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ABSTRACT. An oscillatory MHD convective flow of an incomprdse, viscoelastic
(Walter's liquid model-B) and electrically conduwi fluid through porous medium filled in
a vertical porous channel is analyzed. The two pemates of the channel are subjected to a
constant injection and suction velocity as shownFig.1. A magnetic field of uniform
strength is applied perpendicular to the platethefchannel. The temperature of one of the
plates varies periodically and the temperatureetdifiice between the two plates is high
enough to induce the heat due to radiation. A ddsem solution of the purely oscillatory
flow is obtained. The velocity, temperature andskia-friction in terms of its amplitude and
phase angle have been shown graphically to obse#mweeffects of viscoelasticity,
injection/suction parametdr, Grashof number Gr, Hartmann number M, Hall patem#,

the pressure A, Prandtl number Pr, Radiation paemieand the frequency of oscillatian

Key words: Injection/suction, viscoelastic (Walter's liquid ohed-B), convection, magneto-
hydromagnetic (MHD), oscillatory, radiation.

INTRODUCTION

The study of the flows of visco-elastic fluids important in the fields of petroleum
technology and in the purification of crude oils. rlecent years, flows of visco-elastic fluids
attracted the attention of several scholars in véwheir practical and fundamental importance
associated with many industrial applications. latare is replete with the various flow problems
considering variety of geometries such as@pPAL [23], RaiGoPAL and GQPTA [24] ARIEL [3],
Pop and B®RLA [22]. HAYAT et al [15] discussed periodic unsteady flows of a nawbbnian
fluid. CHouDHURY and Dns [10] studied the oscillatory viscoelastic flowarchannel filled with
porous medium in the presence of radiative heastea.

The flow problems of electrically conducting flsidre currently receiving considerable
attention. The magnetohydrodynamic (MHD) flows hmany practical applications such as
electromagnetic flow meters, electromagnetic purapd hydromagnetic generators etc. The
interest in MHD convective flows with heat transfsrrenewed due to its importance in the
design of MHD generators and accelerators in gesiphyin underground water and energy
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storage systems. Several scholars have shownitieiest in studying MHD and heat transfer
flows in porous and non-porous media. The effectrahsversely applied magnetic field on
convection flows of an electrically conducting @luhas been discussed by several authors
notably NGAM and $NGH [21], SOUNDALGEKAR and BHAT [33], VAJRAVELU [35], ATTIA and
KoTB [8] etc.

When the strength of the magnetic field is stremgugh then one cannot neglect the
effects of Hall currents. Even though it is of colesable importance to study how the results of
the hydrodynamical problems get modified by thee&f of Hall currents. A comprehensive
discussion of Hall currents is given bpWLING [13]. SOUNDALGEKAR [32] studied the Hall and
lon-slip effects in MHD Couette flow with heat tisdar. SUNDALGEKAR and WPLEKAR [34] also
analyzed Hall effects in MHD Couette flow with heaansfer. bSSAIN and R\SHID [16]
investigate Hall effect on hydromagnetic free cavm flow along a porous flat plate with
mass transfer. AIA [5] studied Hall current effects on the velocitydaemperature fields on an
unsteady Hartmann flow. Effects of Hall currentsfoee convective flow past an accelerated
vertical porous plate in a rotating system withtresaurce /sink is analyzed byN&H and G\RG
[30].

The fluid flow through porous medium is anotheiportant aspect which has attracted
the attention of scientists and engineers becatisis asefulness in the fields of agricultural
engineering to study the underground water ressurseepage of water in river beds, in
chemical engineering for filtration and purificatioprocesses. &Tis et al [27] studied
hydromagnetic free convection flow through porowediam between two parallel platessfRis
and FERDIKIS [26] analyzed oscillatory flow through porous medi by the presence of free
convection flow. KbssANIEN and MANSOUR [14] investigated unsteady magnetic flow through a
porous medium between two infinite parallel pla#sacoa et al [1] studied theradiative and
free convective effects of a MHD flow through a @as medium between infinite parallel plates
with time-dependent suction. Taking into accouet lleat radiation and the Hall currentscH
et al [31] studied heat and mass transfer in an ungt®#dD free convective flow through a
porous medium bounded by vertical porous channel.

The flows of viscoelastic fluids through porousdiuen are very important particularly in
the fields of petroleum technology for the flow ofl through porous rocks, in chemical
engineering and in the cases like drug permeatioough human skin. #osset al [2] studied
MHD mixed convection flow from a vertical plate eetldled in porous mediumABRGOPAL et al.
[25] analyzed oscillatory flow of an electricallpreducting viscoelastic fluid over a stretching
sheet in a saturate porous mediumTiA and Bvis [4] investigated an unsteady MHD Couette
flow with heat transfer of a viscoelastic fluid wndexponential decaying pressure gradient.
SINGH [29] analyzed an oscillatory mixed convection floo¥ a viscoelastic electrically
conducting fluid in an infinite vertical channelléd with porous medium. Considering the Hall
effects ATIA [6] discussed unsteady Hartmann flow of a viscstedafluid. GHOUDHARY and
JHA [7] analyzed heat and mass transfer in elasticous fluid past an impulsively started
infinite vertical plate with Hall current. Very reotly, SNGH [17] investigated MHD mixed
convection visco-elastc slip-flow through a porausdium in a vertical porous channel with
thermal radiation.

The object of the present paper is to study Haiftent effect on the oscillatory MHD
convective flow of a viscoelastic (Walter’s liquig}- fluid through a porous medium filled in a
vertical channel. Constant injection and suctioapplied at the left and the right infinite porous
plates respectively. A uniform magnetic field ispb@d along the axis perpendicular to the
planes of the plates. This applied transverse mugfield is strong enough so that the Hall
currents are induced. The temperature different@dsn the plates of the channel is sufficiently
high to induce heat radiation. A general exact tsmhuof the partial differential equations
governing the flow problem is obtained and the affeof various flow parameters on the
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velocity field and the skin friction are discussadhe last section of the paper with the help of
figures.

BASIC EQUATIONS

In order to derive the basic equations for the j@mbunder consideration following assumptions
are made:
() The two infinite vertical parallel plates of thearimel are permeable and electrically
non-conducting.
(i) The vertical channel is filled with a porous medium
(i) The flow considered is fully developed, laminar asdillatory.
(iv) The fluid is viscoelastic (Walter's liquid model-B)ncompressible and finitely
conducting.
(v) All fluid properties are assumed to be constanepkthat of the influence of density
variation with temperature is considered only ie body force term.
(vi) The pressure gradient in the channel oscillateésgieally with time.
(vii) A magnetic field of uniform strengthoBs applied perpendicular to the plates of the
channel.
(viii) The temperature of a plate is non-uniform and zge# periodically with time.
(ix) The temperature difference of the two plates i® @ssumed to be high enough to
induce heat transfer due to radiation.
(x) The fluid is assumed to be optically thin with talaly low density.

Under these assumptions we write the equationsrgimvethe flow as:
Equation of Continuity:
V.V =0. (2)
Momentum Equation:

Z—[:+(V.VV)=—%Vp*+191V2V+%V+V.EI+%(]><B)+F. ()
Energy Equation:
pey |2+ (W.NT| = k2T - Vg . 3)

Kirchhoff's First Law:
div]=0. 4)

General Ohm's Law:
J+2E2(JxB) = |E+VXB+—-Vp,| (5)
BO ene

Gauss's Law of Magnetism:
divB=0. (6)

whereV is the velocity vector, p is the pressuysas the densityB is the magnetic induction
vector,] is the current density, is the coefficient of viscosity; is the kinematic viscosity, ts
the time, g is the acceleration due to grawitys the coefficient of volume expansion, K the
permeability of the porous medium,, & the specific heat at constant pressure,isTthe
temperature, k is the thermal conductivity, q is thdiative heatg is the electrical conductivity,
e is the electron chargee is the electron frequencys is the electron collision time s the
electron pressurd is the electric field ande is the number density of electranis the Cauchy
stress tensor and the constitutive equation deribgdCoLEMAN and NoLL [12] for an
incompressible homogeneous Walter’ liquid-B is
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3= —pil + Ay + A + usAf. (7)

Here—p,I is the interdeterminate part of the stress dumtstraint of incompressibility;, u,
andu; are the material constants describing viscoslastieity and cross-viscosity respectively.
The kinematicd; andA, are the Rivelen Ericson constants defined as

Ay = (V7)) + (V0)T, Ay = 2 +(VI)T Ay + Ay (VD),
whereV denotes the gradlent operator and d/dt the mhtarmia derivative. According

to MARKOVITZ and LEMAN [19] the material constanis, u; are taken as positive apgd as
negative.

FORMULATION OF THE PROBLEM

In the present analysis we consider an unsteady diba viscoelastic (Walter’ liquid
model- B), incompressible and electrically condugtfluid bounded by two infinite vertical
porous plates distance ‘d’ apart. A coordinateesysis chosen such that the-¥xis is oriented
upward along the centerline of the channel andx@s taken perpendicular to the planes of the
plates lying inz* = ig planes. The fluid is injected through the poroustelatz* = —g with
constant velocity wand simultaneous sucked through the other poriatis atz* = +§ with the
same velocity w The non-uniform temperature of the plate’at +§ is assumed to be varying
periodically with time. The temperature differertmetween the plates is high enough to induce
the heat due to radiation. A transverse magnegid fof uniform strengttB (0, 0, B) is also
applied with B component along the Z*- axis which is considerexgpeedicular to the planes of
the plates. All physical quantities depend oramd t only for this problem of fully developed
laminar flow. A schematic diagram of the flow preftn is shown in figure 1. Since the porous
plates are subjected to constant injection/suctietocity w,, thus, equation of continuity
V.V =0 (1) gives on mtegratlow = wy.Then the velocity may reasonably be assumed wagth i
components along'xy’, z directions a3/ (u’, v, wp). Also the equation (6) for the magnetic

field B = (B;, B}, By) gives B; = By(constant).

‘:.:l. ---------------- .-:-3-:-?
s
' Porous Medium |
ey nn
W Ma N Na e Na Nu Ma N Wa S e e 'I"'I'—>
O i R ]

Fig. 1. Physical configuration of the flow.
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(x.J3» j; ) are the components of electric current denkitfhe equation of conservation of
electric charge (4) givgs = constant.
For non-conducting platgs = 0 (8)

at the plates and hence zero everywhere ifluite Under the usual assumptions that
the electron pressure (for a weakly ionized gd®, thermoelectric pressure, ion slip and the
external electric field arising due to polarizatiohcharges is negligible. It is assumed that no
applied and polarization voltage exists. This cgpoands to the case where no energy is being
added or extracted from the fluid by electrical me&@EYER [20]) i.e. electrical field = 0.
Therefore, equation (5) takes the form:

f+ Dele (] X B) = O'(V X B) 9)
After using equation (8), equation (9) in componrfentn becomes
Jx + WeTe jy = 0Bv” (20)
Jy = WeTe jx = —0Bou’ (11)
Solving (10) and (11) foiy andj, , we get
Jx = (11?2) (Hu*+v*) and Jy = (1(112)2) (Hv* —u")

whereH = w,1, is the Hall parameter.
Following ATTIA and Bwvis [4], ATTIA [7], KUMAR and KHEM [18], and under the usual
Boussinesq approximation the momentum equatiore(@)ces to

ou* ou’ 10p* 62 * a3u* JBS(HV*—u*) vu*

Wog— = 9 9 —-T 12
at* + 0 aZ* pa x* + 1 a + 2 a *Zat* p(1+H2) 1) ( )
ov* ov* _ 19p* 62 * a3v* oBE(Hu*+v*) wu*

w = 9 — — , 13
ot* + Wo 0z* pay *2 +t 7, 0z*20t* p(1+H?) K* ( )

1 ap
- P 6z
oT* _ Kk 9°T* 1 9
a4) 4w, -—=, (15)

ot* 0z* pcp 0z*2  pcy dz*

where 9, is viscoelasticity and the last term in equatid®)(is the radiative heat flux.
Following GOoGLEY et al [11] it is assumed that the fluid is optigahin with a relatively
low density and the heat flux due to radiationguation (15) is given by

; = 4a*(T* —T,). (16)
wherea is the mean radiation absorption coefficient. Aftiee substitution of equation (16),
equation (15) becomes
oT* oT* k 9%T*  4a? ...
ot* WO o0z* - Eaz*z _E(T - Tl) - (17)
Equation (14) shows the constancy of the hydroayogoressure along the axis of
rotation. We shall assume now that the fluid flowsder the influence of pressure gradient
varying periodically with time in the Xaxis is of the form

L9 _ Acosw*t* and—22Z = 0, where A is a constant. (18)
p ox* poy”

The boundary conditions for the problem are

*

7 = =0,T* =T, + (T, — Ty)cosw*t*, (19)
zZ'=-%u"'=v"=0T"=T,, (20)

wherew™ is the frequency of oscillations.
Introducing the following non-dimensional quanttie

N
<
*

u*t =
*

N-I -g.



24

_z Xy o _ v _T-Ty . tiwy w'd __ p*
T’_d,x_d,y_d’u_WO’v_Wol T_TZ—Tl’ o d Wo p_pr’
into equations (5), (6) and (10), we get
ou , Ju\ _ ., 0p z?z_u o3u M*(Hv-w) .4
A(at+a)— Aax+ +y6n26t+ e K u+GrT , (22)
v v\ _ . 0p 62 23v _ M*(Hu+v)
A (at + an) o ay | on? Y a2t (1+H?)
aT a2T 2
apr (3 an) SN, (24)
where *' represents the dimensional physical qitest

-K v, (23)

A= W—°d is the injection/suction parameter,

1

A : _
= ”d% is the visco-elastic parameter,

M = Byd /% is the Hartmann number,

H = w,7, is the Hall parameter,

*

K = % is the permeability of the porous medium,

d?(T,-T:
Gr = gBad*(T,—Ty)
91wo

pY1c
Pr =212

is the Grashof number,

is the Prandtl number,

N = % is the radiation parameter,

w:

The boundary conditions in the dimensionless foetome

1

=2 u=v=0, T=cos wt, (25)
n=—-3 u=v=0 T=0. (26)
For the oscillatory internal flow we shall assurhattthe fluid flows under the influence of a

non-dimension pressure gradient varying periodjcaith time in the direction of X-axis only
which implies that

op _ _6_p_
- = A cos wt , and 3y 0. (27)

SOLUTION OF THE PROBLEM

Now combining equations (22) and (23) into singtgiation by introducing a complex
function of the form F = u + iv and with the helpeaguation (27), we get

oF L 9F 0%F | 93F  (MP(1+iH) | g
A(6t+6n)_ ’1 +an2+y6nzat ((1+H2) + K )F+GrT, (28)

with corresponding boundary conditions as
n=3 F=0,T=cos wt, (29)
n=-% F=0, T=0. (30)

In order to solve equation (28) and (24) under lday conditions (29) and (30) it is convenient
to adopt complex notations for the velocity, tenapere and the pressure as under:

F(n,t) = Fo(e®t, T =0,(et, — 2 = A", (31)

The solutions will be obtained in terms of complextations, the real part of which will have
physical significance.
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The boundary conditions (29) and (30) in completations can also be written as

1.

F=0, T=et

=3 (32)
n=-% F=0, T=0. (33)
Substituting expressions (31) in equations (28) (@4, we get
(1 + iwy) ‘j;? e {M(Zl(j;;'s” +K™"+ iwd} Fy = —1A — Gr 6, , (34)
% _ apr% _ (N2 4 iwAPr)8, = 0 . (35)
dn? dn
The transformed boundary conditions reduce to
n=>% F=0, 6 =1, (36)
n=-% Fy=0, 6,=0.
(37)

The solution of the ordinary differential equati(8%) under the boundary conditions (36) and

(37) gives the velocity field as

AA

{1+e

l
r—s
e

2

2

r—

e~

m—

2

n

S

m"sinh%—e’”’sinh%}

sinh(

n m
)t e

l

iwt

(38)

F( t) Gr < C1 CZ
n, = 4sinh(#)sinh(%) Ci—C n m APT

1—C2 mn+o _  nn+=r) -5

U+ (5) (emmrs —emmrs) e
Gr em_% esn—%
(G o Ca
M?(1+iH) _ , . ,

where [ = { (1+H;) +K 1+ lwﬁ}, C,=Q+iwpr?—ir—1, C,=0+iwy)s?—1s—1,

A+/A2+41(1+iw
m= < ( Y)

o 2(1+iwy)

= APT+A2Pr2+4(N2+iwAPT)
2 )

n=

A= A2+41(1+iwy)

2(1+iwy)

g = APT—\|A2Pr2+4(N2+iwAPT)

2

Similarly, the solution of equation (35) for thertgerature field can be obtained under the

boundary conditions (36) and (37) as
_ em_%—esn_% it
T(n,t) = <m> e'r .

(39)

From the velocity field obtained in equation (38 wan get the skin-frictiory, at the left plate
(n =-0.5) in terms of its amplitud®| and phase angle as

T = |F| cos(wt + @) , with

(40)
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l

sinh(@)

r—S

Tr—S

_m n -t m
1A (me ZSinhE—ne 2sinh5

)+

( e 2z e 2 _2# \
_ — (1+iwy) 4
F=FE +iF, = Gr o g )mome (41)
4sinh(T27)sinh(52) =G, _m-n m-ny _APr
(%) (me ™" —ne) e
Gr r s\ _APr
B 2sinh(5°) (C_1 B C_z) €’
The amplitude i$F| = \/FZ + FZ and the phase angle ig = tan™! E—; (42)

Similarly the Nusselt number Nu in terms ofamsplitude|H| and the phase angle can be
obtained from the solution (39) for the temperafielel as

q = |H| cos(wt + 1),
APTr
(r-s)e” 2z

2 sinh(2)’

(43)

with = Hr + i Hi = (44)

where the amplitudg?| and the phase.angleof the rate of heat transfer are given as

H| = Hr? + Hi%,p = tan™* . (45)

The temperature field, amplitude and phase of thesBlt humber need no further discussion
because these have already been discussed inlbegnicH [28].

DISCUSSION

An analytical solution of the problem of MHD comtéen flow of a viscoelastic fluid
through a porous medium bounded by two infinitetical porous plates when the pressure
gradient varies periodically with time is obtaineéthe two porous plates are subjected to
constant injection and suction velocity. Numerieaaluations of the analytical results obtained
in the previous section are then illustrated thiodgyures. The influence of each of the
parameters on the velocity profiles, the amplitadd the phase of the skin-friction are depicted
through these figures.

Figure 2 shows the variations of the velocity otrexr width of the channel. This figure
clearly shows that the velocity is maximal in th&ldbe of the channel which leads to parabolic
velocity profiles in the channel as expected. THéeces of viscoelastic parametey
injection/suction parametér Grashof number Gr, Hartmann number M, Hall patemél,
permeability of the porous medium K, Prandtl numPBey radiation parameter N, favorable
pressure gradient A and the frequency of oscilhetio on the velocity are presented in Fig.2.
Each curve is compared with the dotted curve )).({t-is observed that the velocity goes on
decreasing (curves | & II) with the increase of thgcoelstic parameter. i.e. the flow retards
with the increasing viscoelastic parameter. Cuhv&sll in this figure clearly show that there is
a sharp rise in the velocity with the increasehef injection/suction parametér. From curves |
& IV it is inferred that the velocity also increasas the Grashof number Gr increases from 1 to
5. Physically it means that the enhancement obtlwg/ancy force leads to increase the velocity.
A decrease in the velocity is also observed with iticrease of Hartmann number (curves | &
V). This means that the increasing transverse niegfield strength induce a drag force which
tends to resist the fluid flow. The velocity incsea with the increase of Hall current parameter
H (curves | & VI). Comparison of curves | and VBweal that the velocity decreases slightly
with the increasing permeability of the porous medifor the viscoelastic fluid flow. Since the
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Prandtl number gives the relative importance ofaiss dissipation to the thermal dissipation so
for larger Prandtl number viscous dissipation isdaminant and due to this velocity decreases
(curves | & VIII). Thus, the velocity in the caséwater (Pr = 7) as the fluid is less than that in
the case of air (Pr = 0.7). Retaining the valueallobf the parameters fixed and increasing only
the value of the radiation parameter from 1 todicates that the velocity decreases (curves | &
IX). This figure also reveals (curves | & X) that tine favorable pressure gradient in the channel
is increased the velocity increases rapidly. Aseetgd it is due to the fact that the flow for
larger pressure gradient in the channel is fa3tee. velocity decreases significantly (curves | &
XI) when the frequency of oscillations is increased keeping rest of the parameters fixed.

The variations of the amplitud&| and the phase of the skin-friction with the increase
of different parameters are presented in Fig. 3h3nrespectively. It is obvious from Fig. 3a
that for any set of parameters the amplitude goedeareasing with the increasing frequency of
oscillationsw. The increase in the skin-friction amplitude istioed with the increase of
injection/suction parametdr, Grashof number Gr, the Hall parameter H, the paliity of the
porous medium and the pressure gradient A. Itus physically also because the increase in
these parameters results into velocity increasetwbonsequently leads to the enhancement of
frictional force. However, the increase in viscetiaparametey, Hartmann number M, Prandtl
number and the radiation parameter attribute tosvérd decrease in the amplitude of the skin-
friction.

The behavior of the phase angl®f the skin-frictionz is shown in Fig. 3b for different
values of various flow parameters. From this figiiie evident that there is always a phase lag
because the values @fcomputed numerically remain negative throughoutafoy set of values
of the flow parameters. We notice from Fig.3b tthet phase lag increases with the increase of
viscoelastic parameter, Hartmann number and thagmdility of the porous medium. However,
the phase lag decreases with the increase of Pramciber, the radiation parameter and the
pressure gradient. This variation with the Prandthber indicates that the phase lag is less in
water (Pr = 7.0) than in air (Pr = 0.7). The oppgseffects of the Grashof number and the Hall
parameter are observed as the frequency increase.

\ y'y VII
vi 02 - } v
IX ==="== S
X XI
0. X
\
VIII
Il
0.05 - T
u
I T T C T T 1
-0.6 -0.4 -0.2 0| n 0.2 0.4 0.6

Fig. 2. Velocity Profiles.
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Table 1. Values of parameters plotted |n

Fig. 2.
y A GrMH K Pr N Aw
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Fig. 3a. Amplitude of skin friction.

Table 2. Values of parameters plotted
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Fig. 3b. Phase of the skin friction.

CONCLUSIONS

An oscillatory hydromagnetic convective flow of etais incompressible and electrically
conducting fluid in a vertical porous channel ivdstigated. A closed form solution of the
problem is obtained. It is found that the veloc#ynains parabolic over the width of the channel.
The velocity increases with the increase of theatipn/suction parameter, Grashof number, Hall
Parameter and the pressure gradient. However, ¢lecity decreases with the increase of
radiation parameter, Prandtl number and the frequeh oscillation. The amplitude increases
with the increase of injection/suction parametgerthe Grashof number Gr, and the pressure
gradient parameter A. There is always a phasefldgeaskin friction.

NOMENCLATURE
A a constant u, v, w velocity components along X, Y, Z-
Bo magnetic field applied directions
Co specific heat at constant pressure Wo injection/suction velocity
|F| amplitude of the skin-friction X, Y, z variables along X, Y, Z-directions
g gravitational force Greek symbols
Gr Grashof number a mean radiation absorption coefficient
H Hall parameter B coefficient of volume expansion
k thermal conductivity r viscoelastic parameter
K permeability of porous medium A injection/suction parameter
M Hartmann number W frequency of oscillations
N heat radiation parameter 9, kinematic viscosity
p pressure p fluid density
Pr Prandtl number 7L skin-friction at the left walll
t time variable ® phase angle of the skin-friction
T fluid temperature 6,  mean non-dimensional temperature
Ty, T2 plates temperatures * superscript representing dimensional

quantities
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