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ABSTRACT. Analysis of stress in a thick-walled circular cylinder subjected to uniform 
pressure is discussed by using Seth transition theory. It is shown that the circumferential 
stresses are maximal at the internal surface. 
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INTRODUCTION 
 

 Problem of “Thick walled circular cylinders under internal pressure” has been 
discussed by many authors [3-5, 8-10] for isotropic plastic and creep theory. In their treatment 
the following assumptions were made: 

(i) The incompressibility condition 
(ii) Creep strain law 
(iii)Yield condition. 

Seth’s transition theory [1] does not require any ad hoc assumptions like a yield 
condition, incompressibility condition and thus poses and solves a more general problem from 
which cases pertaining to the above assumptions can be worked out. It utilizes the concept of 
generalized strain measure and asymptotic solution at critical points or turning points of the 
differential equations defining the deforming field and has been successfully applied to a large 
number of the problems in plasticity.  
 Seth has defined the generalized principal strain measure as: 
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where n is the measure and 
A

iie is the principal finite strain components. In this paper we 
investigate the effect of stresses in a thick-walled circular cylinder having pressure by using 
concept of generalized strain measure by using Seth’s transition theory. 
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Governing Equations 
 
 We consider a thick-walled circular cylinder of internal radius a and external radius b 
respectively subjected to internal pressure p . The displacement components in cylindrical 
polar co-ordinate are given by [2]: 
 

    )1( β−= ru ; v = 0 ;  w = dz                                                                                                (2) 
 

where β  is function of r = 22 yx +  only and d is a constant.  
The finite strain components are given by Seth [1]: 
 

( )21 1
2rre rβ β⎡ ⎤′= − +⎣ ⎦  

21 1
2

eθθ β⎡ ⎤= −⎣ ⎦  

21 1 (1 )
2ZZe d⎡ ⎤= − −⎣ ⎦  

θr

A
e = z

A
eθ =  zr

A
e  = 0                                                                                                     (3) 

 

where /d drβ β′ =  and meaning of superscripts “A” is Almansi.  
  
Substituting Eqs. (3) into Eq. (1), the generalized components of strain are: 
 

( )[ ]n
rr r

n
e ββ +′−= 11

 
[ ]n

n
e βθθ −= 11

 
[ ]n

zz )d1(1
n
1e −−=

 
0=== zrzr eee θθ                                                                                                          (4)

  
The stress–strain relations for isotropic material are given by [19]: 
 

1 2
ijij ijT I eλδ μ= +      ,     (i, j = 1, 2, 3)                                                                       (5) 

 

where ijT  and ije are stress and strain tensor respectively, λ  and μ  are Lame’s constants, 

kkeI =1  is the first strain invariant, ijδ  is the Kronecker’s delta. 
Substituting the strain components from eq. (4) in eq. (5), the stresses are obtained as:  
 

/
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1
2 1 nT I
nθθ
μλ β⎡ ⎤= + −⎣ ⎦  

1
2 1 (1 )n

zzT I d
n
μλ ⎡ ⎤= + − −⎣ ⎦

 
0r z zrT T Tθ θ= = =                                                                                                         (6) 

 



43 
 

 

where ( ) ( )1
1 3 1n nnI r d
n

β β β⎡ ⎤′= − + − − −
⎣ ⎦ .

 
The equations of equilibrium are all satisfied except: 
 

            0rrrr T Td T
dr r

θθ−
+ = .                                                                                                    (7) 

Using Eqs. (6) in eq. (7), we get a non-linear differential equation inβ  as: 
 

1( 1) ( 1) (1 ) 1 ( 1) 0n n ndPnP P nP P c nP P c
d

β
β

− ⎡ ⎤+ + + + − − − + =⎣ ⎦                         (8) 

 

where 2 / 2c μ λ μ= +  and r Pβ β′ =  
 

Eq. (8) shows that the transition points of  β  are 0,P = 1, .P →− ±∞ 0,P →  which does not 
give anything important.  

We shall now show that the transition state at  1P →−  through different transition 
function leads to plastic or creep states. 

The boundary conditions are: 
 

       rrT  = -p   at  r = a       
 rrT  = 0      at  r = b                                                                                                          (9) 

 
where  p is pressure applied internal surface. 
 
 

Transition through the Principal Stresses 
 
  For finding the plastic stresses, the transition function is taken through the principal 
stress (SETH [1, 2], GUPTA [8-10], THAKUR [12-15]) at the transition point ±∞→P . The 
transition function R is defined as: 

     ( ) ( ) ( )2 1 1 1
2

n
rr

ncR c c d T
μ

⎡ ⎤= − + − − − −⎣ ⎦ .                                                    (10) 

 

Taking the logarithmic differentiation of  Eq. (10) with respect to  ,we get  
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n n
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β

β β
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Substituting the value of /dP dβ  from the Eq. (8) in Eq. (11) and taking the asymptotic value
1P →− , we get after integration  

 ( )1c cR Ar −=                                                                            (12) 
 
where A is a constant of integration can be determined by boundary condition. 
From Eqs. (10) and (12) we have 
 

( )
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c c
−
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                                                  (13) 
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where  
( )
( )

2 3 2
2

c
Y

n c
μ −

=
−

 is yield stress in tension is given by [1]. 

By substituting the boundary conditions (9) in Eq. (13), we get  
 

( )1

1 (3 2 ) (1 )(1 )n
c cA c c d

b −
⎡ ⎤= − − − −⎣ ⎦  

 
and  
 

( )
( ) ( ) 12

(3 2 ) (1 )(1 ) 1
3 2

c cnc Y
p c c d a b

c c
−− ⎡ ⎤⎡ ⎤= − − − − −⎣ ⎦ ⎣ ⎦−

                                           (14)
 

 

where A is constant of integration and can be determined by boundary condition and p is the 
pressure at which the plasticity sets in cylinder. Substituting the value of A in Eq. (13), we get 
 

( ) { }/(1 )2
{(3 2 ) (1 )(1 ) } 1 ( / )
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n c c

rr
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                                                (15)
 

 

By substituting Eq. (15) in Eq. (7), we get 
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From Eqs. (15) and (16) we get 
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2
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whereas Eq. (6) gives: 
 

[ ]1 2
(2 )zz rr zz

cT T T Ye
c θθ

−
= + +

−
                                                                                                 (18)

 
 

The resultant force transmitted by the wall in axial direction is equal П a2p, that is 
 

22
b

zz
a

rT dr a pΠ =Π∫                                                                                                                (19) 

 

Combining Eqs. (18) and (19), 
 

2

2 22 (2 )( )zz
pa ce

Y c b a
=

− −
                                                                                                         (20) 

 
and by substituting Eq. (20) into Eq. (18),  
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[ ]
2

2 2

1
(2 ) (2 )( )zz rr

c pa cT T T
c c b aθθ

−
= + +

− − −
 .                                                                             (21) 

 
For fully plastic state, letting c →0 , we have from Eq. (19): 
 

0zze =                                                                                                                                     (22) 
 
which implies that the cylinder does not change its length when it deforms permanently. 
Further it shows that the strain vanishes in axial direction, a condition which is generally 
assumed in the classical theory. 
 
We introduce the following non-dimensional components as: 
 

                   0/ , / , / , /r rrR r b R a b T Y T Yθ θθσ σ= = = = , /z zzT Yσ = , 0 /p p Y=  
 
Elastic-plastic transitional stresses and pressure from Eqs. (15), (16), (21) and (14) in non-
dimensional form become: 
 

( ) { }/(1 )2
{(3 2 ) (1 )(1 ) } 1

(3 2 )
n c c

r

c
c c d R

c c
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2

0 0
2
0

1
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and 
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( )1
0 0
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3 2

c
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p c c d R
c c

−
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Using Eqs. (4) and (22), the stresses (23)-(25) and pressure (26) for fully plastic state become  
 

( )log 1/r Rσ =                                                                                                                        (27) 

( )log 1/ 1Rθσ ⎡ ⎤= −⎣ ⎦                                                                                                               (28) 

( )1 2log 1/ 1
2z Rσ ⎡ ⎤= −⎣ ⎦                                                                                                          (29) 

4
3rr θθσ σ− =                                                                                                                          (30) 

and   0
0

1logp
R

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
                                                                                                            (31) 

 
 From Eq. (30), we note that Tresca’s yield condition comes out from the analysis 
itself. Expressions (29) for fully plastic state are the same as given by NADAI [16] and HILL 
[17] by assuming 0zze =  and Tresca’s yield condition. MACGREHGER et al. [18] also arrived 
at this special solution for finite deformation. 
 



46 
 

 

 
 

Figure 1. Stresses for fully-plastic state. 
 
 
Solution through the Principal Stress difference 
 
 It has been shown that the asymptotic solution through the principal stress difference 
[8-15] at the transition point 1P→− , gives the creep stresses. We define the transition 
function 1R  as: 
 

( )1
2 nn

rrR T T r
nθθ
μ β β β⎛ ⎞ ⎡ ⎤′= − = − +⎜ ⎟ ⎣ ⎦⎝ ⎠

 .                                                                              (32) 

 

Taking the logarithmic differentiating of eq. (32) with respect to β  and using eq. (8), we get: 
 

1
(2 ) {1 ( 1) }(log )

(1 ( 1) )

n

n

d n nP c c PR
d nP Pβ β

⎡ ⎤− − − +
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(33) 

 
Taking asymptotic value of eq. (32) at P→ -1, we get after integration: 
 

2 ( 1)
1 1

n c nR A β − −=                                                                                                                      (34) 
 

where 1A  is a constant of integration can be determined by boundary condition. The 
asymptotic value of  β  as is  P→ -1 is D/r, D being a constant. 
Eqs. (32) and (34)  yield: 
 

2 ( 1)
1 1

n c n
rrT T R A rθθ

− + −− = =                                                                                                     (35) 
 

which substituted into Eq. (7) and by integrating yields 
 

2 ( 1)

1 12 ( 1)

n c n

rr
rT A B
n c n

− + −

= +
− −                                                                                                    

(36) 

 

where 1B  is a constant of integration can be determined by boundary condition. 
Using  the boundary condition (9) in Eq. (36), we get the transitional stresses for state of creep 
as: 
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( )1 2 (3 2 )
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Using Eqs. (19) and (37)-(38), we get:  
 

( )
2

2 2

2 (3 2 ) 1
2 2(2 ) ( )zz

c npa ce
c c b a

μ −
=

− − −
 .                                                                                      (40) 

 

When the material is incompressible i.e., c →0, Eq. (40) becomes:  
 

0zze =                                                                                                                                     (41) 
The steady state creep stresses (37)-(39) for incompressible material are given by: 
 

( )2 2n n
rrT q r b− −= −                                                                                                                 (42) 

( )2 21 2n nT q r n bθθ
− −⎡ ⎤= − −⎣ ⎦                                                                                                 (43) 

2 2 2( )n n n
zzT q r b nr− − −⎡ ⎤= − −⎣ ⎦                                                                                                (44) 

where   2 2( )n n

pq
a b− −=

−
   

 

These expressions for steady state creep are the same as given by BAILEY [3] and ODQUIST 
[4]. They have derived these equation by assuming Norton’s law, Von-Mises yield condition, 
and incompressibility of the material provided as put n =1/N 
 

For c → 0 and n → 0 (i.e. for Hencky strain measure) Eq. (35) gives the Tresce condition, 
1rrT T Aθθ− =                                                                                                                            (45)

 
 

 

Numerical Results and Discussion: 
 

 When a material passes from elastic state to the plastic state or to the creep state, 
transition takes place . Since this transition is non linear and therefore difficult to investigate, 
workers have assumed certain  ad hoc  assumption like a strain law, incompressibility of the 
material and an yield condition which may or may not be relevant. Further they have also 
assumed different constitutive equations for the above mentioned three states. It has been 
shown in this paper that by using Seth’s transition theory, there is no need to assume the 
above condition. On the other hand, these condition follow from the analysis itself, which can 
be seen from Eqs. (22), (30), (42), (43), (44) and (45). Further do not use different constitutive 
equations for each state. The solution thus obtained not only give the creep stresses for 
compressible material but also for incompressible material as a particular case. For elastic-
plastic state, the transitional stresses are obtained and it has been shown from these stresses 
that as soon as the material become plastic, the stresses obtained are the same as in the 
classical theory which are based on certain ad hoc assumptions. 
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 Curve have drawn from Fig. 2 between stresses and radius for fully plastic state, it has 
been seen that the radial stresses is maximum at the international surface. 
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