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ABSTRACT. The heat transfer in a steady planar stagnation point flow of an incom-
pressible non-Newtonian second grade fluid impinging on a permeable stretching surface 
with heat generation or absorption is examined. The governing nonlinear momentum and 
energy equations are solved numerically using finite differences. The influence of the 
characteristics of the non-Newtonian fluid, the surface stretching velocity, the heat gene-
ration/absorption coefficient, and Prandtl number on both the flow and heat transfer is 
reported. 
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INTRODUCTION 
 

The flow of a viscous incompressible fluid near a planar stagnation point is a classical 
problem in fluid mechanics which was first handled by HIEMENZ (1911) who demonstrated that 
the governing Navier-Stokes partial differential equations can be transformed to an ordinary 
differential equation of third order using similarity transformation. Due to the nonlinear terms in 
the resulting differential equation, an analytical solution is hard to obtain and consequently the 
ordinary nonlinear equation is solved numerically. 

Hiemenz problem of stagnation point flow was extended in numerous ways to add new 
physical effects and parameters. The axisymmetric stagnation point flow was examined by 
HOMANN (1936) which has importance practical applications in the prediction of skin-friction as 
well as heat/mass transfer near stagnation regions of bodies in high speed flows and also in the 
design of thrust bearings and radial diffusers, drag reduction, transpiration cooling and thermal 
oil recovery etc. As in the planar case, the governing equations in the axisymmetric problem are 
transformed to an ordinary differential equation of third order using a similarity transformation. 
SCHLICHTING and BUSSMAN (1943) obtained numerical solution of the stagnation point flow in 
the presence of uniform suction. More detailed solutions were later given by PRESTON (1946) 
while an approximate solution to the problem of uniform suction is obtained by ARIEL (1994).  
In hydromagnetics, the problem of Hiemenz flow was studied by NA (1979) where the solution 
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of the third-order boundary value problem was given using the method of finite difference. An 
approximate solution of the same problem has been provided by ARIEL (1994). The combined 
effect of an externally applied uniform magnetic field and the uniform suction across the surface 
on the planar or axisymmetric stagnation point flow was given, respectively, by Attia (ATTIA , 
2003a, 2003b). 
 The study of heat transfer in boundary layer flows has important applications in many 
areas such as the design of thrust bearings and radial diffusers, transpiration cooling, drag 
reduction, thermal recovery of oil, etc. (MASSOUDI et al., 1990).  MASSOUDI et al. (1990) used a 
perturbation technique to solve the stagnation point flow and heat transfer of a non-Newtonian 
fluid of second grade, however, the analysis was valid only for small values of the parameter that 
determines the behavior of the non-Newtonian fluid.  Later MASSOUDI et al. (1992) extended the 
problem to nonisothermal surface. GARG (1994) improved the solution obtained by MASSOUDI et 
al. (1992) and solving numerically for the flow characteristics for any value of the non-
Newtonian parameter using a pseudo-similarity solution. 

Flow of an incompressible viscous fluid over stretching surface has important 
applications in polymer industry. For instance, a number of technical processes concerning 
polymers involves the cooling of continuous strips (or filaments) extruded from a die by drawing 
them through a stagnant fluid with controlled cooling system and in the process of drawing these 
strips are sometimes stretched. The quality of the final product depends on the rate of heat 
transfer at the stretching surface. CRANE (1970) obtained a similarity solution in closed form for 
steady planar incompressible boundary layer flow caused by the stretching of a sheet which 
moves in its own plane with a velocity varying linearly with the distance from a fixed point.  
Temperature distribution in the flow over a stretching surface subject to uniform heat flux was 
examined by DUTTA et al. (1985). Steady flow of a non-Newtonian viscoelastic fluid (RAJAGO-
PAL et al., 1984; MAHAPATRA et al., 2004), micropolar fluid (NAZAR et al., 2004), or second 
grade fluid (MASSOUDI et al., 2004) past a stretching sheet was investigated. 
 In the present paper, the heat transfer in a steady planar stagnation point flow of an 
incompressible non-Newtonian second grade fluid impinging on a permeable stretching surface 
is studied with heat generation or absorption. The wall and stream temperatures are assumed to 
be constants. A numerical solution is obtained for the governing momentum and energy 
equations using finite difference approximations. The numerical solution gives the flow and heat 
characteristics for the whole range of the non-Newtonian fluid parameter, the stretching velocity, 
the heat generation/absorption coefficient and the Prandtl number. 
 
 

FORMULATION OF THE PROBLEM 
 

Consider the planar stagnation point flow of an incompressible non-Newtonian second 
grade fluid near a stagnation point at a surface located y=0 plane where the flow is confined to 
the  region y>0, as shown in Fig. 1. The surface is stretched in the x-axis direction using two 
equal and opposite forces applied along the x-axis such that keeping the origin fixed and the x-
component of the velocity varies linearly along it, bxxuw =)(  where b(>0) is an arbitrary 

constant. The potential flow that comes from the y-axis and falls on the surface divides into two 
streams on the wall and leaves in both directions. The viscous flow must adhere to the wall, 
whereas the potential flow slides along it. The components for the potential flow of velocity at 
any point (x,y) for the viscous flow are (u,v) whereas (U,V) are the velocity components for the 
potential flow. The velocity distribution in the frictionless flow in the neighborhood of the 
stagnation point is given by 
U(x)=ax, V(y)=-ay 
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Fig. 1. Physical model and coordinate system. 

where the constant a(>0) is proportional to the free stream velocity far away from the surface.  A 
second grade fluid is defined such that the Cauchy stress tensor is related to the fluid motion in 
the following manner (ATTIA , 2000) 

2
12211 AAApIT ααµ +++−=                                                                                          (1) 

where p denotes the hydrostatic pressure, I  is the identity tensor, µ  is the viscosity of the fluid, 

1α  and 2α  are scalar constants named as normal stress moduli, and 1A  and 2A  are the first two-

Rivlin-Ericksen tensors. For 021 == αα , Eq. (1) describes a common Newtonian fluid. Then, 

1A  represents the usual deformation tensor.  All the stress components have to be introduced into 
the equations of motion. Then, for the planar steady-state flow, the continuity and momentum 
equations, using the usual boundary layer approximations (WHITE, 1991) and by introducing the 
stress components, reduce to 
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where ρ is the density of the fluid, and U(x) is the potential flow velocity over the body surface.       
The appropriate boundary conditions of the flow problem are  

,0)0,(,)0,( == xvbxxu                                                                                                    (4a)  
,0),(,)(),(: →=→∞→ yxvaxxUyxuy                                                                      (4b) 

Introducing the following transformation 

),(),(, ηνη
ν

η fbvfbxuy
b −=′==                                                                                     (5) 

Eqs. (2), (3) and (4) transform to the single equation 

0)2( 222 =−′+′′−′′′−′′+′′′′− CfffffffffK iv                                                              (6) 

,)(,1)0(,0)0( Cfff =∞′=′=                                                                                             (7)  

where µα /1aK =  is the dimensionless normal stress modulus, abC /=  is the stretching 
parameter, and primes denote differentiation with respect to η. 

Using the boundary layer approximations and neglecting the dissipation due to its small 
effect especially in the presence of heat generation (MASSOUDI et al., 1990), the equation of 
energy for temperature T is given by MASSOUDI et al. (1990), 

0 
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u=ax 
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where pc  is the specific heat capacity at constant pressure of the fluid, k is the thermal 

conductivity of the fluid, T∞ the constant temperature of the fluid far away from the sheet, Q is 
the volumetric rate of heat generation/absorption, and T is the temperature profile. A similarity 
solution exists if the wall and stream temperatures, wT and ∞T  are constants–a realistic 

approximation in typical stagnation point heat transfer problems (WHITE, 1991).   
The thermal boundary conditions are 

,:0 wTTy ==                                                                                                                      (9a) 

,: ∞→∞→ TTy                                                                                                                 (9b) 

By introducing the non-dimensional variable   
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and using Eq. (5), Eqs. (8) and (9) reduce to, 

0PrPr =+′+′′ θθθ Bf                                                                                                         (10) 

,0)(,1)0( =∞= θθ                                                                                                                 (11) 

where kc p /Pr µ=  is the Prandtl number and pcbQB ρ/=  is the dimensionless heat 

generation/absorption coefficient.  
 

 The flow Eqs. (6) and (7) are solved numerically using finite difference approximations.  
A quasi-linearization technique is first applied to replace the non-linear terms at a linear stage, 
with the corrections incorporated in subsequent iterative steps until convergence. The quasi-
linearized form of Eq. (6) is, 
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where the subscript n or n+1 represents the nth or (n+1)th approximation to the solution. Then, 
Crank-Nicolson method is used to replace the different terms by their second order central 
difference approximations.  An iterative scheme is used to solve the quasi-linearized system of 
difference equations. The solution for the Newtonian case is chosen as an initial guess and the 
iterations are continued till convergence within prescribed accuracy. Finally, the resulting block 
tri-diagonal system was solved using generalized Thomas' algorithm. 
 

 The energy Eq. (10) is a linear second order ordinary differential equation with variable 
coefficient, f(η ), which is known from the solution of the flow Eqs. (6) and (7) and the Prandtl 
number Pr is assumed constant. Equation (10) is solved numerically under the boundary 
condition (11) using central differences for the derivatives and Thomas' algorithm for the 
solution of the set of discritized equations. The resulting system of equations has to be solved in 
the infinite domain 0<η<∞. A finite domain in the η -direction can be used instead with η  
chosen large enough to ensure that the solutions are not affected by imposing the asymptotic 
conditions at a finite distance.  Grid-independence studies show that the computational domain 
0<η<η∞ can be divided into intervals each is of uniform step size which equals 0.02.  This 
reduces the number of points between 0<η<η∞ without sacrificing accuracy. The value η∞=10 
was found to be adequate for all the ranges of parameters studied here. Convergence is assumed 
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when the ratio of every one of f, f ′ , f ′′ , or f ′′′  for the last two approximations differed from 
unity by less than 10-5 at all values of η  in 0<η<η∞. 
 
 

RESULTS AND DISCUSSION 
 

Figures 2 and 3 show the velocity profiles of  f and  f′, respectively, for various values of C and 
K.  The figures indicate that increasing the parameter C increases both  f and f ′  and that  the 
effect of K on both  f and  f′ depends upon C.  For C<1, increasing K increases f and f′ while for 
C>1, increasing K decreases both. The figures tell also that the effect of C on f and f ′  is more 
apparent for smaller values of K. Also, increasing C decreases the velocity boundary layer 
thickness.  Figure 4 presents the profile of temperature θ for various values of C and K and for 
Pr=0.7 and B=0.1.  It is clear that increasing C decreases θ and its effect on θ is more clear for 
smaller values of K.  The figure indicates that the thermal boundary layer thickness decreases 
when C increases.  The effect of K on θ depends on C.  For C<1, increasing K decreases θ, but 
for C>1, increasing K increases θ.  The same effect for the parameter K holds on the thickness of 
the thermal boundary layer.  

Figure 5 indicates that the temperature profiles for various values of C and Pr and for 
K=1 and B=0.1. Figure 5 brings out clearly the effect of the Prandtl number on the thermal 
boundary layer thickness. As shown in Fig. 5, increasing Pr decreases the thermal boundary 
layer thickness for all C. Increasing C decreases θ and its effect is more apparent for smaller Pr. 
Figure 6 shows the temperature profiles for various values of C and B and for K=1 and Pr=0.7. 
Increasing B increases the temperature θ and the boundary layer thickness. The effect of B on θ 
is more apparent for smaller C. 

Figure 7 indicates the variation of dimensionless heat transfer rate at the wall )0(θ ′− for 
different values of B and Pr and for C=0.5 and K=0.   It is seen that increasing the parameter B 
decreases )0(θ ′−  for all Pr.  However, increasing Pr increases )0(θ ′−  for all B.  The influence 
of B on )0(θ ′−  becomes more pronounced for higher values of Pr.    
 Tables 1 and 2 present the variation of the dimensionless shear stress at the wall )0(f ′′  
and the dimensionless heat transfer rate at the wall )0(θ ′− , respectively, for various values of C 
and K and for Pr=0.7 and B=0.1. Increasing C increases )0(f ′′  for all K. Increasing K decreases 
the magnitude of )0(f ′′  for all C. It is of interest to see the reversal of the sign of )0(f ′′  for C<1 
for all K. Table 2 depicts that, increasing C increases )0(θ ′− . The effect of K on )0(θ ′−  
depends on C. For C<1, increasing K increases )0(θ ′− but for C>1 increasing K decreases 

)0(θ ′− .  
 

Table 1. Variation of the wall shear stress )0(f ′′ with C and K. 
 

K C=0.1 C=0.2 C=0.5 C=1 C=1.1 C=1.2 C=1.5 
0 -1.4541 -1.3772 -1.0009 0 0.2464 0.5066 1.3642 
1 -0.6634 -0.6077 -0.4027 0 0.0855 0.1721 0.4374 
2 -0.5353 -0.4848 -0.3139 0 0.0649 0.1305 0.3292 
3 -0.4619 -0.4158 -0.4259 0 0.0545 0.1093 0.2750 

 
Table 2. Variation of the rate of heat transfer at the wall )0(θ ′−  with C and K (Pr=0.7, B=0.1). 

 

K C=0.1 C=0.2 C=0.5 C=1 C=1.1 C=1.2 C=1.5 
0 0.3913 0.4254 0.5089 0.6201 0.6399 0.6589 0.7136 
1 0.4613 0.4844 0.5434 0.6201 0.6333 0.6459 0.6811 
2 0.4915 0.5098 0.5573 0.6201 0.6310 0.6415 0.6708 
3 0.5089 0.5246 0.5654 0.6201 0.6297 0.6389 0.6648 
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 Table 3 presents the effect of C on )0(θ ′−  for various values of Pr and for K=1 and 
B=0.1. Increasing C increases )0(θ ′−  for all Pr and its effect becomes more clear for higher Pr. 
Increasing Pr increases )0(θ ′−  for all C and its effect is more apparent for higher C. Table 4 
presents the effect of the parameters C and B on )0(θ ′−  for K=1 and Pr=0.7. Increasing C 
increases )0(θ ′−  for all B, however, increasing B decreases )0(θ ′−  for all C and its effect is 
more clear for smaller C.  
 

Table 3. Variation of the rate of heat transfer at the wall )0(θ ′−  with C and Pr (K=1, B=0.1). 
 

Pr C=0.1 C=0.2 C=0.5 C=1 C=1.1 C=1.2 C=1.5 
0.05 0.1176 0.1235 0.1418 0.1712 0.1767 0.1821 0.1973 
0.1 0.1404 0.1526 0.1874 0.2349 0.2429 0.2507 0.2718 
0.5 0.3669 0.3917 0.4509 0.5241 0.5365 0.5483 0.5810 
1 0.5816 0.6029 0.6613 0.7412 0.7552 0.7686 0.8064 

 
Table 4. Variation of the rate of heat transfer at the wall )0(θ ′−  with C and B (K=1, Pr=0.7). 

 

B C=0.1 C=0.2 C=0.5 C=1 C=1.1 C=1.2 C=1.5 
-0.1 0.5949 0.6096 0.6518 0.7127 0.7237 0.7343 0.7644 
0 0.5321 0.5501 0.5995 0.6676 0.6796 0.6911 0.7236 

0.1 0.4613 0.4844 0.5434 0.6201 0.6333 0.6459 0.6811 
 
 

CONCLUSIONS 
 

The heat transfer in a steady planar stagnation point flow of an incompressible non-
Newtonian second grade fluid impinging on a permeable stretching surface with heat generation/ 
absorption was studied. A numerical solution for the governing nonlinear momentum and energy 
equations was given which allows the computation of the flow and heat transfer characteristics 
for different values of the non-Newtonian parameter K, the stretching velocity C, the heat 
generation/absorption coefficient B, and the Prandtl number Pr. The results indicate that 
increasing the stretching velocity increases the velocity components but decreases the velocity 
boundary layer thickness. On the other hand, increasing the stretching velocity decreases the 
temperature as well as the thermal boundary layer thickness. The effect of the stretching velocity 
on the velocity and temperature is more pronounced for smaller values of the non-Newtonian 
parameter. The variation of velocity components and the temperature as well as the rate of heat 
transfer at the wall with the non-Newtonian parameter depends on the magnitude of the 
stretching velocity. The sign of the wall shear stress was shown to depend on the stretching 
velocity. The effect of the heat generation/absorption parameter B on the rate of heat transfer at 
the wall becomes more apparent for smaller C. 
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Fig. 2. Effect of the parameters C and K on the profile of θ  (Pr=0.7, B=0.1). 
 

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6

ηηηη

θ

K=0,C=0.5 K=0,C=1 K=0,C=1.5

K=2,C=0.5 K=2,C=1 K=2,C=1.5



48 

 
 

Fig. 3. Effect of the parameters C and Pr on the profile of θ  (K=1, B=0.1). 
 
 
 

 
 

Fig. 4. Effect of the parameters C and B on the profile of θ  (K=1, Pr=0.7) 
 
 
 

 
 

Fig. 5. Variation of the wall heat transfer rate )0(θ ′− with B various values of Pr (C=0.5, K=0). 
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