bacteria (cfu/cr) 502 - 1377 4386 — 5803 71
Proteolytic bacterigcfu/cnt) 2274 - 4144 4386 — 5803 65
Proteolytic bacterigcfu/cnt) >= 4144 >= 5803 100
Amilolityc bacteria (cfu/cr) >= 4970 >= 5803 100
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Analysis of the key influencers gives us a posybilo perceive relative influence of
physical, chemical and other biological parametéfsthe inputs are without group and
zooplankton species parameters (Tables 2 and 4).

In the GroSnica Reservoir analysis may indicatehvgreat significance, that lower
abundance of total zooplankton could be expectetthdyummer months. In the warmest period
of the year the abundance of total zooplankton fagher. Also, very reliable predicting
parameter folow abundance of total zooplankton, is concentratid nitrates where high
concentrations cause lower abundance of total ao&pdn, and vice versa. In the Gruza
Reservoir key influencer parameters for total zaogton are: spatial dimension (location),
water temperature and physiological groups of WecteThe lowest abundance of total
zooplankton was sampled at the dam location, buh wicrease of water temperature the
tendency of increasing its abundance was identifidxdindance of total zooplankton is followed
by the abundance for physiological groups of ba&t@mylolytics and proteolytics) (Table 4).

By observing recent researches in the field of ringeand prediction of total
zooplankton and the groups of zooplankton, it cambted that there is a need for necessary
choice of selecting inputs in advance, for the najstised models ([ECKNAGEL et al, 1998;
EIANE and RAIRSI, 2001; WOOD-WALKER et al 2001; FANTIN-CRUZ et al, 2010). For modeling
abundance of zooplankton groups (Rotifera, Cladgc€opepoda) in lakes, some authors use
chlorophyll-a, dissolved oxygen, pH, solar radiafiovater temperature and secchi depth
(RECKNAGEL et al, 1998). For the same purpose, others use dissaxggen, pH, water
temperature, water level, water transparency, ditghielectrical conductivity, alkalinity, total
nitrogen, total phosphorus, chlorophyll-a in onedelpwhile researches from previous periods,
considering outputs, are additionally used in otmeodel (FANTIN-CRUz et al, 2010).
Zooplankton biomass in the Atlantic Ocean has bewdeled with two different methods:
multiple linear regression and neural networksutaghat were taken had been the abundance
and size of zooplankton, by using optical planktoanter (WboD-WALKER et al. 2001).

The results of authors mentioned above, like osultgindicate that for modeling and
predictions of total zooplankton, there is a nemdsklecting inputs in advan¢eg. previously
determined abundance of zooplankton or some otle@mpeter with regard to zooplankton, for
example biomass).

It can be noted clearly that a connection of zaugtlan groups/species with total
zooplankton exists. In the analysis of key influensg there is a possibility of a singly choice of
inputs. It also gives an option of automatic sebecbf key influencers from the whole database
which could be used as a tool for prediction. Thesgnitions can also serve as the basis for
new types of modeling that are based on selecfitimeomost influential parameters.

CONCLUSION

The resulting models, obtained by analysis of kefjuéncers, showed that in both
reservoirs parameters of groups and species of zooplanktoa e greatest influence on the
total zooplankton abundance. We noted differencela impact of physical, chemical and other
biological parameters which depends on reservéiey. influencers in the GroSnica Reservoir
are: the temporal dimension (months), nitrates.ew&mperature, chemical oxygen demand,
chlorophyll and chlorides. In the Gruza Reservéiey influencers are: spatial dimension
(location), water temperature and physiologicalug of bacteria. The results show that the
presented data mining model is usable on any kirajoatic ecosystem and also can serve for
detection of inputs which could be the basis ferfiture analysis and modeling.
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