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ABSTRACT. Time varying flow through a porous medium of anompressible viscous
non-Newtonian fluid due to a rotation of an infanibtating disk is studied with heat transfer.
Numerical solutions using finite differences ar¢anted for the nonlinear partial differential
equations which govern the hydrodynamics and eneaggfer. The effect of the porosity of
the medium and the characteristics of the non-Neiato fluid on the velocity and
temperature distributions is considered.
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INTRODUCTION

The steady flow due to an infinite rotating dis&sahandled byoN KARMAN in 1921 [1]
who gave a formulation for the problem and intrastichis famous transformations which
reduced the governing partial differential equatidn ordinary differential equations. Later,
COCHRAN [2] obtained asymptotic solutions for the von Karmproblem while BNTON [3]
extended the problem to the transient state. Thadgt heat transfer above a rotating disk
maintained at a constant temperature was examipedibsaps and PHLHAUSEN [4] for a
variety of Prandtl numbers whilerPSRROW and REGG [5] extended the problem to at any
Prandtl number. ATiIA [6] extended the problem discussed in [4,5] touhsteady state in the
presence of an applied uniform magnetic field. $teady flow of a non-Newtonian fluid due to
a rotating disk with uniform suction was considelgdMITHAL [7]. Then, ATIA [8] extended
the problem to the transient state with heat temsfhe study of a Newtonian fluid flow in a
porous medium is studied byrAA [9] in the presence uniform suction and injection.

In the present paper, the time varying laminar fltwwough a porous medium of an
incompressible viscous non-Newtonian fluid duehe uniform rotation of an infinite disk is
studied with heat transfer where the Darcy modelsisumed [10-12]. The temperature of the
disk is maintained at a constant value. The gowgrnionlinear partial differential equations are
integrated numerically using the finite differeragproximations The effect of the porosity of
the medium and the characteristics of the non-Newiofluid on the flow and heat transfer
distributions is discussed.
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BASIC EQUATIONS

The disk is assumed to lie in the plane z=0 andsfaee z>0 is equipped by a viscous
incompressible fluid. The motion is due to the ifspee rotation from rest of an insulated disk
of infinite extent about an axis perpendiculartgoplane with constant angular speethrough a
porous medium.The flow in the porous medium deals with the analyswhich the differential
equation governing the fluid motion is based on Bfacy’s law which accounts for the drag
exerted by the porous medium [10-12)therwise the fluid is at rest under presspgg. The

disk is maintained at a constant temperaffite The non-Newtonian fluid considered in the
present paper is that for which the stress tem.‘fds related to the rate of strain tensaf}r as [7],

r| =28 + 246 ef - pdl €] =0

wherep is denoting the pressunejs the coefficient of viscosity and is the coefficient of cross
viscosity. The governing equations of steady moéimngiven by
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whereu, v, w are velocity components in the directions of iasiagr, ¢ , z respectivelyP is
denoting the pressure is the coefficient of viscosityp is the density of the fluid, arid is the
Darcy permeability [10-12]. Introducing von Karm@iansformations [1],
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where{ is a non-dimensional distance measured along the axis of rotati@),H andP are
non-dimensional functions aof andt, andv is the kinematic viscosity of the fluid,= u/ p
transforms Egs. (1)-(4) to
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whereM =v/Ka is the porosity parameter. The initial and bougdanditions for the velocity
problem are given by

t=0,F =0,G=0,H =0, (9a)
(=0,F=0,G=1H =0, (9b)
Z—>°°,F—>0,G—>O,P—>O, (9C)

Equation (9a) represents the initial conditions, Bp) ensures the satisfaction of the no-slip
condition of viscous flow applied at the surfaceh# disk and Eq. (9¢) indicates the satisfaction
of vanishing of the axial component of velocity.eThbove system of Eqgs. (5)-(7) with the

prescribed initial and boundary conditions givenBay (9) can be solved to determine the three
components of the flow velocity. Equation (8) canused to solve for the pressure distribution if
required.

Due to the difference in temperature between th# arad the ambient fluid, heat
transfer takes place. The energy equation wittimutissipation terms takes the form [4-5];
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whereT is the temperature of the fluid, is the specific heat at a constant pressure ofiui
andk is the thermal conductivity of the fluid.
In terms of the non-dimensional variable

O=(T-To)/(Tw-Tx)

whereT, is the temperature at the surface of the diskTan the temperature of the ambient
fluid and using von Karman transformations, Eq.) {aBes the form;
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wherePr is the Prandtl numbePRr=cy/k. The initial and boundary conditions in termscdre
expressed as

t=0:6=0 (12a)
6(0) =1,6(w) =0 (12b)
The heat transfer from the disk surface to thalflsidetermined using Fourier's law
- k(9T
Q= -k( . Jw

Introducing the transformed variables, the expogsfirg becomes



36

Q=—K(T, -T.) %’ _OHa(tZ,O)

By rephrasing the heat transfer results in terms aofNusselt number defined as,
N, =QVw/v k(T —T,) the last equation becomes
_06(t0)

N, =
0¢

Numerical solution for the governing nonlinear fldwgs. (5)-(7) with the conditions

given by Eg. (9), using the finite-differences,dedo a numerical oscillation problem resulting
from the discontinuity between the initial and bdary conditions (9a) and (9b). The same type
of discontinuity happens between the initial andirimtary conditions for the energy problem
(see Eg. (12)). A suggested solution for this nucakproblem is accomplished using suitable
coordinate transformations [13] for similar probknkxpressing Egs. (5)-(7) and (11) in terms

of the modified coordinatg = { /24t , we obtain
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Equations (13)-(15) represent coupled system of non-linear partial difedrequations
which are solved numerically under the initial and boundary dondii(9), then Eg. (16) can be
obtained using the boundary conditions (12) using the fiditierence approximations. A
linearization technique is first applied to replace the nonlinear tatraslinear stage, with the
corrections incorporated in subsequent iterative steps until convergenmeached. Then the
Crank-Nicolson implicit method is used at two successive timedde3]. An iterative scheme
is used to solve the linearized system of difference equationsollt®n at a certain time step
is chosen as an initial guess for next time step and the iteratiersontinued till convergence,
within a prescribed accuracy. Finally, the resulting block agdnal system is solved using the
generalized Thomas-algorithm [13]. Finite difference equations reldtiegvariables are
obtained by writing the equations at the mid-point of the cdatjnal cell and then replacing
the different terms by their second order central difference approximatichg »-direction.
The diffusion terms are replaced by the average of the central differérneessaccessive time-
levels. The computational domain is divided into meshes eadimansion4t and 4n in time
and space respectively. The modified Egs. (13)-(16) are integratedi#no t=1. Then, the
solution obtained at=1 is used as the initial condition for integrating Eqs. (5)a(® (11) from
t=1 towards the steady state.

The resulting system of equations has to be solved in th@atenflomain 0<y <w. A
finite domain in thej-direction can be used instead witlchosen large enough to ensure that the
solutions are not affected by imposing the asymptotic comditiat a finite distance. The
independence of the results from the length of the finite doasinell as the grid density was
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ensured and successfully checked by various tnal arror numerical experimentations.
Computations are carried out fpr=10 and step siz&4=0.04 which are found adequate for the
ranges of the parameters studied here. Largee fth#tance or smaller step size do not show any
significant change in the results. Convergencéefsctheme is assumed when all of the variables
F, G, H, 8, oFlon, 0Glon, anddblon for the last two approximations differs from unity less
than 1 for all values of; in 0<7<10 and all.

RESULTSAND DISCUSSION

Figure 1 presents the evolution of the axial veyoat infinity H; for different values of
the non-Newtonian parametérand the porosity parameter. The figure shows that increasing
K decreases the axial flow towards the disk as d@gde®©n the other hand, increasing the
parameteK leads to an interesting effect in reversing thredlion of the axial velocity for some
time which results in a crossover for the chartslofvith time. The time at which the crossover
point occurs increases with increasikgIncreasing the paramet®bt decreases the axial flow
towards the disk due to its damping effect. Itfisnterest to see the porosity effect, for non-zero
values ofK, in reversing the direction of the axial flow falf time.

Figure 2 presents the evolution of the Nusselt reni for various values of the non-
Newtonian parametd€ and the porosity parameter and forPr=0.7. It is depicted that && or
M increased\, decreases. This is due to the fact that incrgadsior M resists the axial flow
towards the disk and then prevents the fluid ar-aezbient temperature to be brought to the
neighborhood of the surface of the disk which reduihe heat transfer and, hence, the Nusselt
numberlN,,.

Figures 3-5 present the influence of the non-NewstoparameteK on the steady state
velocity profilesG, F, andH, respectively, for the casé4=0 and 1. Figures 3-5 indicate the
restraining effect of the porosity of the medium thie flow velocity in the three directions.
Increasing the porosity parameMrdecrease&, F, the magnitude dfl and the thickness of the
boundary layer. Figure 3 indicates that increagingcreases for all ¢ . Figure 4 indicates that
increasingK decreasel for small and moderaté . However, for large values @f a crossover
point that depends dR appears - charts whereas increasikgmore increaseB. Figure 5
shows that increasing the parameédencreases the restraining effect on the incomiigl dlow
and consequently decreases the axial velocity asvdre diskH for all . A crossover point in
H- ¢ charts is also shown in Fig. 5 which indicates floatlarge values oK, the axial flow
towards the disk increases with increasiid@or small values off . It is of interest to see the
effect of the parameteM in the suppression of the crossoveiy as well asH-{ charts as
depicted in Figs. 4 and 5. An interesting effecttfee parametens andM appears in Figs. 4 and
5 that for non-zero values &f, increasingV reverses the direction of the velocity componénts
andH for all ¢ .

Figure 6 presents of the non-Newtonian paramktem the steady state temperature
profile @ for the porosity paramet&f=0 and 1 and foPr=0.7. Increasindg/ or the parametef
increases the temperatuéeas a result of the effect of the porosity or than-Newtonian
behavior in preventing the fluid at near-ambiemhperature from reaching the surface of the
disk. Consequently, increasidyor K increases the temperature as well as the therougdary
layer thickness.
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CONCLUSION

In this study the time varying flow of a non-Newiam fluid induced by a rotating disk
with heat transfer in a porous medium was studi€lde results indicate the restraining effect of
the porosity on the flow velocities and the thickn®f the boundary layer. On the other hand,
increasing the porosity parameter increases theydeature and thickness of the thermal
boundary layer. It is of interest to see the corabirffect of the porosity of the medium and the
non-Newtonian fluid characteristics on reversing fitirection of the radial and the axial
components of velocity. Also, it is interestingdee the effect of the porosity parameter in the
suppression of the crossover in the radial and aeiacity profiles occur for large values of the
non-Newtonian fluid characteristics. In the nonq@ case, the non-Newtonian fluid
characteristics reverses the direction of the dloal for some time, but with porosity, the non-
Newtonian fluid characteristics reverses the dioacof the axial flow for all time.
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Fig. 1. Time growth of the axial velocity componeaninfinity H
for various values of the parameters K and M.
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Fig. 2. Time growth of the Nusselt number at thdase of the disk
for various values of the parameters K and M.
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Fig. 3. Effect of the porosity parameter M and lb@-Newtonian parameter K on the profile of G.
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Fig. 4. Effect of the porosity parameter M and iba-Newtonian parameter K on the profile of F.
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Fig. 5. Effect of the porosity parameter M and lba-Newtonian parameter K on the profile of H.
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