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ABSTRACT. Using Anderson's spin wave theory, we derive expressions for the ground state 
energy of two Ising-like systems. Antiferromagnetic long range order is predicted for one of 
the systems. 

 
 
 

INTRODUCTION 
 

The analytical determination of the exact ground state of Ising-like models has proved and 
has remained difficult. Consequently one often has to resort to various approximate theories. One 
such theory is the spin waves theory introduced by BLOCH [1] in his theory of ferromagnetism and 
later rederived by KRAMERS and HELLER [2] in a semiclassical fashion. This theory was employed 
by HULTHÉN [3] in studying the small vibrations of simple antiferromagnetic lattices from their 
classical equilibrium state. His neglect of the zero-point energy and motion however made the 
results to disagree with the rigorous exact ground state worked out by BETHE [4]. The spin waves 
theory was used by ANDERSON [5] in successfully obtaining the ground state energy as well as in 
the determination of the long range order parameters of an Heisenberg antiferromagnet. The 
Anderson ground state energy fell within the rigorous limits derived using the variational principle 
and was in good agreement with the exact result obtained by Bethe for a spin-1/2  linear chain. 
Anderson found that the Heisenberg antiferromagnet with nearest neighbour interaction possesses 
no long range order in one dimension but that long range order exists in two and in three 
dimensions. 

A more recent example of a successful application of the spin wave theory may be found in 
the work of GAIDIDAE  and BUETTNER [6] where it was shown that the ground state properties of a 
frustrated compressible antiferromagnet differ qualitatively from that of an Heisenberg antiferro-
magnet on an anisotropic triangular lattice.  

 
In this paper we will adapt the spin waves theory of Anderson to determine the ground state 

energy and other properties of the one dimensional Axial Next Nearest Neighbour Ising (ANNNI) 
model and the ANNNI model in a transverse field. 

 
 

THE ONE-DIMENSIONAL SPIN-1/2 ANNNI MODEL 
 
The one-dimensional spin-1/2  ANNNI model is described by the Hamiltonian  
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where i  and 1+i  in the first sum refer to nearest neighbour spins and i  and 2+i  in the second 
sum denote next nearest neighbour spins, with the summation going over all such pairs. N  is the 
number of lattice sites and j  is the next nearest neighbour exchange interaction. We assume 

periodic boundary conditions, so that zz
N SS 11 =+  and zz

N SS 22 =+ . 
 

The basic assumption in the derivation of the semiclassical spin waves is that the 
antiferromagnetic state is not greatly different from the classical ground state in which the spins on 
odd sites all point in one direction (say +z), the spins on even lattice sites in the other direction [5]. 
For convenience we label spins on odd sites with subscript m  and those on even numbered sites 
with n . So we assume 
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Under assumption (2), the binomial theorem allows us to write  
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 For the next nearest neighbour spins we have  
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Substituting  (6), (7) and (8) in the Hamiltonian  (1), we have 
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Next we introduce two sets of spin waves, one pair for each sublattice: 
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The inverse transformations are  

 ,)(exp2/= x
m

m

SmiNQ λλ −∑  

 y
m

m

SmiNP )(exp2/= λλ ∑  (13) 

 
and  

 ,)(exp2/= x
n

n

SniNR λλ ∑  

 y
n

n

SniNS )(exp2/= λλ −− ∑  (14) 

 
Clearly, spin waves operators corresponding to spins on different sites commute, so that 

λQ  commutes with λ′Q , λ′P , λ′R , and λ′S ; λR  commutes with λ′R , λ′P , λ′S , and λ′Q  and so on. 

 
Direct substitution of  (10) and (11) into  (13) and  (14) together with the identity  
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Substituting the spin waves (10) and (11) in (9), the sums can be easily rewritten in terms 

of the spin wave operators λQ , λP , λR  and λS , with the use of the set of equations (19). 

 
The Hamiltonian then becomes  
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 Let us now introduce a new set of coordinates by defining [1]  
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 This is a canonical transformation of the spin coordinates since λ1q , λ1p , λ2q  and λ2p  obey the 

same commutation rules as λQ , λP , λR  and λS   
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12= +λnE , the Hamiltonian (22) therefore has the energies 

( ) .1/431)(= 21






 ++−− ∑ λλ

λ
nnNjE   (23) 

 

In the ground state all 0=λn  and we have  
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Long range order in the one-dimensional spin 1/2−  ANNNI model 
 

The long range order parameter is given by the expectation value of total zS  on one site [5] 
in the ground state. Thus by equation (4) we have 
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Using (19) and the canonical transformations (21) we have  
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The antiferromagnetic long range order parameter ξ  can then be computed by taking the average 

of (1))( totzS  in the ground state. Thus,  
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We used the fact that the average kinetic and potential energies of a harmonic oscillator are the 
same and that for a unit frequency oscillator, 1>=<2>=<2 2
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is therefore  
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Thus we see that the spin waves theory predicts long range order for the one dimensional 

antiferromagnetic ANNNI model. This is in contrast for example to the Heisenberg model for 
which there is no long range order, as rigorously demonstrated by BETHE, HULTHÉN and later 
ANDERSON [2, 5, 1]. 

 
 

THE ONE DIMENSIONAL SPIN-1/2 ANNNI MODEL 
IN A STRONG TRANSVERSE FIELD 

 
The Hamiltonian for the transverse ANNNI model is given by  
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where 0>xh  is the transverse external magnetic field. 
 

Here as in the previous section we assume that the ground state of the classical model 
0=xh  is antiferromagnetic. We use the binomial theorem, as in the preceding section to write  
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In terms of even sites and odd sites, the Hamiltonian (29) can be written as  
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Using (30) and (31) we have 
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The Hamiltonian now becomes  
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We now introduce the spin waves 
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In terms of the spin waves [5], 
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The Hamiltonian (34) can now be written in terms of the spin waves operators and we have  
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A canonical transformation which brings H  to normal form is  
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The Hamiltonian  (39) in normal coordinates is then  
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Writing H  as a sum of harmonic oscillators  
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 and with q  and p  satisfying the commutation relations  
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 Since the frequencies λω1  and λω2  cannot be negative, xh  and j  must fulfil the inequalities  

             .cos>
42

andcos>
42

λλ −++
c

x

c

x

S

hj

S

hj
  (46) 

 That is  

            
c

x

c

x

S

hj

S

hj

42
<cos<

42
+−− λ for all λ .  (47) 

 One way to ensure that this is always the case is to require that  

            .1
6

3

2
=

42
≥++ x

c

x hj

S

hj
  (48) 

The unfortunate implication of equation  (48) is that our spin waves theory will be valid only for 
large values of the transverse field xh  and that we will be kept in the dark concerning the 

characteristics of the ANNNI model in the presence of a weak transverse external magnetic field. 
In the ground state, all 0=λn  and we have for the ground state energy  
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Here, as in [1], the frequencies of the spin waves fall into two categories. However, unlike 

in the Heisenberg model studied by Anderson, λω1  and λω2  are not identical and furthermore the 

dispersion laws are quite different for long wavelengths. In fact, for 0→λ , the oscillator 
frequencies are quadratic in λ  as  
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This quadratic dispersion law is rather characteristic of the ground state of the 
ferromagnetic Heisenberg model [3]. Anderson on the other hand predicted a linear dispersion law 
for the Heisenberg antiferromagnet [5]. 

 
 

Spin waves theory ground state energy of the spin 1/2−  ANNNI model in a transverse field 
 
We are now in a position to calculate the ground state energy for an infinite chain, but first 

let us calculate the average values of the kinetic and potential energy terms that occur in H  since 
we will need them later for calculating order parameters. 

If we write  
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That is, substituting the frequencies  (45) 
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In order to compute the spin waves theory ground state energy of the spin1/2−  ANNNI 
model in a transverse field, we replace the sum over λ  in equation (49) by an integral and write 
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The factor of /2N  comes from the fact that there are /2N  values of the wave number λ . 
Evaluating the above integral, we obtain  
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where E  is an elliptic integral of the second kind and 
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CONCLUSION 

 
We have successfully applied the spin wave theory to classically determine the ground 

state energy of the ANNNI model and the ANNNI model in a  strong transverse field. Long range 
order was predicted for the one dimensional antiferromagnetic ANNNI model, as opposed for 
example to the situation with the Heisenberg model for which there is no long range order. 
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