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ABSTRACT.  An oscillatory MHD convective flow of an incompressible, viscoelastic 
(Walter’s liquid model-B) and electrically conducting fluid through porous medium filled in 
a vertical porous channel is analyzed. The two porous plates of the channel are subjected to a 
constant injection and suction velocity as shown in Fig.1. A magnetic field of uniform 
strength is applied perpendicular to the plates of the channel. The temperature of one of the 
plates varies periodically and the temperature difference between the two plates is high 
enough to induce the heat due to radiation. A closed form solution of the purely oscillatory 
flow is obtained. The velocity, temperature and the skin-friction in terms of its amplitude and 
phase angle have been shown graphically to observe the effects of viscoelasticity γ, 
injection/suction parameter �, Grashof number Gr, Hartmann number M, Hall parameter H, 
the pressure A, Prandtl number Pr, Radiation parameter N and the frequency of oscillation �. 
 
Key words: Injection/suction, viscoelastic (Walter’s liquid model-B), convection, magneto-
hydromagnetic (MHD), oscillatory, radiation. 

 
 
 

INTRODUCTION 
 

 The study of the flows of visco-elastic fluids is important in the fields of petroleum 
technology and in the purification of crude oils. In recent years, flows of visco-elastic fluids 
attracted the attention of several scholars in view of their practical and fundamental importance 
associated with many industrial applications. Literature is replete with the various flow problems 
considering variety of geometries such as RAJGOPAL [23], RAJGOPAL and GUPTA [24] ARIEL [3], 
POP and GORLA [22]. HAYAT  et al. [15] discussed periodic unsteady flows of a non-Newtonian 
fluid. CHOUDHURY and DAS [10] studied the oscillatory viscoelastic flow in a channel filled with 
porous medium in the presence of radiative heat transfer.  
 The flow problems of electrically conducting fluids are currently receiving considerable 
attention. The magnetohydrodynamic (MHD) flows has many practical applications such as 
electromagnetic flow meters, electromagnetic pumps and hydromagnetic generators etc. The 
interest in MHD convective flows with heat transfer is renewed due to its importance in the 
design of MHD generators and accelerators in geophysics, in underground water and energy 
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storage systems. Several scholars have shown their interest in studying MHD and heat transfer 
flows in porous and non-porous media. The effect of transversely applied magnetic field on 
convection flows of an electrically conducting fluid has been discussed by several authors 
notably NIGAM  and SINGH [21], SOUNDALGEKAR and BHAT [33], VAJRAVELU [35], ATTIA  and 
KOTB [8] etc.  
 When the strength of the magnetic field is strong enough then one cannot neglect the 
effects of Hall currents. Even though it is of considerable importance to study how the results of 
the hydrodynamical problems get modified by the effects of Hall currents. A comprehensive 
discussion of Hall currents is given by COWLING [13]. SOUNDALGEKAR [32] studied the Hall and 
Ion-slip effects in MHD Couette flow with heat transfer. SOUNDALGEKAR and UPLEKAR [34] also 
analyzed Hall effects in MHD Couette flow with heat transfer. HOSSAIN and RASHID [16] 
investigate Hall effect on hydromagnetic free convection flow along a porous flat plate with 
mass transfer. ATTIA  [5] studied Hall current effects on the velocity and temperature fields on an 
unsteady Hartmann flow. Effects of Hall currents on free convective flow past an accelerated 
vertical porous plate in a rotating system with heat source /sink is analyzed by SINGH and GARG 
[30].  
 
 The fluid flow through porous medium is another important aspect which has attracted 
the attention of scientists and engineers because of its usefulness in the fields of agricultural 
engineering to study the underground water resources, seepage of water in river beds, in 
chemical engineering for filtration and purification processes. RAPTIS et al. [27] studied 
hydromagnetic free convection flow through porous medium between two parallel plates. RAPTIS 
and PERDIKIS [26] analyzed oscillatory flow through porous medium by the presence of free 
convection flow. HOSSANIEN and MANSOUR [14] investigated unsteady magnetic flow through a 
porous medium between two infinite parallel plates. ALAGOA et al. [1] studied the radiative and 
free convective effects of a MHD flow through a porous medium between infinite parallel plates 
with time-dependent suction. Taking into account the heat radiation and the Hall currents SINGH 
et al. [31] studied heat and mass transfer in an unsteady MHD free convective flow through a 
porous medium bounded by vertical porous channel.  
 The flows of viscoelastic fluids through porous medium are very important particularly in 
the fields of petroleum technology for the flow of oil through porous rocks, in chemical 
engineering and in the cases like drug permeation through human skin. ALDOSS et al. [2] studied 
MHD mixed convection flow from a vertical plate embedded in porous medium. RAJGOPAL et al. 
[25] analyzed oscillatory flow of an electrically conducting viscoelastic fluid over a stretching 
sheet in a saturate porous medium. ATTIA  and EWIS [4] investigated an unsteady MHD Couette 
flow with heat transfer of a viscoelastic fluid under exponential decaying pressure gradient. 
SINGH [29] analyzed an oscillatory mixed convection flow of a viscoelastic electrically 
conducting fluid in an infinite vertical channel filled with porous medium. Considering the Hall 
effects ATTIA  [6] discussed unsteady Hartmann flow of a viscoelastic fluid. CHOUDHARY and 
JHA [7] analyzed heat and mass transfer in elastic-viscous fluid past an impulsively started 
infinite vertical plate with Hall current. Very recently, SINGH [17] investigated MHD mixed 
convection visco-elastc slip-flow through a porous medium in a vertical porous channel with 
thermal radiation. 
 The object of the present paper is to study Hall current effect on the oscillatory MHD 
convective flow of a viscoelastic (Walter’s liquid-B) fluid through a porous medium filled in a 
vertical channel. Constant injection and suction is applied at the left and the right infinite porous 
plates respectively. A uniform magnetic field is applied along the axis perpendicular to the 
planes of the plates. This applied transverse magnetic field is strong enough so that the Hall 
currents are induced. The temperature difference between the plates of the channel is sufficiently 
high to induce heat radiation. A general exact solution of the partial differential equations 
governing the flow problem is obtained and the effects of various flow parameters on the 
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velocity field and the skin friction are discussed in the last section of the paper with the help of 
figures.  
 
 

BASIC EQUATIONS 
 

In order to derive the basic equations for the problem under consideration following assumptions 
are made:  

(i) The two infinite vertical parallel plates of the channel are permeable and electrically 
non-conducting. 

(ii)  The vertical channel is filled with a porous medium. 
(iii)  The flow considered is fully developed, laminar and oscillatory. 
(iv) The fluid is viscoelastic (Walter’s liquid model-B), incompressible and finitely 

conducting.  
(v) All fluid properties are assumed to be constant except that of the influence of density 

variation with temperature is considered only in the body force term. 
(vi) The pressure gradient in the channel oscillates periodically with time. 
(vii)  A magnetic field of uniform strength B0 is applied perpendicular to the plates of the 

channel. 
(viii)  The temperature of a plate is non-uniform and oscillates periodically with time. 
(ix) The temperature difference of the two plates is also assumed to be high enough to 

induce heat transfer due to radiation. 
(x) The fluid is assumed to be optically thin with relatively low density. 
 
Under these assumptions we write the equations governing the flow as: 

Equation of Continuity:                        
 ∇. � = 0.                                  (1) 
Momentum Equation: 

            
���	 + ��. ∇�� = − �� 	∇	�∗ + ��∇�� + ���∗ � + ∇. ∃ + �� �� × �� + � .          (2) 

  Energy Equation: 

  ���  �!�	 + ��. ∇�"# = $∇�" − ∇% .           (3) 

Kirchhoff’s First Law: 
 &'(	� = 0 .                                             (4) 

General Ohm's Law: 

            � + )*+*,- �� × �� = .  / + � × � + �01* ∇�0#.                                          (5) 

Gauss's Law of Magnetism: 
 &'(	� = 0 .              (6)  

where V is the velocity vector,  p is the pressure, ρ is the density, � is the magnetic induction 
vector, � is the current density, µ is the coefficient of viscosity, �� is the kinematic viscosity, t* is 
the time, g is the acceleration due to gravity, β is the coefficient of volume expansion, K* is the 
permeability of the porous medium, Cp is the specific heat at constant pressure, T* is the 
temperature, k is the thermal conductivity, q is the radiative heat,  σ is the electrical conductivity, 
e is  the electron charge, ωe is the electron frequency, τe is the electron collision time, pe is the 
electron pressure, / is the electric field and ηe is the number density of electron, ∃ is the Cauchy 
stress tensor and the constitutive equation derived by COLEMAN and NOLL [12] for an 
incompressible homogeneous Walter’ liquid-B is  
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 ∃= −��2 + 3�4� + 3�4� + 354��.             (7)         

Here −��2 is the interdeterminate part of the stress due to constraint of incompressibility, 3�, 3� 
and 35 are the material constants describing viscosity, elasticity and cross-viscosity respectively. 
The kinematic 4� and 4� are the Rivelen Ericson constants defined as 

          4� = �∇67� + �∇67�!,  4� = 89:8	 +�∇67�!4� + 4��∇67�,            

    where ∇ denotes the gradient operator and d/dt the material time derivative. According 
to MARKOVITZ  and COLEMAN [19] the material constants	3�, 35 are taken as positive and 3� as 
negative.  
 
 

FORMULATION OF THE PROBLEM 
 

In the present analysis we consider an unsteady flow of a viscoelastic (Walter’ liquid 
model- B), incompressible and electrically conducting fluid bounded by two infinite vertical 
porous plates distance ‘d’ apart. A coordinate system is chosen such that the X*-axis is oriented 
upward along the centerline of the channel and Z*-axis taken perpendicular to the planes of the 
plates lying in ;∗ = ±=>  planes. The fluid is injected through the porous plate at ;∗ = −=> with 
constant velocity w0 and simultaneous sucked through the other porous plate at ;∗ = +=> with the 
same velocity w0. The non-uniform temperature of the plate at ;∗ = +=> is assumed to be varying 
periodically with time. The temperature difference between the plates is high enough to induce 
the heat due to radiation. A transverse magnetic field of uniform strength B (0, 0, B0) is also 
applied with B0 component along the Z*- axis which is considered perpendicular to the planes of 
the plates. All physical quantities depend on z* and t* only for this problem of fully developed 
laminar flow. A schematic diagram of the flow problem is shown in figure 1. Since the porous 
plates are subjected to constant injection/suction velocity ?@ , thus, equation of continuity ∇. � = 0 (1) gives on integration ?∗ = ?@.Then the velocity may reasonably be assumed with its 
components along x*, y*, z* directions as V (u*, v*, w0). Also the equation (6) for the magnetic 
field ABC = DAE∗, AG∗, AH∗I gives 	AH∗ = A@��JKLMNKM�. 

 
        X*  
    ;∗ = −=>                         ;∗ = => 

       
  

Fig. 1. Physical configuration of the flow. 
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DQE∗, QG∗, 	QH∗	I are the components of electric current density �. The equation of conservation of 
electric charge (4) gives	QH∗ = �JKLMNKM.  
For non-conducting plates QH∗ = 0         (8)       
    at the plates and hence zero everywhere in the fluid. Under the usual assumptions that 
the electron pressure (for a weakly ionized gas), the thermoelectric pressure, ion slip and the 
external electric field arising due to polarization of charges is negligible. It is assumed that no 
applied and polarization voltage exists. This corresponds to the case where no energy is being 
added or extracted from the fluid by electrical means (MEYER [20]) i.e. electrical field / = 0. 
Therefore, equation (5) takes the form: 

 RC+ )*+*,- DRC× ABCI = .D6BC × ABCI                     (9) 

After using equation (8), equation (9) in component form becomes 
 QE∗ + �0S0	QG∗ = .A@(∗                            (10) 

            QG∗ − �0S0	QE∗ = −.A@T∗                     (11)  

Solving (10) and (11) for QE∗ and QG∗ , we get  

           QE∗ = U,-��VW>� �XT∗ + (∗�      and                 	QG∗ = U,-��VW>� �X(∗ − T∗� 
where X = �0S0 is the Hall parameter. 
Following ATTIA  and EWIS [4], ATTIA  [7], KUMAR and KHEM [18], and under the usual 
Boussinesq approximation the momentum equation (2) reduces to �Y∗
�	∗ + ?@ �Y∗

�H∗ = − �� ��∗
�E∗ + �� �>Y∗

�H∗> + �� �ZY∗
�H∗>�	∗ + U,->�W[∗\Y∗����VW²� − ^Y∗

_∗ + `a�"∗ − "��,  (12) 

�[∗
�	∗ + ?@ �[∗

�H∗ = − �� ��∗
�G∗ + �� �>[∗

�H∗> + �� �Z[∗
�H∗>�	∗ − U,->�WY∗V[∗����VW²� − ^Y∗

_∗ ,     (13)

  0 = − �� ��∗
�H∗	,                

  (14)    
�!∗
�	∗ +?@ �!∗

�H∗ = b�cd
�>!∗
�H∗> − ��cd

�e�H∗ .               (15) 

where 	�� is viscoelasticity and the last term in equation (15) is the radiative heat flux. 
 Following COGLEY et al [11] it is assumed that the fluid is optically thin with a relatively 

low density and the heat flux due to radiation in equation (15) is given by �e�H∗ = 4g��"∗ − "��.                (16)  

where g is the mean radiation absorption coefficient. After the substitution of equation (16), 
equation (15) becomes 

 
�!∗
�	∗ +?@ �!∗

�H∗ = b�cd
�>!∗
�H∗> − hi>

�cd �"∗ − "�� .        (17)

 Equation (14) shows the constancy of the hydrodynamic pressure along the axis of 
rotation. We shall assume now that the fluid flows under the influence of pressure gradient 
varying periodically with time in the X*-axis is of the form 

      − �� ��∗
�E∗ = 4	�JL�∗M∗  and − �� ��∗

�G∗ = 0, where A is a constant.   (18)

  
The boundary conditions for the problem are 

 ;∗ = =>:		T∗ = (∗ = 0, "∗ = "� + �"� − "���JL�∗M∗,       (19)

     ;∗ = −=>:		T∗ = (∗ = 0, "∗ = "�,      (20)  

where �∗ is the frequency of oscillations.  
Introducing the following non-dimensional quantities:                                
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k = H∗
8 	 , l = E∗

8 , m = G∗
8 	,			T = Y∗

n- 	 , ( = [∗
n- ,			" = !∗\!:!>\!: , M = 	∗n-8 , � = )∗8n- 			� = �∗

�n->	,     (21)    

into equations (5), (6) and (10), we get � o�Y�	 + �Y�1p = −� ���E + �>Y�1> + q �ZY�1>�	 + r²�W[\Y���VW²� − s\�T + tu	"	 ,    (22) 

� o�[�	 + �[�1p = −� ���G + �>[�1> + q �Z[�1>�	 − r²�WYV[���VW²� − s\�(	 ,     (23) 

      �vu o�!�	 + �!�1p = �>!�1> − w�",          (24) 

where ‘*’ represents the dimensional physical quantities, � = n-8x:  is the injection/suction parameter,               

	q = ^>y8>   is the visco-elastic parameter,      

z = A@&{ |}~:  is the Hartmann number,    

X = �0S0  is the Hall parameter,       

s = _∗
8>  is the permeability of the porous medium,                   

tu = ��8>�!>\!:�x:n-   is the Grashof number, 

vu = �x:cdb    is the Prandtl number, 

w = �i8√b   is the radiation parameter,    

� = )∗8n-  is the frequency of oscillations. 

The boundary conditions in the dimensionless form become k = :>:					T = ( = 0,			" = �JL	�M,             (25)  k = −:>:					T = ( = 0,			" = 0.              (26) 

For the oscillatory internal flow we shall assume that the fluid flows under the influence of a 
non-dimension pressure gradient varying periodically with time in the direction of X-axis only 
which implies that − ���E = 4	�JL	�M , and − ���G = 0.          (27) 

 
 

SOLUTION OF THE PROBLEM 
 

 Now combining equations (22) and (23) into single equation by introducing a complex 
function of the form F = u + iv and with the help of equation (27), we get  � o���	 + ���1p = −� ���E + �>��1> + q �Z��1>�	 − or>��V�W���VW>� + s\�p� + tu	",     (28)

   
 with corresponding boundary conditions as k = :>:					� = 0,			" = �JL	�M,               (29) k = −:>:					� = 0,			" = 0.          (30) 

In order to solve equation (28) and (24) under boundary conditions (29) and (30) it is convenient 
to adopt complex notations for the velocity, temperature and the pressure as under:              ��k, M� = �@�k���)	,				" = �@�k���)	, −	�G�E = 4��)	.     (31) 

The solutions will be obtained in terms of complex notations, the real part of which will have 
physical significance. 
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The boundary conditions (29) and (30) in complex notations can also be written as k = :>:					� = 0,			" = ��)	,               (32) k = −:>:					� = 0,			" = 0.          (33) 

Substituting expressions (31) in equations (28) and (24), we get �1 + '�q� 8>�-81> − � 8�-81 − �r>��V�W���VW>� + s\� + '����@ = −�4 − tu	�@ ,    (34) 

8>�-81> − �vu 8�-81 − �w� + '��vu��@ = 0 .    (35) 

The transformed boundary conditions reduce to      
 k = :>:				�@ = 0,			�@ = 1,         (36)

  k = −:>:					�@ = 0,			�@ = 0.  

 (37)      
The solution of the ordinary differential equation (34) under the boundary conditions (36) and 
(37) gives the velocity field as  
 

��k, M� =

��
��
��
��
� y9� �1 + 0�������>�0�������>����D���> I � +

��h����D���> I����D���> I ��
� �0���> : − 0����> > ¡o�¢1\�> − ��1\�> p
+ o :\ > : > p o�¢1V�> − ��1V�> p �\£¤�> ¥¦

§

− �������D���> I �0����> : − 0����> > ¡ ©̈©
©©
©©
©ª
��)	,   (38)

  

where 	« = �r>��V�W���VW>� + s\� + '���, ¬� = �1 + '�q�u� − �u − «,  ¬� = �1 + '�q�L� − �L − «, 
  = yV®y>Vh���V�)¯����V�)¯�  ,     K = y\®y>Vh���V�)¯����V�)¯�  , 

 u = y°�V®y>°�>Vh�±>V�)y°���  ,    L = y°�\®y>°�>Vh�±>V�)y°���  .      

 

Similarly, the solution of equation (35) for the temperature field can be obtained under the 
boundary conditions (36) and (37) as 

 "�k, M� = �0����>\0����>�����D���> I ¡ ��)	 .            (39)  

From the velocity field obtained in equation (38) we can get the skin-friction S² at the left plate 
(η = -0.5) in terms of its amplitude |F| and phase angle 	φ as 

 S = |F|	cos�ωt + φ� , with              (40)  
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 � = �� + '	�� =

��
��
��
��
� y9� �¢0��> �����>��*��>�»�¼�>����D���> I ¡ +

��h����D���> I����D���> I ��
��0���> : − 0����> > ¡ � − K��� £>�:½»¾¿� +

o :\ > : > p o�\���> − K����> p �\£¤�> ¥¦
§

− �������D���> I o � : − � >p �\£¤�> ©̈©
©©
©©
©ª
	 .  (41) 

  

The amplitude is |F| = ®FÀ� + FÁ� and the phase angle is  φ = tan\� ÄÅÄÆ.       (42) 

   Similarly the Nusselt number Nu in terms of its amplitude |X| and the phase angle Ç can be 
obtained from the solution (39) for the temperature field as 
 

 % = |X|	cos��M + Ç�,         (43) 

with = Xu + '	X' = ��\��0�£¤�>�	����D���> I,             (44)  

where the amplitude	|X| and the phase angle ψ of the rate of heat transfer are given as 

 |X| = ®Xu� + X'�, Ç = tan\� W�W�	.            (45) 

The temperature field, amplitude and phase of the Nusselt number need no further discussion 
because these have already been discussed in detail by SINGH [28].  

 
 

DISCUSSION 
 

 An analytical solution of the problem of MHD convection flow of a viscoelastic fluid 
through a porous medium bounded by two infinite vertical porous plates when the pressure 
gradient varies periodically with time is obtained. The two porous plates are subjected to 
constant injection and suction velocity. Numerical evaluations of the analytical results obtained 
in the previous section are then illustrated through figures. The influence of each of the 
parameters on the velocity profiles, the amplitude and the phase of the skin-friction are depicted 
through these figures.  
  

Figure 2 shows the variations of the velocity over the width of the channel. This figure 
clearly shows that the velocity is maximal in the middle of the channel which leads to parabolic 
velocity profiles in the channel as expected. The effects of viscoelastic parameter γ 
injection/suction parameter� , Grashof number Gr, Hartmann number M, Hall parameter H, 
permeability of the porous medium K, Prandtl number Pr, radiation parameter N, favorable 
pressure gradient A and the frequency of oscillations � on the velocity are presented in Fig.2. 
Each curve is compared with the dotted curve I (---). It is observed that the velocity goes on 
decreasing (curves I & II) with the increase of the viscoelstic parameter γ. i.e. the flow retards 
with the increasing viscoelastic parameter. Curves I & III in this figure clearly show that there is 
a sharp rise in the velocity with the increase of the injection/suction parameter � . From curves I 
& IV it is inferred that the velocity also increases as the Grashof number Gr increases from 1 to 
5. Physically it means that the enhancement of the buoyancy force leads to increase the velocity. 
A decrease in the velocity is also observed with the increase of Hartmann number (curves I & 
V). This means that the increasing transverse magnetic field strength induce a drag force which 
tends to resist the fluid flow. The velocity increases with the increase of Hall current parameter 
H (curves I & VI). Comparison of curves I and VII reveal that the velocity decreases slightly 
with the increasing permeability of the porous medium for the viscoelastic fluid flow. Since the 
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Prandtl number gives the relative importance of viscous dissipation to the thermal dissipation so 
for larger Prandtl number viscous dissipation is predominant and due to this velocity decreases 
(curves I & VIII). Thus, the velocity in the case of water (Pr = 7) as the fluid is less than that in 
the case of air (Pr = 0.7). Retaining the values of all of the parameters fixed and increasing only 
the value of the radiation parameter from 1 to 5 indicates that the velocity decreases (curves I & 
IX). This figure also reveals (curves I & X) that as the favorable pressure gradient in the channel 
is increased the velocity increases rapidly. As expected it is due to the fact that the flow for 
larger pressure gradient in the channel is faster. The velocity decreases significantly (curves I & 
XI) when the frequency of oscillations � is increased keeping rest of the parameters fixed.  

 
The variations of the amplitude |F| and the phase È of the skin-friction with the increase 

of different parameters are presented in Fig. 3a and 3b respectively. It is obvious from Fig. 3a 
that for any set of parameters the amplitude goes on decreasing with the increasing frequency of 
oscillations� . The increase in the skin-friction amplitude is noticed with the increase of 
injection/suction parameter �, Grashof number Gr, the Hall parameter H, the permeability of the 
porous medium and the pressure gradient A. It is true physically also because the increase in 
these parameters results into velocity increase which consequently leads to the enhancement of 
frictional force. However, the increase in viscoelastic parameter γ, Hartmann number M, Prandtl 
number and the radiation parameter attribute towards the decrease in the amplitude of the skin-
friction.  

 
 The behavior of the phase angle φ of the skin-friction S is shown in Fig. 3b for different 
values of various flow parameters. From this figure it is evident that there is always a phase lag 
because the values of È computed numerically remain negative throughout for any set of values 
of the flow parameters. We notice from Fig.3b that the phase lag increases with the increase of 
viscoelastic parameter, Hartmann number and the permeability of the porous medium. However, 
the phase lag decreases with the increase of Prandtl number, the radiation parameter and the 
pressure gradient.  This variation with the Prandtl number indicates that the phase lag is less in 
water (Pr = 7.0) than in air (Pr = 0.7). The opposing effects of the Grashof number and the Hall 
parameter are observed as the frequency increase. 
 

 

   Fig. 2. Velocity Profiles. 
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   Fig. 3a. Amplitude of skin friction. 
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Table 1. Values of parameters plotted in          
Fig. 2.                                                                                          

γ     �    Gr  M H    K     Pr     N   A  � 

 0.2   0.5   5   2   1   0.2   0.7    1   5   5    I(---)                 

 0.4   0.5   5   2   1   0.2   0.7    1   5   5    II 

 0.2   1.0   5   2   1   0.2   0.7    1   5   5    III 

 0.2   0.5   1   2   1   0.2   0.7    1   5   5    IV 

 0.2   0.5   5   3   1   0.2   0.7    1   5   5    V 

 0.2   0.5   5   2   3   0.2   0.7    1   5   5    VI 

 0.2   0.5   5   2   1   1.0   0.7    1   5   5    VII 

 0.2   0.5   5   2   1   0.2   7.0    1   5   5    VIII 

 0.2   0.5   5   2   1   0.2   0.7    5   5   5    IX 

 0.2   0.5   5   2   1   0.2   0.7    1   7   5    X 

 0.2   0.5   5   2   1   0.2   0.7    1   5   6    XI 

I 

II 

VII 

VIII 

III 

IV 

V 

IX 

X 

� 

|F| 

VI 

Table 2. Values of parameters plotted in 
Figs. 3a & 3b. 

   γ      �    Gr  M H    K     Pr     N   A    

 0.2   0.5   5   2   1   0.2   0.7    1    5   I(---)          

 0.3   0.5   5   2   1   0.2   0.7    1    5   II 

 0.2   1.0   5   2   1   0.2   0.7    1    5   III 

 0.2   0.5   1   2   1   0.2   0.7    1    5   IV 

 0.2   0.5   5   3   1   0.2   0.7    1    5   V 

 0.2   0.5   5   2   3   0.2   0.7    1    5   VI 

 0.2   0.5   5   2   1   1.0   0.7    1    5   VII 

 0.2   0.5   5   2   1   0.2   7.0    1    5   VIII 

 0.2   0.5   5   2   1   0.2   0.7    5    5   IX 

 0.2   0.5   5   2   1   0.2   0.7    1    7   X 
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   Fig. 3b. Phase of the skin friction. 
 
 

CONCLUSIONS 
 

An oscillatory hydromagnetic convective flow of viscous incompressible and electrically 
conducting fluid in a vertical porous channel is investigated. A closed form solution of the 
problem is obtained. It is found that the velocity remains parabolic over the width of the channel. 
The velocity increases with the increase of the injection/suction parameter, Grashof number, Hall 
Parameter and the pressure gradient. However, the velocity decreases with the increase of 
radiation parameter, Prandtl number and the frequency of oscillation. The amplitude increases 
with the increase of injection/suction parameter �, the Grashof number Gr, and the pressure 
gradient parameter A. There is always a phase lag of the skin friction.   

 

NOMENCLATURE 
 

A a constant                                                                                                                                                                                                                
B0 magnetic field applied       
cp specific heat at constant pressure  
|F| amplitude of the skin-friction                                                          
g gravitational force                                                               
Gr Grashof number      
H Hall parameter                                   
k thermal conductivity    
K permeability of porous medium       
M Hartmann number                                                                          
N heat radiation parameter      
p pressure                                                                                                                       
Pr Prandtl number                                                           
t time variable                                                                                     
T fluid temperature                                                                                            
T1,T2 plates temperatures   

u, v, w velocity components along X, Y, Z-  
directions    

w0 injection/suction velocity  
x, y, z variables along X, Y, Z-directions  
Greek symbols 
g mean radiation absorption coefficient         
a coefficient of volume expansion  
Γ viscoelastic parameter                

� injection/suction parameter  
� frequency of oscillations  
�� kinematic viscosity   
� fluid density      
S² skin-friction at the left wall               
È phase angle of the  skin-friction            
�@ mean non-dimensional temperature    
* superscript representing dimensional 

quantities     
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