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ABSTRACT. Time varying flow through a porous medium of an incompressible viscous 
non-Newtonian fluid due to a rotation of an infinite rotating disk is studied with heat transfer. 
Numerical solutions using finite differences are obtained for the nonlinear partial differential 
equations which govern the hydrodynamics and energy transfer. The effect of the porosity of 
the medium and the characteristics of the non-Newtonian fluid on the velocity and 
temperature distributions is considered. 
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INTRODUCTION 
 

 The steady flow due to an infinite rotating disk was handled by VON KARMAN in 1921 [1] 
who gave a formulation for the problem and introduced his famous transformations which 
reduced the governing partial differential equations to ordinary differential equations. Later, 
COCHRAN [2] obtained asymptotic solutions for the von Karman problem while BENTON [3] 
extended the problem to the transient state. The steady heat transfer above a rotating disk 
maintained at a constant temperature was examined by MILLSAPS and POHLHAUSEN [4] for a 
variety of Prandtl numbers while SPARROW and GREGG [5] extended the problem to at any 
Prandtl number. ATTIA  [6] extended the problem discussed in [4,5] to the unsteady state in the 
presence of an applied uniform magnetic field. The steady flow of a non-Newtonian fluid due to 
a rotating disk with uniform suction was considered by MITHAL  [7]. Then, ATTIA  [8] extended 
the problem to the transient state with heat transfer. The study of a Newtonian fluid flow in a 
porous medium is studied by ATTIA  [9] in the presence uniform suction and injection. 

In the present paper, the time varying laminar flow through a porous medium of an 
incompressible viscous non-Newtonian fluid due to the uniform rotation of an infinite disk is 
studied with heat transfer where the Darcy model is assumed [10-12]. The temperature of the 
disk is maintained at a constant value. The governing nonlinear partial differential equations are 
integrated numerically using the finite difference approximations The effect of the porosity of 
the medium and the characteristics of the non-Newtonian fluid on the flow and heat transfer 
distributions is discussed. 
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BASIC EQUATIONS 

 
The disk is assumed to lie in the plane z=0 and the space z>0 is equipped by a viscous 

incompressible fluid. The motion is due to the impulsive rotation from rest of an insulated disk 
of infinite extent about an axis perpendicular to its plane with constant angular speed ω through a 
porous medium. The flow in the porous medium deals with the analysis in which the differential 
equation governing the fluid motion is based on the Darcy’s law which accounts for the drag 
exerted by the porous medium [10-12]. Otherwise the fluid is at rest under pressure ∞p . The 
disk is maintained at a constant temperature Tw. The non-Newtonian fluid considered in the 

present paper is that for which the stress tensor i
jτ  is related to the rate of strain tensor i

je  as [7], 
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where p is denoting the pressure, µ is the coefficient of viscosity and µc is the coefficient of cross 
viscosity. The governing equations of steady motion are given by 
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where u, v, w are velocity components in the directions of increasing r,ϕ , z respectively, P is 
denoting the pressure, µ  is the coefficient of viscosity, ρ  is the density of the fluid, and K is the 
Darcy permeability [10-12]. Introducing von Karman transformations [1], 
 

PvppvzHvwGrvFru ωρζωωωω −=−==== ∞,/,,,  
 
whereζ is a non-dimensional distance measured along the axis of rotation, F, G, H and P are 
non-dimensional functions of ζ and t, and ν  is the kinematic viscosity of the fluid, ρµν /=  
transforms Eqs. (1)-(4) to 
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where ων KM /=  is the porosity parameter. The initial and boundary conditions for the velocity 
problem are given by 
 

,0,0,0,0 ==== HGFt         (9a) 
 

,0,1,0,0 ==== HGFζ         (9b) 
   

,0,0,0, →→→∞→ PGFζ        (9c) 
 
Equation (9a) represents the initial conditions, Eq. (9b) ensures the satisfaction of the no-slip 
condition of viscous flow applied at the surface of the disk and Eq. (9c) indicates the satisfaction 
of vanishing of the axial component of velocity. The above system of Eqs. (5)-(7) with the 
prescribed initial and boundary conditions given by Eq. (9) can be solved to determine the three 
components of the flow velocity. Equation (8) can be used to solve for the pressure distribution if 
required. 
 

Due to the difference in temperature between the wall and the ambient fluid, heat 
transfer takes place.  The energy equation without the dissipation terms takes the form [4-5]; 
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where T is the temperature of the fluid, cp is the specific heat at a constant pressure of the fluid, 
and k is the thermal conductivity of the fluid. 
In terms of the non-dimensional variable 
 
θ=(T-T∞)/(Tw-T∞) 

where Tw is the temperature at the surface of the disk and T∞ is the temperature of the ambient 
fluid and using von Karman transformations, Eq. (10) takes the form; 
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where Pr is the Prandtl number, Pr=cpµ/k. The initial and boundary conditions in terms of θ are 
expressed as 
 

0:0 == θt           (12a) 
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The heat transfer from the disk surface to the fluid is determined using Fourier's law 
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Introducing the transformed variables, the expression for q becomes 
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By rephrasing the heat transfer results in terms of a Nusselt number defined as, 

)(// ∞−= TTkQN wu νω  the last equation becomes 
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Numerical solution for the governing nonlinear flow Eqs. (5)-(7) with the conditions 

given by Eq. (9), using the finite-differences, leads to a numerical oscillation problem resulting 
from the discontinuity between the initial and boundary conditions (9a) and (9b). The same type 
of discontinuity happens between the initial and boundary conditions for the energy problem 
(see Eq. (12)). A suggested solution for this numerical problem is accomplished using suitable 
coordinate transformations [13] for similar problems. Expressing Eqs. (5)-(7) and (11) in terms 
of the modified coordinate t2/ζη = , we obtain 
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Equations (13)-(15) represent coupled system of non-linear partial differential equations 

which are solved numerically under the initial and boundary conditions (9), then Eq. (16) can be 
obtained using the boundary conditions (12) using the finite difference approximations. A 
linearization technique is first applied to replace the nonlinear terms at a linear stage, with the 
corrections incorporated in subsequent iterative steps until convergence is reached. Then the 
Crank-Nicolson implicit method is used at two successive time levels [13]. An iterative scheme 
is used to solve the linearized system of difference equations. The solution at a certain time step 
is chosen as an initial guess for next time step and the iterations are continued till convergence, 
within a prescribed accuracy. Finally, the resulting block tri-diagonal system is solved using the 
generalized Thomas-algorithm [13]. Finite difference equations relating the variables are 
obtained by writing the equations at the mid-point of the computational cell and then replacing 
the different terms by their second order central difference approximations in the η-direction.  
The diffusion terms are replaced by the average of the central differences at two successive time-
levels. The computational domain is divided into meshes each of dimension ∆t and ∆η in time 
and space respectively. The modified Eqs. (13)-(16) are integrated from t=0 to t=1. Then, the 
solution obtained at t=1 is used as the initial condition for integrating Eqs. (5)-(7) and (11) from 
t=1 towards the steady state. 

 

The resulting system of equations has to be solved in the infinite domain 0< η <∞. A 
finite domain in the η-direction can be used instead with η chosen large enough to ensure that the 
solutions are not affected by imposing the asymptotic conditions at a finite distance. The 
independence of the results from the length of the finite domain as well as the grid density was 
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ensured and successfully checked by various trial and error numerical experimentations. 
Computations are carried out for η∞=10 and step size ∆η=0.04 which are found adequate for the 
ranges of the parameters studied here. Larger finite distance or smaller step size do not show any 
significant change in the results. Convergence of the scheme is assumed when all of the variables 
F, G, H, θ, ∂F/∂η, ∂G/∂η, and ∂θ/∂η for the last two approximations differs from unity by less 
than 10-6 for all values of η in 0<η<10 and all t.  

 
 

RESULTS AND DISCUSSION 
 

Figure 1 presents the evolution of the axial velocity at infinity Hf for different values of 
the non-Newtonian parameter K and the porosity parameter M. The figure shows that increasing 
K decreases the axial flow towards the disk as expected. On the other hand, increasing the 
parameter K leads to an interesting effect in reversing the direction of the axial velocity for some 
time which results in a crossover for the charts of Hf  with time. The time at which the crossover 
point occurs increases with increasing K. Increasing the parameter M decreases the axial flow 
towards the disk due to its damping effect. It is of interest to see the porosity effect, for non-zero 
values of K, in reversing the direction of the axial flow for all time. 
 

Figure 2 presents the evolution of the Nusselt number Nu for various values of the non-
Newtonian parameter K and the porosity parameter M and for Pr=0.7. It is depicted that as K or 
M increases Nu decreases.  This is due to the fact that increasing K or M resists the axial flow 
towards the disk and then prevents the fluid at near-ambient temperature to be brought to the 
neighborhood of the surface of the disk which reduces the heat transfer and, hence, the Nusselt 
number Nu. 
 

Figures 3-5 present the influence of the non-Newtonian parameter K on the steady state 
velocity profiles G, F, and H, respectively, for the cases M=0 and 1. Figures 3-5 indicate the 
restraining effect of the porosity of the medium on the flow velocity in the three directions.  
Increasing the porosity parameter M decreases G, F, the magnitude of H and the thickness of the 
boundary layer. Figure 3 indicates that increasing K increases G for all ζ . Figure 4 indicates that 
increasing K decreases F for small and moderate ζ . However, for large values of ζ a crossover 
point that depends on K appears in F-ζ charts whereas increasing K more increases F.  Figure 5 
shows that increasing the parameter K increases the restraining effect on the incoming axial flow 
and consequently decreases the axial velocity towards the disk H for all ζ . A crossover point in 
H-ζ charts is also shown in Fig. 5 which indicates that for large values of K, the axial flow 
towards the disk increases with increasing K for small values of ζ . It is of interest to see the 
effect of the parameter M in the suppression of the crossover in F-ζ as well as H-ζ  charts as 
depicted in Figs. 4 and 5. An interesting effect for the parameters K and M appears in Figs. 4 and 
5 that for non-zero values of K, increasing M reverses the direction of the velocity components F 
and H for all ζ . 

 

Figure 6 presents of the non-Newtonian parameter K on the steady state temperature 
profile θ  for the porosity parameter M=0 and 1 and for Pr=0.7. Increasing M or the parameter K 
increases the temperature θ  as a result of the effect of the porosity or the non-Newtonian 
behavior in preventing the fluid at near-ambient temperature from reaching the surface of the 
disk. Consequently, increasing M or K increases the temperature as well as the thermal boundary 
layer thickness.  
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CONCLUSION 
 

In this study the time varying flow of a non-Newtonian fluid induced by a rotating disk 
with heat transfer in a porous medium was studied.  The results indicate the restraining effect of 
the porosity on the flow velocities and the thickness of the boundary layer. On the other hand, 
increasing the porosity parameter increases the temperature and thickness of the thermal 
boundary layer. It is of interest to see the combined effect of the porosity of the medium and the 
non-Newtonian fluid characteristics on reversing the direction of the radial and the axial 
components of velocity. Also, it is interesting to see the effect of the porosity parameter in the 
suppression of the crossover in the radial and axial velocity profiles occur for large values of the 
non-Newtonian fluid characteristics. In the non-porous case, the non-Newtonian fluid 
characteristics reverses the direction of the axial flow for some time, but with porosity, the non-
Newtonian fluid characteristics reverses the direction of the axial flow for all time. 
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Fig. 1. Time growth of the axial velocity component at infinity Hf 
for various values of the parameters K and M. 

 
 

 
 

Fig. 2. Time growth of the Nusselt number at the surface of the disk 
for various values of the parameters K and M. 

 
 

 
 

Fig. 3. Effect of the porosity parameter M and the non-Newtonian parameter K on the profile of G. 
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Fig. 4. Effect of the porosity parameter M and the non-Newtonian parameter K on the profile of F. 
 
 

 
 

Fig. 5. Effect of the porosity parameter M and the non-Newtonian parameter K on the profile of H. 
 
 

 
 

Fig. 6. Effect of the porosity parameter M and the non-Newtonian parameter K on the profile of θ . 
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